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Executive Summary

GrammaTech is developing a static bug and vulnerability 
finder for binary code (CodeSonar/SWYX)
An extension of a successful commercial bug finder for 
source code (CodeSonar/C,C++)
It will analyze hybrid combinations of source, binaries, and 
models thereby supporting multiple use cases ranging from 
development through acceptance testing
It will be a useful laboratory apparatus for answering 
scientific questions about source code analysis vs. binary 
code analysis 
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Sample Use Cases
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CodeSurfer/C,C++

Builds a fine grained Intermediate Representation (IR) of a 
whole (or partial) program

Implementation Platform

API for custom scripts and the 
implementation of derivative 
applications (in C or Scheme) 

Program Understanding Tool

GUI for inspecting program wrt 
that underlying IR and performing 
late bound analyses, e.g., slicing, 
chopping, etc.
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Abstract syntax tree (ASTs)

[unnormalized & normalized]
Variables and Types
Points-to and pointed-to-by sets 

[field & context-sensitive*, flow-insensitive]
Control flow

› Call multi-graphs [direct & indirect]
› Basic blocks
› Control-flow graphs (CFGs) 

[interprocedural]
Data flow

› Use, kill, and conditional-kill sets [direct & 
indirect, per normalized statement]

› Non-local def and use sets [direct & 
indirect, per procedure]

› Transitive in/out data dependences [per 
procedure]

› SSA form
Control dependences

› What statements control the execution 
of what other statements
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CodeSonar/C,C++

A source-code analyzer that finds serious flaws in software
› Language Misuse
› Library Misuse
› Enforcement of domain-specific rules

Sample checks
o Format String Vulnerability
o Free Non-Heap Variable
o Use After Free/Close
o Double Free/Close 
o Memory/Resource Leak
o Mismatched Array New/Delete
o Invalid Parameter
o Unchecked Return Code
o Race Condition

o Buffer Overrun
o Null-Pointer Dereference
o Divide by Zero
o Uninitialized Variable
o Free Null Pointer
o Unreachable Code
o Dangerous Cast
o Missing Return Statement
o Return Pointer to Local
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CodeSonar/C,C++ (Cont’d)

Whole or partial program
Fast and highly scalable
Low false positive rate

› At cost of missing some flaws

Easy to invoke analysis
› No source-code annotations necessary
› Piggybacks on existing build systems

Browser-based user interface
› Web server and database for managing results
› Setup can be performed by one user; other users point browsers to 

server and log in
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CodeSonar/C,C++ (Cont’d)

Search interface for results database
› Custom views of results are easy to create
› Simple searching, advanced searching, and SQL interpreter

User-added state information persists across builds
› Mechanism used to suppress false positives
› Labels and comments can be attached to a bug warning

Interprocedural, flow sensitive, context sensitive, path 
sensitive, object sensitive symbolic execution
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Sample Inter-Procedural Warning
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File System Race Condition (TOC/TOU)

Determine accessibility of file

Open file assuming accessibility still OK

Call procedure
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CodeSonar C,C++ Effectiveness

FDA used CodeSonar to examine 200 KLOC C program for 
medical device experiencing problems in the field
Results

› 127 serious problems detected
• 29 unsafe casts
• 28 null pointer dereferences
• 36 uninitialized variables
• 20 unreachable code fragments
• 14 others

› 82 of 127 had been found by manufacturer using manual inspection
› 45 of 127 were not previously known

See April 2008 Embedded Systems Design Magazine for 
details
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Solver 

Similar to other light-weight bug-finding products
Visits each procedure once in bottom-up pass of call graph
At each procedure

› Breadth-first exploration of intra-procedural paths using summaries 
(previously computed) for functions called

› Create a (truncated) summary of procedure’s side-effects and error 
conditions

Logic uses affine relations of two variables
Analysis uses many heuristics:

› Unsound
› Highly scalable
› Reasonable false positive rate
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Instruction Set Architecture (ISA) Independence

TSL / ISAL
› Recursive Types for defining AST representations of instructions 
› Grammar for specifying bit-level instruction layout
› Parser + Syntax Directed Translation for instruction decode 
› Language for defining the operational semantics of instructions
› Framework for defining static analyses about machine code in an ISA-

independent manner
› System for generating static-analysis implementations

• Pairing of an ISA and an analysis is automatic

Benefits
› Independence of semantics and analyses

• Validation of each ISA semantics is separate from static analyses
• Validation of each static analysis is separate from ISA definitions

› Consistency. All analyses for given ISA driven off of same definition
› Completeness. Full analysis generated for all instructions.
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Why CodeSonar for Binaries?

Source code often unavailable, e.g., libraries, COTS
Even when when available, often infeasible to configure to 
match release of interest
Fidelity: may actually be better than source code analysis

› WYSINWYX: What You See Is Not What You eXecute

› Binaries reveal platform-specific choices of compiler
› Binary analysis can use real libraries, not hand-written models

Convenience
› Supports post-development business model
› Works for applications written in any compiled language(s)
› But needs approach to variations in Instruction Set Architectures

memset(password, ’\0’, len);
free(password);
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Language-Independent Parameter Passing

Caller Callee
Code Modeled as Code Modeled as

C z = F(x, y); $param1 = x;
$param2 = y;
F();
z = F$return;

int F(int arg1, 
int arg2)

{     …; 
return e;

}

void F()
{

int arg1 = $param1;
int arg2 = $param2;
…;
F$return = e;         

}

x86 push y
push x
call F
add esp, 8
mov z, eax

push y
push x
mov $param2,[esp+4]
mov $param1,[esp+0]
call F
mov eax,F$return
add esp, 8
mov z, eax

F: <prologue>
…
ret

F: <prologue>
mov [esp+8], $param2
mov [esp+4], $param1
…
mov F$return, eax
ret
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Preliminary Results and Expectations

Starting to apply to realistic open-source C applications
Typical size of samples

› Source: 51 C files; ~23.5K (non-blank) lines of code
› Binary: ~1MB executable; 295K text section (code); ~105K instructs.

Typical analysis time: 1 coffee break
Binary analysis time: 2x-3x source analysis time
Very preliminary results

› Significant overlap on some bug classes
• E.g., API misuse; null-pointer dereferences; heap and alloca overruns

› Significant potential overlap on other bug classes; just a SMOP
• E.g., file race conditions (require additional string/global handling)

› Others, feasibility TBD in absence of type information
• E.g., stack-based buffer overruns; heuristics need for buffer size
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Summary

CodeSonar will support light-weight bug finding in both 
source and binary code.
Common logic, solver, and policy library.
Expect to answer (in detail) questions such as

› What are the relative strengths and weaknesses of 
source code analysis and binary code analysis?

› Can end users find bugs in applications as effectively as 
developers?
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Discussion
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