
TU Vienna �� March and NSA �� March ����

Based on HASE ����

Disappearing Formal Methods

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby� SR I Disappearing Formal Methods� �

Overview

� Assurance for Safety� Security� and other critical properties

� Process� vs	 product�based assurance

� Formal methods

� Problems with current methods

� Two big ideas

� From refutation to veri
cation

� Disappearing formal methods

John Rushby� SR I Disappearing Formal Methods� �

Evidence For Safety� Security�

And Other Critical Properties

� How is it done for traditional systems�

� E	g	� an airplane wing

� How is it done for software�

� Or software�intensive systems

� E	g	� a �ight�control system

John Rushby� SR I Disappearing Formal Methods� �

Safety Cases for Traditional Systems

� Mostly done by mathematical modeling and analysis

� Build mathematical models of the design� its

environment� and requirements

� Use calculation to establish that the design in the context

of the environment satis
es the requirements

� Only useful when mechanized

E	g	�
nite elements analysis

� The modeling is validated by tests

� Limited testing is sound because we are dealing with

continuous systems

� This is product�based certi
cation

� It concerns properties of mathematical models of�

the product

John Rushby� SR I Disappearing Formal Methods� �

Safety Cases for Software Systems

� Mostly done by controlling� monitoring� and documenting the

process used to create the software

� Di�erent industries have di�erent recommended processes

e	g	� DO����B for avionics�

� This is process�based certi
cation

� Provides no direct evidence about the product

�We cannot show how well we�ve done� so we�ll show

how hard we tried�

� NB	 Testing is product�based� but cannot provide evidence

beyond ���� because we are dealing with discrete systems

� Complete testing is infeasible� ������� years test for ����

� And extrapolation from incomplete tests is unjusti
ed

John Rushby� SR I Disappearing Formal Methods� �

Formal Methods In Pictures

Real System

Partial coverage

Testing/Simulation Formal Analysis

Formal Model

Accurate model:

Approximate model:

(of the modeled system)Complete coverage

debugging

verification

John Rushby� SR I Disappearing Formal Methods� 	

Product�Based Certi�cation For Software

� Build mathematical models of a design� its environment� and

requirements

� The applied math of Computer Science is formal logic

� So models are formal descriptions in some logical system�

� Use calculation to establish that the design in the context of

the environment satis
es the requirements

� Calculation in formal logic is done by theorem proving or

model checking

assumptions � design � environment � requirements

Formal calculations can cover all modeled behaviors� even

if numerous or in
nite the power of symbolic reasoning�

� Only useful when mechanized

� So need automated theorem proving or model checking

John Rushby� SR I Disappearing Formal Methods�

Formal Methods for Product�Based

Assurance and Certi�cation

� Want highly accurate formal models� so that calculations

support strong claims�i	e	� veri
cation

� Then� using formal calculations� some activities that are

traditionally performed by reviews

� Processes that depend on human judgment and consensus

can be replaced or supplemented by analyses

� Processes that can be repeated and checked by others�

and potentially so by machine

Language from DO����B�ED���B

� That is� formal methods help us move from process�based to

product�based assurance

John Rushby� SR I Disappearing Formal Methods� �

However� � �

� Formal calculations

� Are undecidable in general

� And even decidable problems have much greater

computational complexity than mechanizations of

continuous mathematics

� So full automation is impossible in general

� Must rely on heuristics guesses� which will sometimes fail

� Heuristic theorem proving

� Or rely on human guidance

� Interactive theorem proving

� Or trade o� accuracy or completeness of the model for

tractability and automation of calculation

� Model checking

John Rushby� SR I Disappearing Formal Methods� �

The Di�culty With Theorem Proving Is� � �

� Theorem proving can handle accurate models� but requires

interactive human guidance

� Focuses on proof� and idiosyncrasies of the prover� not on

the design

� Di�cult to interpret failure bug� or bad proof��

�Interactive theorem proving is a waste of human talent�

� Also� must strengthen invariants to make them inductive

� And it�s all or nothing

� Payo� is de
nitive assurance	 	 	 with caveats

� May also
nd subtle bugs

John Rushby� SR I Disappearing Formal Methods� �

Inductive Invariants
�

� To establish an invariant or safety property one true of all

reachable states� by theorem proving� we invent another

property that implies the one of interest and that is inductive

� Includes all the initial states

� Is closed on the transitions

The reachable states are the smallest set that is inductive

� Trouble is� naturally stated invariants are seldom inductive

� The second condition is violated

� Postulate a new invariant that excludes the states so far

discovered� that take you outside the desired invariant

� Iterate until success or exasperation

� Bounded retransmission protocol required �� such iterations

John Rushby� SR I Disappearing Formal Methods� ��

The Wall of Formal Veri�cation

Knowledge

verification

Effort

about system

John Rushby� SR I Disappearing Formal Methods� ��

The Di�culty with Model Checking Is� � �

� The models and properties� have to be simpli
ed to make

them tractable to fully automated analysis

� But simpli
ed models may not be fully accurate with respect

to the property of interest

� And that�s why they cannot be used for veri
cation

� However� this approach works for refutation
nding bugs�

� Experience indicates we learn more
nd more bugs� by

exploring all behaviors of a simpli
ed model than by

probing just some of the behaviors of the real thing

as with testing or simulation�

� But when to stop�

� Lack of refutation is not the same as veri
cation

John Rushby� SR I Disappearing Formal Methods� ��

Refutation and Veri�cation

Knowledge

refutation

verification

Effort

about system

John Rushby� SR I Disappearing Formal Methods� ��

Formal Methods in Current Practice

� Model checking saved the reputation of formal methods

Daniel Jackson�

� Formal methods have achieved a modest degree of

acceptance in some areas

� E	g	� hardware� protocols

� But mainly for purposes of refutation

� That is� looking for errors

� E	g	� debugging� testing

� Veri
cation is much less practiced

� That is� showing the absence of errors

John Rushby� SR I Disappearing Formal Methods� ��

Summarizing

� Refut�n can be cost�e�ective� but doesn�t get you to verif�n

� Interaction concerns the model� the technology is

automated� it resembles familiar activities

� It is acceptable to practitioners

Challenge� why cannot the technology of refutation

particularly model checking� be used for veri
cation�

� Verif�n has high potential payo�� but few interm�d bene
ts

� Interaction concerns the proof and the prover� technology

is not automated� intimidating

� It is not acceptable to practitioners

Challenge� why cannot theorem proving be made automatic�

� Overall challenges� why cannot model checking and theorem

proving work together� And why cannot we move smoothly

from refutation to veri
cation�

John Rushby� SR I Disappearing Formal Methods� �	

Abstraction is a Bridge

Between Deductive and Algorithmic Methods

And Between Refutation and Veri�cation

Theorem Proving

Abstraction Composition

Checking

Model

John Rushby� SR I Disappearing Formal Methods� �

Using Model Checking For Veri�cation

� Model checking requires simple models e	g	�
nite state�

� But can be used to verify properties of a complex model if it

has a simple property�preserving abstraction

� Trouble is� it usually requires theorem proving to justify the

abstraction

� �� of the �� invariants required for BRP

� First Big Idea� use theorem proving to calculate the

abstraction

John Rushby� SR I Disappearing Formal Methods� ��

Making Theorem Proving More Automatic

� The general theorem proving problem is undecidable

� So full automation requires heuristics

� Which will sometimes fail

� Classical veri
cation poses correctness as a single

�big theorem�

� So failure to prove it when true� is catastrophic

� Second Big Idea� �failure�tolerant� theorem proving

� Prove lots of small theorems instead of one big one

� In a context where some failures can be tolerated

� Aha� Automated abstraction provides this context

John Rushby� SR I Disappearing Formal Methods� ��

Abstraction

� Given a transition system G on S and property P � a

property�preserving abstraction yields a transition system �G

on �S and property �P such that

�G j� �P � G j� P

� Strongly property preserving abstraction�

�G j� �P � G j� P

� A good abstraction typically for universal properties�

introduces nondeterminism while preserving the property

� Remaining problem� Construction of reasonably precise �G

and �P given G and P

John Rushby� SR I Disappearing Formal Methods� �

Data Abstraction �Cousot � Cousot	

� Replace concrete variable x over datatype C by an abstract

variable x� over datatype A through a mapping h � �C�A�	

� Examples� Parity� mod N � zero�nonzero� intervals�

cardinalities� f�� �� manyg� fempty� nonemptyg

� Given f � �C�C�� construct �f � �A�set �A���

observe how data abstraction introduces nondeterminism�

b � �f	a
� �x � a � h	x
 	 b � h	f	x

b
� �f	a
 � � �x � a � h	x
 � b
� h	f	x

� Theorem�proving failure a�ects accuracy� not soundness

� Mechanized in Bandera Corbett� Dwyer and Hatcli�� KSU�

John Rushby� SR I Disappearing Formal Methods� ��

Predicate Abstraction �Graf�Sa
�di	

� Abstracts out relations between variables� e	g	� x � y�

x� y � z

� Variables ranging over in
nite datatypes can be replaced by

Boolean variables representing the predicates on those

variables

� Predicates can be extracted from guards� assignments� and

the property of interest

� Guessing predicates is easier than invariant strengthening

and is also more general �Rusu � Singerman� TACAS ����

� Mechanized in PVS SRI�

John Rushby� SR I Disappearing Formal Methods� ��

Construction of Predicate Abstractions

� Given � � �S� �S� induced by the abstracted predicates�

construct �G by

�G	�s�� �s�
 � �s�� s� � �s� � �	s�
 	 �s� � �	s�
 	G	s�� s�

� �G	�s�� �s�
 � � �s�� s� � �s�
� �	s�
 �s�
� �	s�
 �G	s�� s�

� Theorem�proving failure a�ects accuracy� not soundness

� There is another method exponentially more e�cient�

�Sa��di � Shankar� CAV ���

� More powerful than data abstraction� but construction is

more complex

John Rushby� SR I Disappearing Formal Methods� ��

Automated Abstraction

� Can often construct a simpli
ed model that is faithful to the

original for a given property of interest�

� The reduced model can by analyzed by model checking

� And failure to detect bugs does certify their absence

� These reduced models can be constructed automatically by

mechanized data or predicate abstraction

� The construction is done by trying to prove lots of little

theorems

� If a proof fails� the abstracted model will be more

conservative� but often still good enough

� But still the construction often requires auxiliary invariants

John Rushby� SR I Disappearing Formal Methods� ��

The Bridge Goes In Both Directions
�

� Model checkers often calculate the reachable stateset

� Which is the strongest invariant

And then throw it away

� The concretization of the reachable states of an abstraction

is an invariant of the concrete system

� And often a strong one

� So modify a model checker to return the reachable states as

a formula that a theorem prover can manipulate

� Has been done by Sergey Berezin� for CMU SMV and is

used in InVeSt �Bensalem� Lakhnech � Owre� CAV ���

John Rushby� SR I Disappearing Formal Methods� ��

Integrated� Iterated Analysis

John Rushby� SR I Disappearing Formal Methods� �	

Even More Integrated� Iterated Analysis�
�

� Approximations to�
xpoints of weakest preconditions or

strongest postconditions also generate invariants and can

strengthen those extracted from an abstraction

� Mechanized by theorem proving

� Strongest postconditions are equivalent to symbolic

simulation� which is independently useful�

� Counterexamples from failed model check help distinguish

bugs from weak abstractions� and also help re
ne the

abstraction

� Suggest additional properties invariants� that will help

the theorem prover construct a tighter model

� Suggest additional predicates on which to abstract

John Rushby� SR I Disappearing Formal Methods� �

Truly Integrated� Iterated Analysis�

� Recast the goal as one of calculating and accumulating

properties about a design symbolic analysis�

� Rather than just verifying or refuting a speci
c property

� Properties convey information and insight� and provide

leverage to construct new abstractions

� And hence more properties

� Requires restructuring of veri
cation tools

� So that many work together

� And so that they return symbolic values and properties

rather than just yes�no results of veri
cations

� This is what SAL is about� Symbolic Analysis Laboratory

John Rushby� SR I Disappearing Formal Methods� ��

From Refutation to Veri�cation

� By allowing unsound abstractions

�G j� �P
� G j� P

We can do refutation as well as veri
cation

� By selecting abstractions sound�unsound� and properties

little�big� we can
ll in the space between refutation and

veri
cation

� Refutation lowers the barrier to entry

� Provides economic incentive� discovery of high value bugs

� Can estimate the cost of each bug found

� And can directly compare with other technologies

� Yet allows smooth transition to veri
cation

John Rushby� SR I Disappearing Formal Methods� ��

From Refutation To Veri�cation

refutation

verification

automated abstraction

Knowledge

Effort

about system

John Rushby� SR I Disappearing Formal Methods� �

Filling the Remaining Gap

� Model checking for refutation and via automated

abstraction� for veri
cation imposes a much smaller barrier

to adoption than old�style formal veri
cation

� But the barrier is still there

� What about really low cost�low threat kinds of formal

analysis�

� Make the formal methods disappear inside traditional tools

and methods

� Invisible formal methods� or

� Ubiquitous formal methods

John Rushby� SR I Disappearing Formal Methods� ��

Examples of Disappearing Formal Methods

� Extended static checking ESC� for Java Compaq SRC�

� PVS�like type system predicate subtypes� for any language

� Traditional type systems have to be trivially decidable

� But can gain enormous error detection by adding a

component that requires theorem proving lots of small

theorems� failure generates a warning�

� Completeness�Consistency checkers for tabular speci
cations

cf	 Ontario Hydro� RSML� SCR�

� Statechart�State�ow property checkers cf	 OFFIS�

� Show me a path that activates this state

� Can this state and that be active simultaneously�

� Test case generators cf	 Verimag�IRISA TGV�

John Rushby� SR I Disappearing Formal Methods� ��

Tools To Realize These

� Abstraction and model checking

� Automated theorem proving built on powerful decision

procedures

� Combination of� propositional satis
ability� equality over

uninterpreted function symbols with linear� arithmetic�

arrays� datatypes

� Quanti
er elimination for decidable fragment of the above

We are making these available as ICS

� Also decision procedures for more powerful theories

e	g	� Mona for WS�S� available in PVS�

� These can be extended to model checking

� E	g	� Lossy�Channel Systems LCS�

� Just as ordinary model checking builds on BDDs and SAT

John Rushby� SR I Disappearing Formal Methods� ��

What We Are building
PVS

ICS

SAL

ICS Integrated Canonizer�Solver ICanSolve�

John Rushby� SR I Disappearing Formal Methods� ��

Disappearing Formal Methods

refutation

verification

automated abstraction

invisible fm

Knowledge

Effort

about system

John Rushby� SR I Disappearing Formal Methods� ��

Acknowledgments

� N	 Shankar� Sam Owre� Harald Rue!� Hassen Sa��di

� Saddek Bensalem� Jean�Christophe Filli"atre� Klaus Havelund�

Friedrich von Henke� Yassine Lakhnech� C#esar Mu$noz� Holger

Pfeifer� Vlad Rusu� Eli Singerman� and many others

John Rushby� SR I Disappearing Formal Methods� �	

To Learn More

� Check out papers and technical reports at

http���www�csl�sri�com�programs�formalmethods

� Information about our veri
cation system� PVS� and the

system itself are available from http���pvs�csl�sri�com

� Freely available under license to SRI

� Built in Allegro Lisp for Solaris� or Linux

� Version �	% includes predicate abstraction

� We plan to release SAL and ICS in July ����

John Rushby� SR I Disappearing Formal Methods� �

