
© 2009 GrammaTech, Inc. All right reserved

GrammaTech, Inc.
317 North Aurora Street
Ithaca, NY 14850
Tel. 607-273-7340
E-mail: tt@grammatech.com

Discovery of Vulnerabilities
in Binary Code

Tim Teitelbaum

Executive Summary

GrammaTech is developing a static bug and vulnerability
finder for binary code (CodeSonar/SWYX)
An extension of a successful commercial bug finder for
source code (CodeSonar/C,C++)
It will analyze hybrid combinations of source, binaries, and
models thereby supporting multiple use cases ranging from
development through acceptance testing
It will be a useful laboratory apparatus for answering
scientific questions about source code analysis vs. binary
code analysis

Page 2

Sample Use Cases

Page 3

Binary
Executable

Binary
Libraries

Bugs

Binary
Executable

Library
Models

Bugs

Source
Code

Binary
Libraries

Bugs

Policy
Library

Policy
Library

Policy
Library

Policy
Library

Policy
Library

Binary
Executable

Binary
Libraries

Bugs

Source
Code
Hints
ground-truth disassembly

Binary
Libraries +
asm +
assembler

Library
Models

Bugs

Source
Code

present product

Static Analysis Technologies

Source Code Binary Executables

Understanding,
Reverse-
Engineering,
Rewriting, and
Infrastructure

CodeSurfer/C,C++ CodeSurfer/x86

CodeSurfer/SWYX, where SWYX
is an Instruction Set Architecture

Bug and
Vulnerability
Finding

CodeSonar/C,C++ CodeSonar/x86

CodeSonar/SWYX, where SWYX
is an Instruction Set Architecture

Page 4

Static Analysis Technologies

Source Code

Understanding,
Reverse-
Engineering,
Rewriting, and
Infrastructure

CodeSurfer/C,C++

Page 5

Page 6

CodeSurfer/C,C++

Builds a fine grained Intermediate Representation (IR) of a
whole (or partial) program

Implementation Platform

API for custom scripts and the
implementation of derivative
applications (in C or Scheme)

Program Understanding Tool

GUI for inspecting program wrt
that underlying IR and performing
late bound analyses, e.g., slicing,
chopping, etc.

Static Intermediate
Representations

C
od

eS
ur

fe
r A

PI

EDG C/C++
front end

C/C++
language
module
C/C++
analyses

EDG C/C++
enhancements

CodeSurfer

Source
Code

Users

Scripts
Abstract syntax tree (ASTs)

[unnormalized & normalized]
Variables and Types
Points-to and pointed-to-by sets

[field & context-sensitive*, flow-insensitive]
Control flow

› Call multi-graphs [direct & indirect]
› Basic blocks
› Control-flow graphs (CFGs)

[interprocedural]
Data flow

› Use, kill, and conditional-kill sets [direct &
indirect, per normalized statement]

› Non-local def and use sets [direct &
indirect, per procedure]

› Transitive in/out data dependences [per
procedure]

› SSA form
Control dependences

› What statements control the execution
of what other statements

Page 7

Static Analysis Technologies

Source Code

Understanding,
Reverse-
Engineering,
Rewriting, and
Infrastructure

CodeSurfer/C,C++

Page 8

Static Analysis Technologies

Source Code

Understanding,
Reverse-
Engineering,
Rewriting, and
Infrastructure

CodeSurfer/C,C++

Bug and
Vulnerability
Finding

CodeSonar/C,C++

Page 9

Page 10

CodeSonar/C,C++

A source-code analyzer that finds serious flaws in software
› Language Misuse
› Library Misuse
› Enforcement of domain-specific rules

Sample checks
o Format String Vulnerability
o Free Non-Heap Variable
o Use After Free/Close
o Double Free/Close
o Memory/Resource Leak
o Mismatched Array New/Delete
o Invalid Parameter
o Unchecked Return Code
o Race Condition

o Buffer Overrun
o Null-Pointer Dereference
o Divide by Zero
o Uninitialized Variable
o Free Null Pointer
o Unreachable Code
o Dangerous Cast
o Missing Return Statement
o Return Pointer to Local

Page 11

CodeSonar/C,C++ (Cont’d)

Whole or partial program
Fast and highly scalable
Low false positive rate

› At cost of missing some flaws

Easy to invoke analysis
› No source-code annotations necessary
› Piggybacks on existing build systems

Browser-based user interface
› Web server and database for managing results
› Setup can be performed by one user; other users point browsers to

server and log in

Page 12

CodeSonar/C,C++ (Cont’d)

Search interface for results database
› Custom views of results are easy to create
› Simple searching, advanced searching, and SQL interpreter

User-added state information persists across builds
› Mechanism used to suppress false positives
› Labels and comments can be attached to a bug warning

Interprocedural, flow sensitive, context sensitive, path
sensitive, object sensitive symbolic execution

Page 13

Page 14

Page 15

Page 16

Sample Inter-Procedural Warning

Page 17

File System Race Condition (TOC/TOU)

Determine accessibility of file

Open file assuming accessibility still OK

Call procedure

Page 18

CodeSonar C,C++ Effectiveness

FDA used CodeSonar to examine 200 KLOC C program for
medical device experiencing problems in the field
Results

› 127 serious problems detected
• 29 unsafe casts
• 28 null pointer dereferences
• 36 uninitialized variables
• 20 unreachable code fragments
• 14 others

› 82 of 127 had been found by manufacturer using manual inspection
› 45 of 127 were not previously known

See April 2008 Embedded Systems Design Magazine for
details

Static Intermediate
Representations

C
od

eS
ur

fe
r A

PI

EDG C/C++
front end

C/C++
language
module
C/C++
analyses

EDG C/C++
enhancements

CodeSurfer

Source
Code

Users

Scripts

Page 19

Static Intermediate
Representations

C
od

eS
ur

fe
r A

PI

EDG C/C++
front end

C/C++
language
module
C/C++
analyses

EDG C/C++
enhancements

CodeSurfer

Source
Code

Policy
Library

CodeSonar

Users

Symbolic
Intermediate

Representations

Bug &
Vulnerability

Database

W
eb

 C
lie

nt
 U

I

Web Server

Solver

Initial
Weight

Generation

C/C++

Scripts

Page 20

Solver

Similar to other light-weight bug-finding products
Visits each procedure once in bottom-up pass of call graph
At each procedure

› Breadth-first exploration of intra-procedural paths using summaries
(previously computed) for functions called

› Create a (truncated) summary of procedure’s side-effects and error
conditions

Logic uses affine relations of two variables
Analysis uses many heuristics:

› Unsound
› Highly scalable
› Reasonable false positive rate

Page 21

Static Analysis Technologies

Source Code

Understanding,
Reverse-
Engineering,
Rewriting, and
Infrastructure

CodeSurfer/C,C++

Bug and
Vulnerability
Finding

CodeSonar/C,C++

Page 22

Static Analysis Technologies

Source Code Binary Executables

Understanding,
Reverse-
Engineering,
Rewriting, and
Infrastructure

CodeSurfer/C,C++ CodeSurfer/x86

CodeSurfer/SWYX, where SWYX
is an Instruction Set Architecture

Bug and
Vulnerability
Finding

CodeSonar/C,C++

Page 23

Static Intermediate
Representations

C
od

eS
ur

fe
r A

PI

EDG C/C++
front end

C/C++
language
module
C/C++
analyses

EDG C/C++
enhancements

CodeSurfer

Source
Code

IDA Pro

IDA Pro
plug-in
Binary
language
modules
Binary code
analyses

TS
L

/ I
SA

L

CodeSurfer / SWYX

Binary
Code

x86 Platform
Specification

Scripts

Users

Page 24

Instruction Set Architecture (ISA) Independence

TSL / ISAL
› Recursive Types for defining AST representations of instructions
› Grammar for specifying bit-level instruction layout
› Parser + Syntax Directed Translation for instruction decode
› Language for defining the operational semantics of instructions
› Framework for defining static analyses about machine code in an ISA-

independent manner
› System for generating static-analysis implementations

• Pairing of an ISA and an analysis is automatic

Benefits
› Independence of semantics and analyses

• Validation of each ISA semantics is separate from static analyses
• Validation of each static analysis is separate from ISA definitions

› Consistency. All analyses for given ISA driven off of same definition
› Completeness. Full analysis generated for all instructions.

Page 25

Static Analysis Technologies

Source Code Binary Executables

Understanding,
Reverse-
Engineering,
Rewriting, and
Infrastructure

CodeSurfer/C,C++ CodeSurfer/x86

CodeSurfer/SWYX, where SWYX
is an Instruction Set Architecture

Bug and
Vulnerability
Finding

CodeSonar/C,C++

Page 26

Static Analysis Technologies

Source Code Binary Executables

Understanding,
Reverse-
Engineering,
Rewriting, and
Infrastructure

CodeSurfer/C,C++ CodeSurfer/x86

CodeSurfer/SWYX, where SWYX
is an Instruction Set Architecture

Bug and
Vulnerability
Finding

CodeSonar/C,C++ CodeSonar/x86

CodeSonar/SWYX, where SWYX
is an Instruction Set Architecture

Page 27

Why CodeSonar for Binaries?

Source code often unavailable, e.g., libraries, COTS
Even when when available, often infeasible to configure to
match release of interest
Fidelity: may actually be better than source code analysis

› WYSINWYX: What You See Is Not What You eXecute

› Binaries reveal platform-specific choices of compiler
› Binary analysis can use real libraries, not hand-written models

Convenience
› Supports post-development business model
› Works for applications written in any compiled language(s)
› But needs approach to variations in Instruction Set Architectures

memset(password, ’\0’, len);
free(password);

Page 28

Page 29

Static Intermediate
Representations

C
od

eS
ur

fe
r A

PI

EDG C/C++
front end

C/C++
language
module
C/C++
analyses

EDG C/C++
enhancements

CodeSurfer

Source
Code

IDA Pro

IDA Pro
plug-in
Binary
language

modules
Binary code
analyses

TS
L

/ I
SA

L

CodeSurfer / SWYX

Binary
Code

X86 Platform
Specification

Policy
Library

CodeSonar

Users

Symbolic
Intermediate

Representations

Bug &
Vulnerability

Database

W
eb

 C
lie

nt
 U

I

Web Server

Solver

Initial
Weight

Generation

C/C++
Intel x86
others

CodeSonar / SWYX

Scripts

Page 32

Language-Independent Parameter Passing

Caller Callee
Code Modeled as Code Modeled as

C z = F(x, y); $param1 = x;
$param2 = y;
F();
z = F$return;

int F(int arg1,
int arg2)

{ …;
return e;

}

void F()
{

int arg1 = $param1;
int arg2 = $param2;
…;
F$return = e;

}

x86 push y
push x
call F
add esp, 8
mov z, eax

push y
push x
mov $param2,[esp+4]
mov $param1,[esp+0]
call F
mov eax,F$return
add esp, 8
mov z, eax

F: <prologue>
…
ret

F: <prologue>
mov [esp+8], $param2
mov [esp+4], $param1
…
mov F$return, eax
ret

Page 33

Preliminary Results and Expectations

Starting to apply to realistic open-source C applications
Typical size of samples

› Source: 51 C files; ~23.5K (non-blank) lines of code
› Binary: ~1MB executable; 295K text section (code); ~105K instructs.

Typical analysis time: 1 coffee break
Binary analysis time: 2x-3x source analysis time
Very preliminary results

› Significant overlap on some bug classes
• E.g., API misuse; null-pointer dereferences; heap and alloca overruns

› Significant potential overlap on other bug classes; just a SMOP
• E.g., file race conditions (require additional string/global handling)

› Others, feasibility TBD in absence of type information
• E.g., stack-based buffer overruns; heuristics need for buffer size

Page 34

Summary

CodeSonar will support light-weight bug finding in both
source and binary code.
Common logic, solver, and policy library.
Expect to answer (in detail) questions such as

› What are the relative strengths and weaknesses of
source code analysis and binary code analysis?

› Can end users find bugs in applications as effectively as
developers?

Page 35

Discussion

Page 36

