Ada

Build software that matters.

End-to-End Verification of
Initial & Transition Properties of
GR(1) Designs in SPARK

Laura Humphrey, James Hamil
AFRL, Aerospace Systems Directorate, Autonomous Controls Branch (AFRL/RQQA)

Joffrey Huguet
AdaCore

September 2020

Distribution Statement A. Approved for public release: distribution unlimited. Case #88ABW-2020-0649.

AFRL

Outline

 GR(1) specifications & synthesis

« “End-to-end” verification in this context

« SPARK for end-to-end verification of synthesized GR(1) designs
« Case study: Multi-vehicle controller

« Results on a corpus of GR(1) specifications

« Summary: lessons learned & future work

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

AFRL

GR(1) Specifications
& Synthesis

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

AFRL

GR(1) Specifications

« GR(1) or Generalized Reactivity(1) specifications
« Describe reactive systems that respond to an environment
« Subset of linear temporal logic
« General form: ¢, — o,

 Interpreted as two-player game between system & environment
« Environment e goes first, controls “input” variables from set 7
« System s goes second, controls “output” variables from set O

« Are “realizable” if system strategy/design exists such that

« System can saftisfy ¢, after each step environment satisfies o,
* Environment is forced to violate ¢,

* Result is “controller” with states S encoding strategy/designc: S x Y7 — S x Yo

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

AFRL

GR(1) Specifications as Properties

©° & ©* each broken into initial, transition, & liveness property terms

w5 Ny NOT — ©f Ny Ngj

Temporal operators

O - "next” 1 - "always” 10 — "always eventually™

Property term definitions

eS, ¢! - Initial . Boolean formulas over 7 & O, respectively

©i, o7 - Transition : \;c;UB;. where each B, Is a Boolean formula over
- Variables fromzZ u O
- Expressions Ouv, where v e Z for ¢f & v € ZU O for ¢}

vi ;- Liveness 1 A._;000B;, where each B; is a Boolean formula over Zu O

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

AFRL

GR(1) Example

« Consider a traffic light
* Input: “fick”
« Qutputs: “red,” “yellow,” “green”

« Qutput changes when “fick” is true, stays
the same when "tick” is false

« Ex. 1:red, red, red, ...
« EXx. 2:red, yellow, green, red, ...

« Ex. 3:red, red, yellow, yellow, green,
green, ...

« Environment properties

p; =T oy =T ¢ =0U0tick
« System initial & liveness properties

w; = red N\ ~yellow N\ ~green
w; = UOgreen

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

« System transition properties

Mutual exclusion
0! = OO0 ((red A —yellow N\ —green) V

(—red A yellow N\ —~green) V

(—red A —yellow A green)) A

Change on tick
O ((red A Otick — Ogreen) A

(green A Otick — Quyellow) N
(yellow N Otick — Ored))N\

No change without tick
O ((red A O—tick — Ored) A
(green N (O—tick — (Ogreen) A
(yellow N O—tick — Quyellow))

6

AFRL

GR(1) & Synthesis

« Given a GR(1) specification, we can
« Verify design safisfies it
 Efficiently synthesize design directly from it

« Ref. [1] contains proof synthesis procedure is “correct-by-construction”

« Synthesis tools exist for different domainsl?-¢l: robotic systems, hybrid
systems, multi-agent systems, digital circuits, etc.

« Only a few generate software implementations of synthesized designs

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

AFRL

End-to-End Verification

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

AFRL

GR(1) Synthesis & End-to-End Verification

« Question: If synthesis from GR(1) specifications is “correct-by-
construction,” why care about end-to-end verification?

« Answer: Three possible sources of errors
« Theoretical “proof” of the synthesis procedurel’-8l
« Implementation of the synthesis procedure
 Translation of a synthesized design to a software implementation

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

AFRL

GR(1) Synthesis & End-to-End Verification

« Question: If synthesis from GR(1) specifications is “correct-by-
construction,” why care about end-to-end verification?

« Answer: Three possible sources of errors
« Theoretical “proof” of the synthesis procedurel’-8l
« Implementation of the synthesis procedure
 Translation of a synthesized design to a software implementation

« Additional answer: specification errors

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

10

SPARK for End-to-End
Verification of GR(1) Designs

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

AFRL

SPARK for End-to-End Verification of GR(1) Designs

« SPARKI?-10I'js
« Programming language based on Ada
« Associated set of auto-active verification tools

e Our godl
» Translate synthesized GR(1) designs to SPARK
» Verify SPARK implementations satisfy original specifications

* Our broad approach

« Modify tool Saltylél to generate SPARK implementations & annotations needed for
SPARK to automatically verify implementations against specifications

« Perform synthesis & verification on examples from many sources!?-°]

* Limitations
« Currently only address inifial & transition properties: of A ¢f — @3 A ¢f

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

12

AFRL

SPARK Implementation of GR(1) Design: Summary
* Multiple inputs wrapped in Environment record
* Multiple outputs wrapped in System record

» Synthesized design implemented as type Controller
« Has field to store state

* Has fields to store most recent input & output values (for evaluating transition
properties with “next” operator)

« Type Controller has Move procedure that takes inputs & produces outputs

e Functions Env_ Init, Env Trans, Sys Init, Sys Trans to evaluate
(& (4 S S
PisPtrPisr Pt

« Function Is Init to check whether Controller isin inifial state

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

13

AFRL

SPARK Implementation of GR(1) Design: Proot Notes

« Preconditions & postconditions on Move encode ¢; A i — ©; A @

* In GR(1) designs, each state corresponds to unique set of input & output values

« Define Type Invariant for Controller over Boolean functions
State To Input Mapping & State To Output Mapping

« This is the only thing SPARK needed to automatically prove Move postconditions

« "Ghost” code versus executable code
« Is Init,Env Init, Env Trans executable so user can monitor for violations of ¢e

* Sys Init, Sys Trans, State To Input Mapping, State To Output Mapping are
“Yghost” code mainly used for proof

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

14

AFRL

SPARK Implementation of GR(1) Design: Traffic Light

Let’s briefly walk through parts of synthesized traffic light design in SPARK

Omit Salty-formatted specifications & stick with mathematical representation

Briefly note Salty has features that make GR(1) specifications easier to write
« Use of enumeration & integer types for inputs & outputs
« Arithmetic operators in specifications with integer types
» User-defined macros

Enumeration & infeger types retained in synthesized SPARK implementations

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

15

SPARK package specification for the synthesized traffic light design

package TrafficLight with SPARK Mode is
type Controller is private;

type System is record
red: Boolean; yellow: Boolean; green: Boolean;
end record;

function Is Init(C: Controller) return Boolean;
function Env_Init(tick: Boolean) return Boolean is (True);
function Sys Init(S: System) return Boolean is (S.red and not S.yellow and not S.green) with Ghost;

function Env Trans(C: Controller; tick: Boolean) return Boolean
with Pre => (not Is Init(C));

function Sys Trans(C: Controller; tick: Boolean; S: System) return Boolean
with Pre => (not Is Init(C)), Ghost;

procedure Move(C: in out Controller; tick: in Boolean; S: out System)

with Pre => (if Is Init(C) then Env_Init(tick) else Env Trans(C, tick)),
Contract Cases => (Is_Init(C) => Sys Init(S) and (not Is Init(C)),
others => Sys Trans(C'Old, tick, S) and (not Is Init(C)));
private

subtype State Num is Integer range 1 .. 7;
function State To Input Mapping(C: Controller) return Boolean with Ghost;
function State To Output Mapping(C: Controller) return Boolean with Ghost;

type Controller is record
State: State Num := State Num'Last; tick: Boolean; S: System;
end record;

with Type Invariant => (State To Input Mapping(Controller) and State To Output Mapping(Controller));
end TrafficLight;

SPARK body for the Move procedure for the synthesized traffic light design

procedure Move(C: in out ; tick: in ; S: out) is
begin
case C.State is
when =>
case tick is
when False =>
C.State
C.S.red :
when True
C.State : H
C.S.red := False; C.S.yellow := False; C.S.green := True;
when others =>
raise Program Error;
end case;

o
14

True; C.S.yellow := False; C.S.green := False;

Il
\%

when =>
case tick is
when False =>

C.State := 1;
C.S.red := True; C.S.yellow := False; C.S.green := False;
when True =>

C.State : H
C.S.red := True; C.S.yellow := False; C.S.green := False;
when others =>
raise Program Error;
end case;
end case;
C.tick := tick; S := C.S;
end Move;

AFRL

Case Study:
Multli-Vehicle Controller

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

AFRL

Case Study: Multi-Vehicle Controller

THE AIR FORCE RESEARCH LABORATORY

Team of “friendly”/system unmanned air vehicles (UAVs) evading “enemy’’/environment UAV

« One friendly UAV is a “Very Important Person” or VIP
« Two friendly “surveillance” UAVs must “protect” & “escort” the VIP

Map is divided into five regions

“Protection”: VIP is never in the same region as the enemy

“Escorting”: VIP can only move

« Into region previously visited/
surveilled by a surveillance UAV

« Surveillance UAV moves with it

Certain regions only reachable
from Region 3

Enemy UAV must infinitely often
leave certain regions

VIP must infinitely offen move to
certain regions

Map Display

Qo

Vehicle Status

/‘ - .\.
P

SURVEIL 1 (1)

A

SURVEIL 2 (2)

ENEMY (3)

VIP (4)

Speed 23 MPS (45 KTS)
Heading 90

Vert Speed 0 MPS (0 FPM)
Nav Mode FlightDirector

Altitude 1000 M (3281 FT)
Speed 23 MPS (45 KTS)
Heading 90

Vert Speed 0 MPS (0 FPM)
Nav Mode FlightDirector

Altitude 1000 M (3281 FT)
Speed 23 MPS (45 KTS)
Heading 90

Vert Speed 0 MPS (0 FPM)
Nav Mode FlightDirector

Altitude 1000 M (3281 FT)
Speed 23 MPS (45 KTS)
Heading 920

Vert Sneed 0 MPS (0 EPM)

|
=
|
|

=
=

[aal

e
&

19

AFRL

Specification Inputs & Outputs

THE AIR FORCE RESEARCH LABORATORY

Inputs

loc, - enemy
location

ST - location ¢
surveilled

Qutputs

loc, - VIP location

locy; - Surveillance
UAV ¢
location

vITrack; - Surveillance
UAV i is
tracking VIP

20

AFRL

Environment Specifications

vt
t
ve

— (loce = 4) N\ —8r1 A\ 181ra A ST'3 N\ 184 N STs

— /\ D((locsl =1) V (locse = 1) — Osrz—) A

i={1...5}

/\ I:I((—I(locsl = 1) A (locse = i) A —sri = Qsri) A
i={1...5}

(sri — Qs'r'z-)) A
O-(loce = 1) AO=(loce = 2)

¢' = 00—(loce = 3) AOO—(loce = 4) AOO—(loce = 5)

TTTTT

RRRRRRRRRRRRRRRRRRRRRRRR

Inputs

loc, - enemy
location

ST - location ¢
surveilled

Qutputs

loc, - VIP location

locg; - Surveillance
UAV 4
location

vITrack; - Surveillance
UAV i is
tracking VIP

AFRL

System Specifications
¢t = (locy, = 2) A (locs1 = 3) A (locsz = 5) A ~wTrack; A ~wTracks

Qs = D(ﬂ(locv = Qlocy) = (OvTrack: Vv OvTrackz)) A
/\ D(’UT'r‘acki — (sloc; = locv)) A

/\ O((locy, = 1) — —(loce = z)) A

A o((

1={v,sl,s2}

loc; = 1) — (loc; = 1) V (loci = 2) V (loc; = 3)) A

(O(
(O (loc; =2) = (loc; = 1) V (loc; = 2) V (loc; = 3)) A
(Olloci=3)—= \/ (loci =j)) A

j={1...5}
(O (loci =4) — (loc; = 3) V (loc; = 4) V

(O (locs = 5) = (loc; = 3) V (loc; = 4
sols = OO (loc, = 1) AOO(loc, = 5)

THE AIR FORCE RESEARCH LABORATORY

~—
<
~
o~ o~
o) o)
o o
~ .
ol
ot ot
~—
~—
SN——"

Inputs

loc, - enemy
location

ST - location ¢
surveilled

Qutputs

loc, - VIP location

locg; - Surveillance
UAV ¢
location

vITrack; - Surveillance
UAV i is
tracking VIP

22

AFRL

Case Study: Results

Previously synthesized Python controller, interfaced it to OpenUxASI'-12] to
implement low-level UAV behaviors, simulated in OpenAMASE!S]

Implementation in SPARK found undetected issuel

Issue was part of specification for ¢¢: O—(loc, = 1) fori = {1,2}

Specification should be written ¢¢: O —(loc, = @) fori = {1,2}

Reason: -p not the same as IO —p
 If environment chooses p for next time step, does not violate C—p in current time step
« However, it necessarily violates [—p in next time step
« ¢} should have terms of the form O () —p, not O—p

« Salty now produces warning in this case

In Python implementation, result was states with no successors, leading to
runtime errors after reaching those states

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

23

AFRL

THE AIR FORCE RESEARCH LABORATORY

Results

24

AFRL

SPARK Implementation of GR(1) Design: Summary

« Pulled 40 examples from GR(1) repos!?4l: Salty, Slugs, Anzu, TULiP, LTLMoP

* Plot shows CPU time for 33 examples with up to 4000 conftroller transitions
« 7 examples with more transitions required too much memory (not plotted)
« 2 examples had errors because of unusually large specifications

« 2 examples only partially proven:
* One with ~2000 transitions

* One with Integer terms & arithmetic operators in specification

1045 T 3
B O Proven |1
r A A Partial |]
9 Error
3 10%¢ ° © e
) 8 ®
° F
> r A
& e, e % °
[O _|
o 10 (5% o
©
£ © o
= 1L -
10 °) 3
? 8 (@) ©] @]
100 L—— L N ¢ ‘
10! 102 10° 10%

Number of Transitions

« Found the same type of specification error as UAV case study in one Anzu example

THE AIR FORCE RESEARCH LABORATORY

25

AFRL

THE AIR FORCE RESEARCH LABORATORY

Summary

26

AFRL

Lessons Learned

« “"End-to-end” SPARK verification found issue due to O-p vs. OO —p

* Case statement more efficient proof-wise than Map for controller logic
« SPARK Maps have complete axiomatization, adds verification conditions

« During initialization, must prove each added key/input value not already contained
« Afterinitialization, must prove every possible transition covered
» Case statements automatically imply these things

e Case statements have some issues:

» Large/verbose
« Underlying prover must reason about all alternatives at once
« Still better than Map in our application, but maybe not for others

« Some examples had no inputs, vacuous precondition Pre => True
« Took abnormally long time to verify
« Clearly could be encoded more efficiently

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

27

AFRL

Future Work

 Investigate liveness properties
« SPARK hypothetically can solve required bounded model checking problem
« Other option: annotate code & use external model checker

* Look at decomposition of Move procedure to handle larger examples

* Fix encoding of controllers with no inputs to speed up proof

 Investigate why example with Integer types & arithmetic operators
takes longer than expected to prove in SPARK

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

28

AFRL

THE AIR FORCE RESEARCH LABORATORY

References

AS)

AFRL

Full Paper

For more details, see:

Humphrey, L. R., Hamil, J., Huguet, J.: “End-to-End Verification of Inifial and
Transition Properties of GR(1) Designs in SPARK,” In: Int. Conf. Software Engineering
and Formal Methods (SEFM), 2020.

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

30

AFRL

References

1. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Yaniv, S.: 7. Davis, J. A., Humphrey, L. R., Kingston, D. B.: When Human
Synthesis of Reactive(1) designs. J. Computer and System Intuition Fails: Using Formal Methods to Find an Error in the
Sciences 78(3), 911-938 (2012) “Proof” of a Multi-agent Protocol. In: Int. Conf. Computer

2. Ehlers, R., Raman, V.: Slugs: Extensible GR(1) synthesis. In: Aided Verification (CAV). pp. 366-375. Springer (2019)
Int. Conf. Computer Aided Verification (CAV), pp. 333— 8. Siegel, S. F.: What's wrong with on-the-fly partial order
339. Springer (2016) reduction. In: Int. Conf. Computer Aided Verification

3. Finucane, C., Jing, G., Kress-Gazit, H.: LTLMOP: (CAV). pp. 478-495. Springer (2019)
Experimenting with language, temporal logic and robot 9. J. W. McCormick & P. C. Chapin, Building High Integrity
control. In: IEEE/RSJ Int. Conf. Intelligent Robots and Applications with SPARK, Cambridge University Press, 2015.
Systems (IROS). pp. 1988-1993. IEEE [2010) 10. AdaCore, “Introduction to SPARK," learn.adacore.com,

4. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, 2018.
R.M.: TULiP: A software toolbox for receding horizon 11.Rasmussen , S., Kingston D., Humphrey, L.: A Brief
temporal logic planning. In: Int. Conf. Hybrid System:s: Introduction to Unmanned Systems Autonomy Services
Computation and Control (HSCC). pp. 313-314. ACM (UXAS). In: Int. Conf. Unmanned Aircraft Systems (ICUAS).
(2011) IEEE (2018)

5. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A 12. OpenUxAS on AFRL/RQ GitHub
tool for property synthesis. In: Int. Conf. Computer Aided .
Verification (CAV). pp. 258-262. Springer (2007) 13- QpenAMASE on AFRL/RQ GItHUD

6. Elliott, T., Alshiekh, M., Humphrey, L.R., Pike, L., Topcu, U.:
Salty—a domain specific language for GR(1) specifications

and designs. In: 2019 Int. Conf. Robotics and Automation
(ICRA). pp. 4545-4551. |IEEE (2019)

THE AIR FORCE RESEARCH LABORATORY
31

https://github.com/VerifiableRobotics/slugs
https://ltlmop.github.io/
https://tulip-control.sourceforge.io/
http://www.ist.tugraz.at/staff/jobstmann/anzu/
https://github.com/GaloisInc/salty/
https://learn.adacore.com/courses/intro-to-spark/index.html
https://github.com/afrl-rq/OpenUxAS
https://github.com/afrl-rq/OpenAMASE

