
Emergent Behavior in Cybersecurity

Example 2: Program Verification Example 1: Cyber Epidemics

Informal Definition and Implication

Abstract

We argue that emergent behavior is inherent to

cybersecurity.

Shouhuai Xu

Department of Computer Science, University of Texas at San Antonio

Example 3: Cryptography

Feasibility result (Yao; Goldreich et al.): Under some

standard cryptographic assumptions, any polynomial-time

computable function f(.,…) can be securely computed in the

standalone setting (i.e., the protocol executes in isolation).

Standalone vs. concurrent execution: When cryptographic

protocols are used as building-blocks in larger

applications/systems, they may execute concurrently (rather

than in isolation). Are the cryptographic protocols, which are

provably secure when executed in isolation, still secure when

they are concurrently called by larger applications/systems?

Impossibility result: There exist classes of functions that

can be securely computed by running some cryptographic

protocols in isolation, but cannot be securely computed

when the protocols execute concurrently. In order to

make cryptographic multiparty computation protocols secure

when they are used as building-blocks for constructing larger

cybersystems, we need to make extra assumptions, such as

that majority of the parties P1, …, Pm are not compromised.

Insight: Cryptographic properties exhibit emergent

behavior because there are functions that can be

securely computed in the standalone setting but cannot

be securely executed in the concurrent setting.

Emergent behavior is a core concept in Complexity Science,

although there is no universally accepted definition.

Definition (informal): A security property of a cybersystem

exhibits emergent behavior if the property is not possessed

by the underlying lower-level components of the

cybersystem. (Simplest example: “1 + 1 > 2” effect)

Implication: At least some security properties cannot be

understood by considering the lower-level components

individually; instead, we must explicitly consider the

interactions between the lower-level components. In other

words, the composition approach has some fundamental

limitations (like reductionism in Physics).

Scenario: Illustration of cyber epidemics model (which is a

specific kind of Cybersecurity Dynamics model).

Acknowledgement

For information about Cybersecurity Dynamics, see

http://www.cs.utsa.edu/~shxu/socs/

AFOSR Grant # FA9550-09-1-0165 and ARO Grant # W911NF-

13-1-0370.

Inspiration from Cryptography

Insight: Cyber epidemics properties exhibit emergent

behavior because properties of cyber epidemics in a

greater cybersystem cannot be determined by

properties in the component cybersystems alone.

Trace properties: In the field of program verification, Lamport

proposed the safety-liveness framework of trace properties for

analyzing concurrent programs. A trace is a finite or infinite

sequence of states corresponding to an execution of a

program; a trace property is a set of traces such that every

trace, in isolation, satisfies the same predicate. A safety

property says that no ``bad thing" happens during the course

of a program execution; a liveness property says that ``good

thing" will eventually happen during the course of a program

execution. Both safety and liveness are trace properties;

every trace property is the intersection of a safety property

and a liveness property (Alpern and Schneider).

Security properties are not (necessarily) trace properties

(Goguen and Meseguer, Clarkson and Schneider, etc): (I)

Noninterference is no trace property because it cannot be

verified without examining the other traces in question. (II)

Information-flow is no trace property because it cannot be

verified by examining each trace alone. (III) Average service

response time is no trace property because it depends on the

response time in all traces.

Security properties can be trace hyperproperties: Clarkson

and Schenider extended the concept of trace properties to

trace hyperproperties, which are sets of trace properties.

For example, information-flow, integrity and availability are

trace hyperproperties (and intersections of some safety

hyperproperties and some liveness hyperproperties).

Insight: Hyperproperties exhibit emergent behavior

because the verification procedure must examine across

multiple traces, which can accommodate interactions

between component systems.

HotSoS’14

