
Mark Tullsen, tullsen@galois.com (presenting)
Lee Pike, leepike@galois.com
Nathan Collins, conathan@galois.com
Eric Woldridge, ericw@galois.com
Aaron Tomb, atomb@galois.com

Development of a Verified Message
Encoder/Decoder for Automotive
Vehicle to Vehicle (V2V)
Communications

© 2017 Galois, Inc.2 © 2016 Galois, Inc.2

V2V	(Vehicle	to	Vehicle)	

ITS	(Intelligent	Transportation	Systems)	

•  Emergency	brake	light	warning	
•  Forward	collision	warning	
•  Intersection	movement	assist	
•  Blind	spot	and	lane	change	warning	
•  …	

V2I	(Vehicle	to	Infrastructure)	

© 2017 Galois, Inc.3 © 2016 Galois, Inc.3

This Project

§  Small, research-oriented pilot study !
§ Can we develop a formally verified encoder/decoder for the

messages between vehicles? !
§  Funded by DOT/NHTSA (Art Carter, POC)!
§  Partners!
§ Battelle (Prime, Management) !
§ Galois (Sub, Technical work)!

• Expertise in ASN.1, security, embedded-systems, formal
methods!

§  Galois Team: Lee Pike, Mark Tullsen, Nathan Collins, Eric
Woldridge, Aaron Tomb!

© 2017 Galois, Inc.4 © 2016 Galois, Inc.4

From Embedded Systems to
Cyber Physical Systems

src: Kathleen Fisher, http://www.cyber.umd.edu/sites/default/files/documents/symposium/fisher-HACMS-MD.pdf

© 2017 Galois, Inc.5 © 2016 Galois, Inc.5

Hacking Cars

New York Times

© 2017 Galois, Inc.6 © 2016 Galois, Inc.6

Example Attacks

Comprehensive Experimental Analyses of Automotive Attack Surfaces, Stephen Checkoway et al. (2011)

DSRC	 ???	 ???	 ???	???	

© 2017 Galois, Inc.7 © 2016 Galois, Inc.7

Secure V2V

SAE	J2735	Basic	Safety	Message	

Basic	Vehicle	State	
	

(Vehicle	Size,	Position,	Speed,	Heading,	…)	
	

Mandatory	in	all	Messages	

Vehicle	Safety	Extensions	
	

(Exterior	Lights,	Trailer	Data,	…)	
	

Optional	in	all	Messages	

Part	1	

Part	2	

DSRC	
•  SAE	J2945/*	
•  SAE	J2735	
•  IEEE	1609.x	
•  IEEE	802.11p	

Pilot-study	security	
focus:	

J2735	(ASN.1)	

© 2017 Galois, Inc.8 © 2016 Galois, Inc.8

What is ASN.1?

§  It is not a single specification, not a library (that we implement
once)!

§  It is the language by which we define hundreds of protocols and
data-formats!

© 2017 Galois, Inc.9 © 2016 Galois, Inc.9

Where Is ASN.1 Used? (Everywhere)
Telecomm!

§  Cellular protocols including UMTS, 4G, LTE!
§  Call control SS7, CSTA!
§  H.323!

Networking in General !
§  SNMP, X.500, LDAP!
§  PKI X.509!

Automotive (Intelligent Transportation Systems “ITS”) !
§  Telematics!
§  DSRC (dedicated short range communications) !
§  GPS!
§  Toll booths!
§  Anti-theft applications!

© 2017 Galois, Inc.10 © 2016 Galois, Inc.10

ASN.1: Security Problems?

In Theory: A great idea; In Practice: Easy to get wrong !
§  Very large, complex language!
§  language features interfere with each other !

§  Evolving standards!
§  Multiple encoding schemes (BER, DER, PER, XER, …)!
§  Numerous opportunities for low-level software errors in the bit-

fiddling code !
Commercial ASN.1 libraries, compilers have had flaws/vulnerabilities! !
… Yet, this is the first line of interface for many mission-critical
systems, so it must be correct. (Typically on the attack surface.) !

© 2017 Galois, Inc.11 © 2016 Galois, Inc.11

Patch and Pray Doesn’t Work

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ASN.1	

http://www.theregister.co.uk/2016/07/19/asn_objective_systems_asn_compiler_memory_bug/	

© 2017 Galois, Inc.12 © 2016 Galois, Inc.12

Our Approach: Security In Depth

§  Generate correct code!
§ Galois ASN.1 compiler “correct by construction” !

§  Test the code!
§  test vectors !
§ compare to other ASN.1 compilers !

§  Verify the code!
1.  Motivations!
2.  Properties!
3.  Approach!

•  tools !
• methods!

-  Code	Generation	via	correctness-
preserving	transformations	of	
ASN.1	interpreter	

-  Optimized	for	verification	of	
compiler	

-  Optimized	for	correctness	of	
generated	code	

© 2017 Galois, Inc.13 © 2016 Galois, Inc.13

Overview

		

J2735.asn	 hasnc	

spec.saw	

Enc	/	Dec	
*.h	
*.c	

Test	
Vectors	

SAW	
Verification	
Results	

•  Memory	safety	
•  Functional	

correctness	
properties	

•  Etc.	

Either	
•  Valid.	
•  Invalid:	…	
•  ………	

[hints]	

© 2017 Galois, Inc.14 © 2016 Galois, Inc.14

Verify Code: 1. Motivation

!

© 2017 Galois, Inc.15 © 2016 Galois, Inc.15

Why Is Testing Hard?

dec(uint64_t x
 , uint64_t y
 , uint64_t z) {

 ...

}

Execution
time: 1ms

l  Number of unique inputs: (264)3 ≈ 6.3*1057!
l  Volume of the Pleiades star cluster (cm3) ≈ 226*1054!

!
l  Time to execute 6.3*1057 tests (years) ≈ 2*1047!
l  Age of universe (years) ≈ 1.4*1010!

And	J2735	contains	
dozens	of	functions.	
Complexity	grows	
exponentially!	

© 2017 Galois, Inc.16 © 2016 Galois, Inc.16

How Do You Know When  
You’ve Tested Enough?

dec(uint64_t x
 , uint64_t y) {

 if(x == 1029384756
 && y == 6574932010
) { launch_attack(); }

 ...

}

Only	detected	if	you	tested	
dec(1029384756

 , 6574932010)

Creative	Commons	https://www.flickr.com/photos/kevinkrejci/4735243774		

© 2017 Galois, Inc.17 © 2016 Galois, Inc.17

Verify Code: 2. Properties?

© 2017 Galois, Inc.18 © 2016 Galois, Inc.18

Verify Code: 2. Properties
§  For any piece of software we want to know:!
§ Does it behave correctly and is it secure? !

§  For J2735 (ASN.1) encoders/decoders:!
§ Behaves correctly!

•  Round trip: encoding then decoding gives back the original
message!

-  Forall msg. dec(enc(msg)) = VALID msg!
•  Rejection: bad messages are detected (not decoded). Forall

bits, either!
-  dec(bits) = INVALIDMSGDETECTED , Or!
-  dec(bits) = VALID msg, and enc(msg) = bits!

§  Is secure!
•  Is it “good/valid/safe/…” C (e.g., no buffer overruns, no seg-

faults, etc.)!

§  N.B.: Not full functional correctness.!

© 2017 Galois, Inc.19 © 2016 Galois, Inc.19

Verify the Code: Approach

© 2017 Galois, Inc.20 © 2016 Galois, Inc.20

SAW Architecture

© 2017 Galois, Inc.21 © 2016 Galois, Inc.21

“Automated” Formal Methods Applied

1.  In SAW, write property P on the code !
2.  Iterate!

until	SAW	proves	P	repeat:	
				if	No:	counter-example	then		
						<fix	code	and/or	P>	
			else	if	tool-issues	OR	no-results	then	
						<tricks-of-the-trade/incantations/etc>	

nope	

-  Switch	SMT	solver	
-  Write	SAW	Overrides	
-  Specialize	SAW	overrides	

© 2017 Galois, Inc.22 © 2016 Galois, Inc.22

SAW Overrides

§  If we have this in C:!
int	f_implem	(...)	{	...	}	

§  We can write this:!
f_spec	=		...	–	in	Cryptol	
let	thm1	=	{{	\x	->	f_implem	x	==	f_spec	x	}};	

§  Now SAW can use f_spec in the symbolic simulation of programs
that use f_implem.!

!

© 2017 Galois, Inc.23 © 2016 Galois, Inc.23

Using SAW Overrides for V2V verification

/*	becb	-	big	endian	copy	bits	*/	
int	becb	(dst,dst_i,src,src_i,length)	{	
		/*	ugly	bit-manipulation	…	*/	
		}		
	
§  Wrote spec in Cryptol to override.!
§  Still not getting proof!!
§  Problem: loop with dynamic bounds in becb	
§  AHA:!
§  Iterations of loop determined by src_i and length	
§ Small number of statically known src_i, length combinations !

§  Solution:!
§ Enumerate the cases and write overrides for each becb call !

© 2017 Galois, Inc.24 © 2016 Galois, Inc.24

Summary

Accomplished:!
•  Verified Encoder/Decoder for Basic Safety Message

Part I!

Lessons:!
•  Automated Formal Methods Work!!

•  … with help from an expert SAW user!
•  … with detailed knowledge of code structure !

© 2017 Galois, Inc.25 © 2016 Galois, Inc.25

Next Steps

•  Extend to full Basic Safety Message (Parts II & III)!
•  More challenging ASN.1 constructs!

•  Apply method to other parts of V2V software stack!
•  Below: IEEE 802.11p, IEEE 1609 !
•  Above: J2945/*!

•  Apply work to 3rd party code for J2735 !
•  Do verification and test generation for !

•  Hand-written code / code from other compilers !

© 2017 Galois, Inc.26 © 2016 Galois, Inc.26

Thank You

© 2017 Galois, Inc.27

BACKUP

© 2017 Galois, Inc.28 © 2016 Galois, Inc.28

Symbolic Simulation 
in a Nutshell
dec(uint64_t x
 , uint64_t y) {

 uint64_t z = 0;

 if(x < 100) {
 if(y < x) {
 z = x–y;
 }
 else {
 z = x;
 }
 else {
 z = 42;
 }
ASSERT(z<100);
}

Prove:

x<100 and y<x implies z=x-y<100

x<100 and y≥x implies z=x<100

x≥100 implies z=42<100

Proof	for	all	values,	no	
false-positives	

(unlike	static	analysis)	

Not	runtime	checks	or	
code	instrumentation	

© 2017 Galois, Inc.29 © 2016 Galois, Inc.29

Galois Technologies

High-Assurance ASN.1 Workbench (HAAW) !
§  ASN.1 compiler, interpreter, automated test coverage !
§  Funded by U.S. Government for security-critical applications !

Software Analysis Workbench (SAW)!
§  Symbolic analysis for Java, C, C++…!
§  Open-source: http://saw.galois.com/!
§  In use by government, Amazon, others !

https://aws.amazon.com/blogs/security/automated-reasoning-and-amazon-s2n/	

Test	 Interpret	 Compile	

© 2017 Galois, Inc.30 © 2016 Galois, Inc.30

Project Results

Release to NHTSA in January 2017!
§  SAE J2735 BSM (ver. MAR2016) encoder/decoder using our

ASN.1 compiler, HAAW!
§ Verification with SAW of the Basic Safety Message, Part

I (BSMCoreData)!
§ Scientific report, experience, recommendations !

© 2017 Galois, Inc.31 © 2016 Galois, Inc.31

High Assurance ASN.1 Workbench (HAAW) 

§  hasni – high assurance ASN.1 interpreter!
§ Load, type check, and browse ASN.1 specifications !
§ Encode ASN.1 values to octet strings !
§ Decode octet strings to ASN.1 values !
§ Generation of random data that conforms to ASN.1 types !
§ Round-trip (encode-decode) tests of user-defined/generated

values!
§  hasnc – high assurance ASN.1 compiler!
§ Generates C code encoders and decoders !

		

© 2017 Galois, Inc.32 © 2016 Galois, Inc.32

SAW Example: Find First Set Bit  
Find first set-bit

© 2017 Galois, Inc.33 © 2016 Galois, Inc.33

SAW Example: Find First Set Bit

© 2017 Galois, Inc.34 © 2016 Galois, Inc.34

High-Assurance Cyber-Military
Systems (HACMS)

Can we prove the software !
is secure?!

© 2017 Galois, Inc.35 © 2016 Galois, Inc.35

HACMS

•  Galois developed a full-featured, provably secure, unpiloted air
vehicle autopilot!

•  Vehicle + source given to U.S. Government-sponsored penetration
team for 2-month evaluation!

•  Result: no software security flaws found that allowed attacker
access!

Can we achieve the same for V2V?!

