
Enforcing Information Flow Policies
via Generation of Monitors in

Java Card Runtime Environments

Alessandro Coglio
Stephen Fitzpatrick

Cordell Green
Lindsay Errington

Kestrel Institute

HCSS
May 5th, 2011

Java Card = Java for smart cards

authentication,
banking,
telephony,
health care,
…

•  language subset
•  different APIs

“Java Card” denotes
language + API

card (w/ Java SW)

Java Card Runtime Environment
(JCRE)

Java Card
VM

Java Card
libraries

smart card HW

applet
cryptography
atomic transactions
transient data
PINs
secure channel protocols
I/O
…

(API methods “extend” VM)

Java Card Runtime Environment = smart card OS

bytecode interpreter

classified
network

unclassified
network

troop
locations

token

big
concern!

separate tokens multi-domain token

 classified

 unclassified

Current Solution Desired Solution

•  more expensive
•  no cross-domain integration

enforces information flow policies

More In General:
Information Flow Policies in Java Card

app2 … app1

Java Card
Runtime

Environment

Standard Java Card
q  Basic protection against undesired information

flows
q  type safety (⇒ no buffer overflows)
q  applet firewall (prevents access across objects in

different Java packages)
q  Insufficient, because

q  two applets can bypass the firewall using
q  static fields and methods (firewall only applies to objects)
q  Shareable Interface Objects (= mechanism for explicit inter-

applet communication)
q  discretionary, not mandatory access control
q  Java package boundaries may not align with domain

boundaries (e.g. two instances of the same applet
may operate on data belonging to different domains)

policies enforced by
JCRE + applets

(vs. JCRE alone)

standard
JCRE

standard
JCRE

rogue or incorrect
applets may cause

policy violations

appB appA appB appA

Approach: Extend JCRE with
Run-Time Policy Monitor

standard
JCRE

policy
monitor

extended
JCRE + =

policies enforced by
JCRE alone

extended
JCRE

extended
JCRE

rogue or incorrect
applets cannot cause

policy violations

appB appA appB appA

code
level + =

difficult to do & gain assurance

extended
JCRE code

policy
monitor code

standard
JCRE code

extended
JCRE spec

policy
monitor spec

standard
JCRE spec

Generative Approach

+ =

difficult to do & gain assurance

+ =

much easier

extended
JCRE code

policy
monitor code

standard
JCRE code

generate

code
level

specification
level

extended
JCRE spec

policy
monitor spec

standard
JCRE spec

Generative Approach

problem simplified
by factoring

+ =

much easier

extended
JCRE code

standard
JCRE code

generate generate

code
level

specification
level

Specware
q  Kestrel’s main tool for generative development
q  Specifications written in higher-order logic
q  Refinement

q  automated via proof-generating transformations
q  manual with proof obligations

q  Interfaces to theorem provers (e.g. Isabelle/
HOL)

q  Automatic code generation for subset of
specification language

Leverage among 3 Projects

• ~ 200 instructions
• cryptography
• applet firewall
• transactions
• transient objects
• PINs
• security domains
• GlobalPlatform
commands

• secure channel
protocols

• I/O
• …

formal spec of JCRE subset
(~ 4K lines in Specware)

• ~ 30 instructions
• applet firewall
• security domains
• I/O
• …

formal spec of full JCRE
(~ 34K lines in Specware)

keep salient features
and remove irrelevant
features w.r.t.
information flow

generalize

develop

previous project
this project

ongoing project

solution

Space of Exploration of This Project

complexity of
information
flow policy

JCRE Classic Edition
(single-threaded)

complexity of
Runtime Environment

JCRE Classic Edition

Java Card Runtime Environment

Virtual Machine standard API

HW
input

output

inputs/outputs dispatched by JCRE to/from applets

(synchronous)

sec.domainA

sec.domainB

app1 app2 app3 app4 app5
…

applets partitioned into security domains

JCRE in Specware

% observables:
type Input = ...
type Output = ...
type Exchange = {in:Input, out:Output}
type Trace = Seq Exchange
type SecurityDomain = ...
op domainOf : Input -> SecurityDomain = ...
op domainOf(exch:Exchange):SecurityDomain = domainOf exch.in

I1

O1

I2

O2

I3

O3

I4

O4

… I5

O5

trace of exchanges:
sec.domainA
sec.domainB

% observables:
...
type Exchange = {in:Input, out:Output}
type Trace = Seq Exchange
...

% standard JCRE’s set of traces:
...
type Object = | clinst ClassInstance | array Array
type Heap = Set Object
type Frame = Method * ProgramCounter * ...
type State = Heap * (Seq Frame) * ...
op initState : State = ... % includes installed applets
op step : State -> State = ...
op process : Input * State -> Output * State = ...
op standardTraces : Set Trace = ... process ...

JCRE in Specware

Space of Exploration

Multiple Independent
Levels of Security

(MILS)

complexity of
information
flow policy

JCRE Classic Edition
(single-threaded)

complexity of
Runtime Environment

1

MILS Policy

HW
input

output

no information flow among security domains

sec.domainA

sec.domainB

app1 app2 app3 app4 app5
…

Java Card Runtime Environment

Virtual Machine standard API

Scope of our MILS Policy
q  Only inputs & outputs are observable
q  Internal state is not directly observable

q  only indirectly via I/O exchanges
q  smart cards have HW protections against direct physical access

to internal memory
q  Under these assumptions, policy is expressed in terms of

I/O exchanges only
q  Policy, intuitively: running a security domain together

with other domains yields the same results as running
that domain alone

I
…

I1

O1

I2

O2

sec.domainA
sec.domainB

I1’

O1’

I’
…

I’’
…

I2’
O2’

MILS Policy Graphically

trace #1

trace #2

I1 = I1’ ∧ I2 = I2’ ⇒ O1 = O1’ ∧ O2 = O2’
(regardless of I, I’, I’’, …)

MILS Policy in Specware

% non-interference predicate over sets of traces:
op satisfiesMILS? (TRS:Set Trace) : Boolean =
 % given a security domain and two traces:
 fa (sd:SecDomain, tr1:Trace, tr2:Trace)
 tr1 in? TRS && tr2 in? TRS &&
 % extract the inputs and outputs for the domain:
 (let subtr1 = filterTrace sd tr1 in
 let subtr2 = filterTrace sd tr2 in
 % if the inputs coincide:
 mapSeq (project in) subtr1 =
 mapSeq (project in) subtr2 =>
 % then the outputs must coincide:
 mapSeq (project out) subtr1 =
 mapSeq (project out) subtr2

MILS Monitor

runtime monitor sees only current trace

it cannot directly check MILS policy predicate,
which is over sets of traces

we find stronger policy predicate over single traces
(more than one choice possible)

monitor enforces the stronger policy

⇓

⇓

⇓

MILS policy is satisfied
⇓

MILS Monitor

q  Several choices possible
q  block illicit information flow sooner vs. later
q  corrective action could throw exception vs. turn

attempt into no-op
q  Our choice

q  block attempts to access static fields across domains
q  block attempts to obtain shareable objects across

domains
q  throw security exception if any of these attempts take

place

MILS Monitor in Specware

% standard JCRE’s set of traces:
...
op step : State -> State = ...
op standardTraces : Set Trace = ... step ...

% recognize operations that may transfer info cross-domain:
op violates? : State -> Boolean = ...
% define corrective action (e.g. throw Java exception):
op correct : (State | violates?) -> State = ...

% compose monitor with standard JCRE:
op step’(st:State):State = if violates? st then correct st
 else step st % do as usual
op monitoredTraces: Set Trace = ... step’ ...
% stronger monitoring policy implies MILS policy:
theorem monitor_enforces_MILS is
 satisfiesMILS? monitoredTraces

Proof that Monitor Guarantees MILS

q  Partitioning of state by domains
q  Closure: pointers in each partition reference only

objects in the same partition
q  proved by cases on all possible execution steps

(every bytecode, every API call, etc.)
q  run-time monitor curbs execution steps that would

break closure
q  Thus, execution step in a partition does not

change, and is not affected by, other partitions
q  Thus, two traces with the same inputs to a

domain yield “parallel” executions w.r.t. the
domain
q  equivalent sub-states (i.e. partitions)
q  in particular, same outputs

q  Some tricky bits
q  sub-state equivalence is modulo consistent pointer

renaming
q  I/O buffer shared among domains

q  but OK because zeroed before each new I/O exchange
q  exception object shared among domains

q  not zeroed before each new I/O exchange
q  but only way to reference it is via an API that overwrites its

content, thus destroying any value stored there belonging to
other domains

q  The fact that the main theorem is proved, means
that our run-time monitor does not miss any case
(if it did, the theorem could not be proved)

Proof that Monitor Guarantees MILS

classified
network

unclassified
network

troop
locations

weather
data

MILS
token

Space of Exploration

Multiple Independent
Levels of Security

(MILS)

Multi-Level
Security
(MLS)

complexity of
information
flow policy

JCRE Classic Edition
(single-threaded)

complexity of
Runtime Environment

1

2

MLS vs. MILS

security
domain A

security
domain B MILS

MLS

symmetric

security
domain A

security
domain B

partial order

MLS Policy

I
…

I1

O1

J

…

sec.dom.B

I1’
O1’

K’
…

I’
…

J’
…

trace #1

trace #2

I1 = I1’ ∧ J = J’ ∧ I2 = I2’ ⇒ O1 = O1’ ∧ O2 = O2’

(regardless of I, I’, I’’, K, K’, …)

sec.dom.A

sec.dom.C

sec.dom.D

K

…

I’’
…

I2

O2

I2’
O2’

partial order:

getfield

putfield

MLS Monitor
q  2 possible ways to share information across domains

q  instance fields in shared objects
q  static fields

q  MLS monitor blocks operations that would violate policy

Server
Applet

Client
Applet

Shareable
Object

owner

Security
Domain S

Security
Domain C

Partial
Order <

Instance Field

get field put field

C < S X
C = S

S < C X
C & S

incomparable X X

MLS Monitor

Client
Applet Class

Security
Domain S

Security
Domain C

getstatic

Partial
Order <

putstatic

getstatic putstatic

C < S X
C = S

S < C X
C & S

incomparable X X
(same table as for instance field)

Static Field

Proof that Monitor Guarantees MLS

q  Analogous to proof for MILS
q  Weaker notions and invariants, e.g.

q closure of pointers in each domain & lower
domains (no references to higher or
incomparable domains)

q execution step in a domain
q does not change lower or incomparable domains
q  is not affected by higher or incomparable domains

classified
network

unclassified
network

troop
locations

weather
data

MLS
token

Space of Exploration

Multiple Independent
Levels of Security

(MILS)

Multi-Level
Security
(MLS)

complexity of
information
flow policy

JCRE Classic Edition
(single-threaded)

JCRE Connected Edition
(multi-threaded)

complexity of
Runtime Environment

1

2

 J
C
R
E

HW

…

one I/O interface per security domain

Multi-Threading Model

…

I/O interfaces operate in parallel, independently

sec.domainA

sec.domainB

app1 app2 app3 app4 app5

 J
C
R
E

HW

…

one thread per security domain

Multi-Threading Model

scheduler interleaves threads’ execution steps

sec.domainA

sec.domainB

app1 app2 app3 app4 app5

scheduler

…

The image
cannot be
displayed.
Your
computer may
not have
enough
memory to
open the
image, or the

⇒ potential for timing channels

Multi-Threading Model

q  Simple, but exhibits salient features (e.g.
potential for timing channels)

q  Consistent with Java Card Connected
Edition

q  Parameterized over scheduling policy
q scheduling policy may affect information flow

(e.g. domain A may preempt domain B)

Multi-Threading Model in Specware

% observables include time:
type Input = ...
type Output = ...
type Time = NonNegReal
type IOTrace = Map (Time, (Input | Output))
type SecurityDomain = ...
type MultiIOTrace = Map (SecurityDomain, IOTrace)

0

I1 I2 I3

O1 O2 O3

I/O trace for
sec. domain A

I/O trace for
sec. domain B 0

I1 I2

O1 O2

multi I/O trace

Space of Exploration

Multiple Independent
Levels of Security

(MILS)

Multi-Level
Security
(MLS)

complexity of
information
flow policy

JCRE Classic Edition
(single-threaded)

JCRE Connected Edition
(multi-threaded)

complexity of
Runtime Environment

1

2

3

MILS Policy that Includes Time

0

I

sec. dom. A
sec. dom. B

0

I1 I2

O1 O2

multi I/O trace #1

multi I/O trace #2
I1’ I2’

O1’ O2’

I’ I’’

I1 = I1’ ∧ I2 = I2’ ∧ t(I1) = t(I1’) ∧ t(I2) = t(I2’)
⇒

O1 = O1’ ∧ O2 = O2’ ∧ t(O1) = t(O1’) ∧ t(O2) = t(O2’)

(regardless of I, I’, I’’, …)

no explicit channels no timing channels

MILS Monitor + Scheduler
q  Run-time checks

q  block instructions that move data across security
domains

q  same as single-threaded JCRE
q  closes explicit channels

q  Scheduling policy
q  each security domain is allocated a fixed time slot in a

fixed cycle
q  time slot is allocated even if security domain not active

q  closes timing channels

O

I I

O

I´

O´

Proof that Monitor + Scheduler
Guarantee Policy

q  Proof that monitor blocks explicit flows is similar
to single-threaded case
q  in particular, execution in a domain does not affect

and is not affected by other domains, i.e. depends on
domain’s sub-state only

q  Proof that scheduler blocks timing flows
q  scheduling decision depends on thread’s (= domain’s)

sub-state only
q  therefore, two arbitrary traces with the same inputs at

the same times to a domain have parallel executions
also w.r.t. timing

Space of Exploration

Multiple Independent
Levels of Security

(MILS)

Multi-Level
Security
(MLS)

complexity of
information
flow policy

JCRE Classic Edition
(single-threaded)

JCRE Connected Edition
(multi-threaded)

complexity of
Runtime Environment

1

2

3

4

MLS for Multi-Threaded JCRE
q  Combines features of MLS and multi-threading
q  We use the same MLS monitor as in the single-

threaded case
q  We use the same scheduler as in the MILS case

(i.e. fixed time slot in a fixed cycle)
q  adequate, because we just need to close timing

channels (no need to allow timing flows from lower to
higher, because there are explicit flow mechanisms)

q  but it could be relaxed, for better processor utilization
(allow timing flows from lower to higher, if that
improves processor utilization)

Space of Exploration

Multiple Independent
Levels of Security

(MILS)

Multi-Level
Security
(MLS)

… complexity of
information
flow policy

JCRE Classic Edition
(single-threaded)

JCRE Connected Edition
(multi-threaded)

complexity of
Runtime Environment

…

1

2

3

4

Recap
q  Java Card
q  Multi-domain token
q  Information flow policies in Java Card
q  Generative approach
q  MILS in single-threaded Java Card

q  policy as non-interference of I/O exchanges
q  run-time monitor
q  proof that monitor guarantees policy

q  MLS in single-threaded Java Card
q  more flexible policy
q  more flexible monitor
q  proof that monitor guarantees policy

q  MILS in multi-threaded Java Card
q  time and timing channels
q  scheduling policy to prevent timing channels
q  proof that monitor + scheduler guarantee policy

q  MLS in multi-threaded Java Card
q  combines features from previous two cases

