TU Vienna 27 March and NSA 29 March 2001

Based on HASE 2000

Disappearing Formal Methods

John Rushby

Computer Science Laboratory
SRI International
Menlo Park CA USA

John Rushby, SRI Disappearing Formal Methods: 1

Overview

Assurance for Safety, Security, and other critical properties

o Process- vs. product-based assurance
Formal methods
Problems with current methods
Two big ideas
From refutation to verification

Disappearing formal methods

John Rushby, SRI Disappearing Formal Methods: 2

Evidence For Safety, Security,
And Other Critical Properties

e How is it done for traditional systems?

o E.g., an airplane wing

e How is it done for software?

o Or software-intensive systems

o E.g., a flight-control system

John Rushby, SRI Disappearing Formal Methods: 3

Safety Cases for Traditional Systems

e Mostly done by mathematical modeling and analysis

o Build mathematical models of the design, its
environment, and requirements

Use calculation to establish that the design in the context
of the environment satisfies the requirements

o Only useful when mechanized

E.g., finite elements analysis

e [he modeling is validated by tests

o Limited testing is sound because we are dealing with
continuous systems

e This is product-based certification

o It concerns properties of (mathematical models of)
the product

John Rushby, SRI Disappearing Formal Methods: 4

Safety Cases for Software Systems

Mostly done by controlling, monitoring, and documenting the
process used to create the software

o Different industries have different recommended processes
(e.g., DO-178B for avionics)
This is process-based certification

o Provides no direct evidence about the product

“We cannot show how well we've done, so we'll show
how hard we tried”

NB. Testing is product-based, but cannot provide evidence
beyond 10~% because we are dealing with discrete systems

o Complete testing is infeasible: 114,000 years test for 10~°

o And extrapolation from incomplete tests is unjustified

John Rushby, SRI Disappearing Formal Methods: 5

Formal Methods In Pictures

Testing/Simulation Formal Analysis

Forma Model

© Partia coverage © Compl ete coverage (of the modeled system)
Accurate model: verification

Approximate model: debugging

John Rushby, SRI Disappearing Formal Methods: 6

Product-Based Certification For Software

Build mathematical models of a design, its environment, and
requirements

o The applied math of Computer Science is formal logic
o SO0 models are formal descriptions in some logical system:

Use calculation to establish that the design in the context of
the environment satisfies the requirements

o Calculation in formal logic is done by theorem proving or
model checking

Formal calculations can cover all modeled behaviors, even
if numerous or infinite (the power of symbolic reasoning)

Only useful when mechanized

o S0 need automated theorem proving or model checking

John Rushby, SRI Disappearing Formal Methods: 7

Formal Methods for Product-Based
Assurance and Certification

e \Want highly accurate formal models, so that calculations
support strong claims—i.e., verification

Then, using formal calculations, some activities that are
traditionally performed by reviews

o Processes that depend on human judgment and consensus
can be replaced or supplemented by analyses

o Processes that can be repeated and checked by others,
and potentially so by machine

Language from DO-178B/ED-12B

That is, formal methods help us move from process-based to
product-based assurance

John Rushby, SRI Disappearing Formal Methods: 8

However. ..

Formal calculations

o Are undecidable in general

o And even decidable problems have much greater
computational complexity than mechanizations of
continuous mathematics

So full automation is impossible in general

Must rely on heuristics (guesses) which will sometimes fail

o Heuristic theorem proving
Or rely on human guidance
o Interactive theorem proving

Or trade off accuracy or completeness of the model for
tractability and automation of calculation

o Model checking

John Rushby, SRI Disappearing Formal Methods: 9

T he Difficulty With Theorem Proving Is. ..

e T heorem proving can handle accurate models, but requires
interactive human guidance

o Focuses on proof, and idiosyncrasies of the prover, not on
the design

o Difficult to interpret failure (bug, or bad proof?)

“Interactive theorem proving is a waste of human talent”
e AIlso, must strengthen invariants to make them inductive
e And it's all or nothing

e Payoff is definitive assurance. .. with caveats

o May also find subtle bugs

John Rushby, SRI Disappearing Formal Methods: 10

Inductive Invariants @

To establish an invariant or safety property (one true of all
reachable states) by theorem proving, we invent another
property that implies the one of interest and that is inductive

o Includes all the initial states
o Is closed on the transitions

The reachable states are the smallest set that is inductive

Trouble is, naturally stated invariants are seldom inductive

o The second condition is violated

Postulate a new invariant that excludes the states (so far
discovered) that take you outside the desired invariant

Iterate until success or exasperation

Bounded retransmission protocol required 57 such iterations

Rushby, SRI Disappearing Formal Methods: 11

T he Wall of Formal Verification

A

Knowledge /

about system

verification

Effort

John Rushby, SRI Disappearing Formal Methods: 12

T he Difficulty with Model Checking Is. ..

The models (and properties) have to be simplified to make
them tractable to fully automated analysis

But simplified models may not be fully accurate with respect
to the property of interest

o And that's why they cannot be used for verification

However, this approach works for refutation (finding bugs)

o Experience indicates we learn more (find more bugs) by
exploring all behaviors of a simplified model than by
probing just some of the behaviors of the real thing
(as with testing or simulation)

But when to stop?

o Lack of refutation is not the same as verification

John Rushby, SRI Disappearing Formal Methods: 13

Refutation and Verification

A

Knowledge /

about system

/ verification

refutation

Effort

John Rushby, SRI Disappearing Formal Methods: 14

Formal Methods in Current Practice

Model checking saved the reputation of formal methods
(Daniel Jackson)

Formal methods have achieved a modest degree of
acceptance in some areas

o E.g., hardware, protocols

But mainly for purposes of refutation

o That is, looking for errors
o E.g., debugging, testing

Verification is much less practiced

o That is, showing the absence of errors

John Rushby, SRI Disappearing Formal Methods: 15

Summarizing
e Refut'n can be cost-effective, but doesn’'t get you to verif'n

o Interaction concerns the model, the technology is
automated, it resembles familiar activities

o It is acceptable to practitioners

Challenge: why cannot the technology of refutation
(particularly model checking) be used for verification?

e Verif'n has high potential payoff, but few interm’d benefits
o Interaction concerns the proof and the prover, technology
IS not automated, intimidating
o It is not acceptable to practitioners
Challenge: why cannot theorem proving be made automatic?

e Owverall challenges: why cannot model checking and theorem
proving work together? And why cannot we move smoothly

from refutation to verification?

John Rushby, SRI Disappearing Formal Methods: 16

Abstraction is a Bridge
Between Deductive and Algorithmic Methods
And Between Refutation and Verification

Theorem Proving

Abstraction Composition

Model
Checking

John Rushby, SRI Disappearing Formal Methods: 17

Using Model Checking For Verification

Model checking requires simple models (e.g., finite state)

But can be used to verify properties of a complex model if it
has a simple property-preserving abstraction

Trouble is, it usually requires theorem proving to justify the
abstraction

o 45 of the 57 invariants required for BRP

First Big Idea: use theorem proving to calculate the
abstraction

John Rushby, SRI Disappearing Formal Methods: 18

Making Theorem Proving More Automatic

The general theorem proving problem is undecidable

o So full automation requires heuristics

o Which will sometimes fail

Classical verification poses correctness as a single
“big theorem”

o So failure to prove it (when true) is catastrophic

Second Big Idea: ‘“failure-tolerant” theorem proving

o Prove lots of small theorems instead of one big one

o In a context where some failures can be tolerated

Aha! Automated abstraction provides this context

John Rushby, SRI Disappearing Formal Methods: 19

Abstraction

Given a transition system G on S and property P, a
property-preserving abstraction yields a transition system G
on S and property P such that

—P=GEP

Strongly property preserving abstraction:

GEPeGEP

A good abstraction typically (for universal properties)
introduces nondeterminism while preserving the property

Remaining problem: Construction of reasonably precise G
and P given G and P

John Rushby, SRI Disappearing Formal Methods: 20

Data Abstraction [Cousot & Cousot]

Replace concrete variable over datatype C by an abstract
variable z' over datatype A through a mapping h: [C—A].

Examples: Parity, mod N, zero-nonzero, intervals,
cardinalities, {0, 1, many}, {empty, nonempty}

Given f : [C—C], construct f : [A—sset[A]]:

(observe how data abstraction introduces nondeterminism)

be fla) < Iz :a=h(z)Ab=h(f(z))
b fa)e FVz:a=h(z)=>b%#h(f(z))

Theorem-proving failure affects accuracy, not soundness

Mechanized in Bandera (Corbett, Dwyer and Hatcliff, KSU)

John Rushby, SRI Disappearing Formal Methods: 21

Predicate Abstraction [Graf-Saidi]

Abstracts out relations between variables, e.g., z < v,

rT+y==z

Variables ranging over infinite datatypes can be replaced by
Boolean variables representing the predicates on those
variables

Predicates can be extracted from guards, assignments, and
the property of interest

Guessing predicates is easier than invariant strengthening
(and is also more general [Rusu & Singerman, TACAS 99])

Mechanized in PVS (SRI)

John Rushby, SRI Disappearing Formal Methods: 22

Construction of Predicate Abstractions

Given ¢ : [S—5] induced by the abstracted predicates,
construct G by

A

G(§1, §2) S 381, So §1 = qb(Sl) A §2 = gb(SQ) A G(Sl, 82)

A

_'G(gl, §2) =3 VSl, So §1 75 qb(Sl) V §2 7é qb(SQ) V _IG(Sl, 82)

Theorem-proving failure affects accuracy, not soundness

There is another method (exponentially more efficient)
[Saidi & Shankar, CAV 99]

More powerful than data abstraction, but construction is
more complex

John Rushby, SRI Disappearing Formal Methods: 23

Automated Abstraction

Can often construct a simplified model that is faithful to the
original (for a given property of interest)

o The reduced model can by analyzed by model checking
o And failure to detect bugs does certify their absence

These reduced models can be constructed automatically by
mechanized data or predicate abstraction

o The construction is done by trying to prove lots of little
theorems

*x If a proof fails, the abstracted model will be more
conservative, but often still good enough

But still the construction often requires auxiliary invariants

John Rushby, SRI Disappearing Formal Methods: 24

The Bridge Goes In Both Directions @

Model checkers often calculate the reachable stateset
o Which is the strongest invariant
And then throw it away
The concretization of the reachable states of an abstraction
is an invariant of the concrete system
o And often a strong one

So modify a model checker to return the reachable states as
a formula that a theorem prover can manipulate

Has been done (by Sergey Berezin) for CMU SMV and is
used in InVeSt [Bensalem, Lakhnech & Owre, CAV 99]

John Rushby, SRI Disappearing Formal Methods: 25

Integrated, Iterated Analysis

John Rushby, SRI Disappearing Formal Methods: 26

Even More Integrated, Iterated Analysis! %

e (Approximations to) fixpoints of weakest preconditions or
strongest postconditions also generate invariants and can
strengthen those extracted from an abstraction

o Mechanized by theorem proving

o (Strongest postconditions are equivalent to symbolic
simulation, which is independently useful)

e Counterexamples from failed model check help distinguish
bugs from weak abstractions, and also help refine the
abstraction

o Suggest additional properties (invariants) that will help
the theorem prover construct a tighter model

o Suggest additional predicates on which to abstract

John Rushby, SRI Disappearing Formal Methods: 27

Truly Integrated, Iterated Analysis!

Recast the goal as one of calculating and accumulating
properties about a design (symbolic analysis)

Rather than just verifying or refuting a specific property
Properties convey information and insight, and provide
leverage to construct new abstractions

o And hence more properties

Requires restructuring of verification tools

o So that many work together

o And so that they return symbolic values and properties
rather than just yes/no results of verifications

This is what SAL is about: Symbolic Analysis Laboratory

John Rushby, SRI Disappearing Formal Methods: 28

From Refutation to Verification

By allowing unsound abstractions

GEPAGEP

We can do refutation as well as verification

By selecting abstractions (sound/unsound) and properties
(little/big) we can fill in the space between refutation and
verification

Refutation lowers the barrier to entry

Provides economic incentive: discovery of high value bugs

o Can estimate the cost of each bug found
o And can directly compare with other technologies

Yet allows smooth transition to verification

John Rushby, SRI Disappearing Formal Methods: 29

From Refutation To Verification

A

Knowledge
about system

refutation

John Rushby, SRI

verification

Effort

Disappearing Formal Methods: 30

Filling the Remaining Gap

Model checking for refutation and (via automated
abstraction) for verification imposes a much smaller barrier
to adoption than old-style formal verification

But the barrier is still there

What about really low cost/low threat kinds of formal
analysis?

Make the formal methods disappear inside traditional tools
and methods

o Invisible formal methods, or

o Ubiquitous formal methods

John Rushby, SRI Disappearing Formal Methods: 31

Examples of Disappearing Formal Methods

Extended static checking (ESC) for Java (Compag SRC)

PVS-like type system (predicate subtypes) for any language

o Traditional type systems have to be trivially decidable

o But can gain enormous error detection by adding a
component that requires theorem proving (lots of small
theorems, failure generates a warning)

Completeness/Consistency checkers for tabular specifications
(cf. Ontario Hydro, RSML, SCR)

Statechart/Stateflow property checkers (cf. OFFIS)

o Show me a path that activates this state
o Can this state and that be active simultaneously?

Test case generators (cf. Verimag/IRISA TGV)

John Rushby, SRI Disappearing Formal Methods: 32

Tools To Realize These
Abstraction and model checking

Automated theorem proving built on powerful decision
procedures

o Combination of: propositional satisfiability, equality over
uninterpreted function symbols with (linear) arithmetic,
arrays, datatypes

o Quantifier elimination for decidable fragment of the above

We are making these available as ICS

Also decision procedures for more powerful theories
(e.g., Mona for WSI1S, available in PVS)

These can be extended to model checking

o E.g., Lossy-Channel Systems (LCS)
o Just as ordinary model checking builds on BDDs and SAT

John Rushby, SRI Disappearing Formal Methods: 33

What We Are building

ICS = Integrated Canonizer-Solver (= ICanSolve)

John Rushby, SRI Disappearing Formal Methods: 34

Disappearing Formal Methods

A

Knowledge
about system

verification

refutation

invisiblefm

Effort

John Rushby, SRI Disappearing Formal Methods: 35

Acknowledgments

e N. Shankar, Sam Owre, Harald Ruel3, Hassen Saidi

e Saddek Bensalem, Jean-Christophe Filliatre, Klaus Havelund,
Friedrich von Henke, Yassine Lakhnech, César Muioz, Holger
Pfeifer, Vlad Rusu, Eli Singerman, and many others

John Rushby, SRI Disappearing Formal Methods: 36

To Learn More

e Check out papers and technical reports at
http://www.csl.sri.com/programs/formalmethods

e Information about our verification system, PVS, and the
system itself are available from http://pvs.csl.sri.com

o Freely available under license to SRI
o Built in Allegro Lisp for Solaris, or Linux

o Version 2.3 includes predicate abstraction

e \We plan to release SAL and ICS in July 2001

John Rushby, SRI Disappearing Formal Methods: 37

