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Outline

 GR(1) specifications & synthesis

« “End-to-end” verification in this context

« SPARK for end-to-end verification of synthesized GR(1) designs
« Case study: Multi-vehicle controller

« Results on a corpus of GR(1) specifications

« Summary: lessons learned & future work
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GR(1) Specifications

« GR(1) or Generalized Reactivity(1) specifications
« Describe reactive systems that respond to an environment
« Subset of linear temporal logic
« General form: ¢, — o,

 Interpreted as two-player game between system & environment
« Environment e goes first, controls “input” variables from set 7
« System s goes second, controls “output” variables from set O

« Are “realizable” if system strategy/design exists such that

« System can saftisfy ¢, after each step environment satisfies o,
* Environment is forced to violate ¢,

* Result is “controller” with states S encoding strategy/designc: S x Y7 — S x Yo
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GR(1) Specifications as Properties

©° & ©* each broken into initial, transition, & liveness property terms

w5 Ny NOT — ©f Ny Ngj

Temporal operators

O - "next” 1 - "always” 10 — "always eventually™

Property term definitions

eS, ¢! - Initial . Boolean formulas over 7 & O, respectively

©i, o7 - Transition : \;c;UB;. where each B, Is a Boolean formula over
- Variables fromzZ u O
- Expressions Ouv, where v e Z for ¢f & v € ZU O for ¢}

vi ;- Liveness 1 A._;000B;, where each B; is a Boolean formula over Zu O
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GR(1) Example

« Consider a traffic light
* Input: “fick”
« Qutputs: “red,” “yellow,” “green”

« Qutput changes when “fick” is true, stays
the same when "tick” is false

« Ex. 1:red, red, red, ...
« EXx. 2:red, yellow, green, red, ...

« Ex. 3:red, red, yellow, yellow, green,
green, ...

« Environment properties

p; =T oy =T ¢ =0U0tick
« System initial & liveness properties

w; = red N\ ~yellow N\ ~green
w; = UOgreen
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« System transition properties

Mutual exclusion
0! = OO0 ((red A —yellow N\ —green) V

(—red A yellow N\ —~green) V

(—red A —yellow A green)) A

Change on tick
O ((red A Otick — Ogreen) A

(green A Otick — Quyellow) N
(yellow N Otick — Ored))N\

No change without tick
O ((red A O—tick — Ored) A
(green N (O—tick — (Ogreen) A
(yellow N O—tick — Quyellow))
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GR(1) & Synthesis

« Given a GR(1) specification, we can
« Verify design safisfies it
 Efficiently synthesize design directly from it

« Ref. [1] contains proof synthesis procedure is “correct-by-construction”

« Synthesis tools exist for different domainsl?-¢l: robotic systems, hybrid
systems, multi-agent systems, digital circuits, etc.

« Only a few generate software implementations of synthesized designs
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End-to-End Verification
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GR(1) Synthesis & End-to-End Verification

« Question: If synthesis from GR(1) specifications is “correct-by-
construction,” why care about end-to-end verification?

« Answer: Three possible sources of errors
« Theoretical “proof” of the synthesis procedurel’-8l
« Implementation of the synthesis procedure
 Translation of a synthesized design to a software implementation
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GR(1) Synthesis & End-to-End Verification

« Question: If synthesis from GR(1) specifications is “correct-by-
construction,” why care about end-to-end verification?

« Answer: Three possible sources of errors
« Theoretical “proof” of the synthesis procedurel’-8l
« Implementation of the synthesis procedure
 Translation of a synthesized design to a software implementation

« Additional answer: specification errors
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SPARK for End-to-End
Verification of GR(1) Designs
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SPARK for End-to-End Verification of GR(1) Designs

« SPARKI?-10I'js
« Programming language based on Ada
« Associated set of auto-active verification tools

e Our godl
» Translate synthesized GR(1) designs to SPARK
» Verify SPARK implementations satisfy original specifications

* Our broad approach

« Modify tool Saltylél to generate SPARK implementations & annotations needed for
SPARK to automatically verify implementations against specifications

« Perform synthesis & verification on examples from many sources!?-°]

* Limitations
« Currently only address inifial & transition properties: of A ¢f — @3 A ¢f
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SPARK Implementation of GR(1) Design: Summary
* Multiple inputs wrapped in Environment record
* Multiple outputs wrapped in System record

» Synthesized design implemented as type Controller
« Has field to store state

* Has fields to store most recent input & output values (for evaluating transition
properties with “next” operator)

« Type Controller has Move procedure that takes inputs & produces outputs

e Functions Env_ Init, Env Trans, Sys Init, Sys Trans to evaluate
(& (4 S S
PisPtrPisr Pt

« Function Is Init to check whether Controller isin inifial state
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SPARK Implementation of GR(1) Design: Proot Notes

« Preconditions & postconditions on Move encode ¢; A i — ©; A @

* In GR(1) designs, each state corresponds to unique set of input & output values

« Define Type Invariant for Controller over Boolean functions
State To Input Mapping & State To Output Mapping

« This is the only thing SPARK needed to automatically prove Move postconditions

« "Ghost” code versus executable code
« Is Init,Env Init, Env Trans executable so user can monitor for violations of ¢e

* Sys Init, Sys Trans, State To Input Mapping, State To Output Mapping are
“Yghost” code mainly used for proof
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SPARK Implementation of GR(1) Design: Traffic Light

Let’s briefly walk through parts of synthesized traffic light design in SPARK

Omit Salty-formatted specifications & stick with mathematical representation

Briefly note Salty has features that make GR(1) specifications easier to write
« Use of enumeration & integer types for inputs & outputs
« Arithmetic operators in specifications with integer types
» User-defined macros

Enumeration & infeger types retained in synthesized SPARK implementations
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SPARK package specification for the synthesized traffic light design

package TrafficLight with SPARK Mode is
type Controller is private;

type System is record
red: Boolean; yellow: Boolean; green: Boolean;
end record;

function Is Init(C: Controller) return Boolean;
function Env_Init(tick: Boolean) return Boolean is (True);
function Sys Init(S: System) return Boolean is (S.red and not S.yellow and not S.green) with Ghost;

function Env Trans(C: Controller; tick: Boolean) return Boolean
with Pre => (not Is Init(C));

function Sys Trans(C: Controller; tick: Boolean; S: System) return Boolean
with Pre => (not Is Init(C)), Ghost;

procedure Move(C: in out Controller; tick: in Boolean; S: out System)

with Pre => (if Is Init(C) then Env_Init(tick) else Env Trans(C, tick)),
Contract Cases => (Is_Init(C) => Sys Init(S) and (not Is Init(C)),
others => Sys Trans(C'Old, tick, S) and (not Is Init(C)));
private

subtype State Num is Integer range 1 .. 7;
function State To Input Mapping(C: Controller) return Boolean with Ghost;
function State To Output Mapping(C: Controller) return Boolean with Ghost;

type Controller is record
State: State Num := State Num'Last; tick: Boolean; S: System;
end record;

with Type Invariant => (State To Input Mapping(Controller) and State To Output Mapping(Controller));
end TrafficLight;



SPARK body for the Move procedure for the synthesized traffic light design

procedure Move(C: in out ; tick: in ; S: out ) is
begin
case C.State is
when =>
case tick is
when False =>
C.State
C.S.red :
when True
C.State : H
C.S.red := False; C.S.yellow := False; C.S.green := True;
when others =>
raise Program Error;
end case;

o
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True; C.S.yellow := False; C.S.green := False;

Il
\%

when =>
case tick is
when False =>

C.State := 1;
C.S.red := True; C.S.yellow := False; C.S.green := False;
when True =>

C.State : H
C.S.red := True; C.S.yellow := False; C.S.green := False;
when others =>
raise Program Error;
end case;
end case;
C.tick := tick; S := C.S;
end Move;
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Case Study:
Multli-Vehicle Controller
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Case Study: Multi-Vehicle Controller

THE AIR FORCE RESEARCH LABORATORY

Team of “friendly”/system unmanned air vehicles (UAVs) evading “enemy’’/environment UAV

« One friendly UAV is a “Very Important Person” or VIP
« Two friendly “surveillance” UAVs must “protect” & “escort” the VIP

Map is divided into five regions

“Protection”: VIP is never in the same region as the enemy

“Escorting”: VIP can only move

« Into region previously visited/
surveilled by a surveillance UAV

« Surveillance UAV moves with it

Certain regions only reachable
from Region 3

Enemy UAV must infinitely often
leave certain regions

VIP must infinitely offen move to
certain regions

Map Display

Qo

Vehicle Status

/‘ - .\.
P

SURVEIL 1 (1)

A

SURVEIL 2 (2)

ENEMY (3)

VIP (4)

Speed 23 MPS (45 KTS)
Heading 90

Vert Speed 0 MPS ( 0 FPM)
Nav Mode FlightDirector

Altitude 1000 M (3281 FT)
Speed 23 MPS (45 KTS)
Heading 90

Vert Speed 0 MPS ( 0 FPM)
Nav Mode FlightDirector

Altitude 1000 M (3281 FT)
Speed 23 MPS (45 KTS)
Heading 90

Vert Speed 0 MPS ( 0 FPM)
Nav Mode FlightDirector

Altitude 1000 M (3281 FT)
Speed 23 MPS ( 45 KTS)
Heading 920

Vert Sneed 0 MPS (0 EPM)
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Specification Inputs & Outputs

THE AIR FORCE RESEARCH LABORATORY

Inputs

loc, - enemy
location

ST - location ¢
surveilled

Qutputs

loc, - VIP location

locy; - Surveillance
UAV ¢
location

vITrack; - Surveillance
UAV i is
tracking VIP
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Environment Specifications

vt
t
ve

— (loce = 4) N\ —8r1 A\ 181ra A ST'3 N\ 184 N STs

— /\ D((locsl =1) V (locse = 1) — Osrz—) A

i={1...5}

/\ I:I((—I(locsl = 1) A (locse = i) A —sri = Qsri) A
i={1...5}

(sri — Qs'r'z-)) A
O-(loce = 1) AO=(loce = 2)

¢' = 00—(loce = 3) AOO—(loce = 4) AOO—(loce = 5)

TTTTT
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Inputs

loc, - enemy
location

ST - location ¢
surveilled

Qutputs

loc, - VIP location

locg; - Surveillance
UAV 4
location

vITrack; - Surveillance
UAV i is
tracking VIP




AFRL

System Specifications
¢t = (locy, = 2) A (locs1 = 3) A (locsz = 5) A ~wTrack; A ~wTracks

Qs = D(ﬂ(locv = Qlocy) = (OvTrack: Vv OvTrackz)) A
/\ D(’UT'r‘acki — (sloc; = locv)) A

/\ O( (locy, = 1) — —(loce = z)) A

A o((

1={v,sl,s2}

loc; = 1) — (loc; = 1) V (loci = 2) V (loc; = 3)) A

(O(
( O (loc; =2) = (loc; = 1) V (loc; = 2) V (loc; = 3)) A
(Olloci=3)—= \/ (loci =j)) A

j={1...5}
(O (loci =4) — (loc; = 3) V (loc; = 4) V

(O (locs = 5) = (loc; = 3) V (loc; = 4
sols = OO (loc, = 1) AOO(loc, = 5)

THE AIR FORCE RESEARCH LABORATORY
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Inputs

loc, - enemy
location

ST - location ¢
surveilled

Qutputs

loc, - VIP location

locg; - Surveillance
UAV ¢
location

vITrack; - Surveillance
UAV i is
tracking VIP
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Case Study: Results

Previously synthesized Python controller, interfaced it to OpenUxASI'-12] to
implement low-level UAV behaviors, simulated in OpenAMASE!S]

Implementation in SPARK found undetected issuel

Issue was part of specification for ¢¢: O—(loc, = 1) fori = {1,2}

Specification should be written ¢¢: O —(loc, = @) fori = {1,2}

Reason: -p not the same as IO —p
 If environment chooses p for next time step, does not violate C—p in current time step
« However, it necessarily violates [—p in next time step
« ¢} should have terms of the form O () —p, not O—p

« Salty now produces warning in this case

In Python implementation, result was states with no successors, leading to
runtime errors after reaching those states
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THE AIR FORCE RESEARCH LABORATORY

Results

24



AFRL

SPARK Implementation of GR(1) Design: Summary

« Pulled 40 examples from GR(1) repos!?4l: Salty, Slugs, Anzu, TULiP, LTLMoP

* Plot shows CPU time for 33 examples with up to 4000 conftroller transitions
« 7 examples with more transitions required too much memory (not plotted)
« 2 examples had errors because of unusually large specifications

« 2 examples only partially proven:
* One with ~2000 transitions

* One with Integer terms & arithmetic operators in specification

1045 T 3
B O Proven |1
r A A Partial |]
9 Error
3 10%¢ ° © e
) 8 ®
° F
> r A
& e, e % °
[ O _|
o 10 (5% o
©
£ © o
= 1L -
10 ° ) 3
? 8 (@) ©] @]
100 L—— L N ¢ ‘
10! 102 10° 10%

Number of Transitions

« Found the same type of specification error as UAV case study in one Anzu example

THE AIR FORCE RESEARCH LABORATORY
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THE AIR FORCE RESEARCH LABORATORY

Summary
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Lessons Learned

« “"End-to-end” SPARK verification found issue due to O-p vs. OO —p

* Case statement more efficient proof-wise than Map for controller logic
« SPARK Maps have complete axiomatization, adds verification conditions

« During initialization, must prove each added key/input value not already contained
« Afterinitialization, must prove every possible transition covered
» Case statements automatically imply these things

e Case statements have some issues:

» Large/verbose
« Underlying prover must reason about all alternatives at once
« Still better than Map in our application, but maybe not for others

« Some examples had no inputs, vacuous precondition Pre => True
« Took abnormally long time to verify
« Clearly could be encoded more efficiently
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Future Work

 Investigate liveness properties
« SPARK hypothetically can solve required bounded model checking problem
« Other option: annotate code & use external model checker

* Look at decomposition of Move procedure to handle larger examples

* Fix encoding of controllers with no inputs to speed up proof

 Investigate why example with Integer types & arithmetic operators
takes longer than expected to prove in SPARK
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Full Paper

For more details, see:

Humphrey, L. R., Hamil, J., Huguet, J.: “End-to-End Verification of Inifial and
Transition Properties of GR(1) Designs in SPARK,” In: Int. Conf. Software Engineering
and Formal Methods (SEFM), 2020.
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