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Java Card = Java for smart cards 

authentication, 
banking, 
telephony, 
health care, 
… 

•  language subset 
•  different APIs 

“Java Card” denotes 
language + API 

card (w/ Java SW) 



Java Card Runtime Environment 
(JCRE) 

Java Card 
VM 

Java Card 
libraries 

smart card HW 

applet . . . . . . 
cryptography 
atomic transactions 
transient data 
PINs 
secure channel protocols 
I/O 
… 

(API methods “extend” VM) 

Java Card Runtime Environment = smart card OS 

bytecode interpreter 



classified 
network 

unclassified 
network 

troop 
locations 

 
token 

big 
concern! 



separate tokens multi-domain token 

   classified 
 
 
 

   unclassified 
 
 
 

Current Solution Desired Solution 

•  more expensive 
•  no cross-domain integration 

enforces information flow policies 



More In General: 
Information Flow Policies in Java Card 

app2 … app1 

 
Java Card 
Runtime 

Environment 



Standard Java Card 
q  Basic protection against undesired information 

flows 
q  type safety (⇒ no buffer overflows) 
q  applet firewall (prevents access across objects in 

different Java packages) 
q  Insufficient, because 

q  two applets can bypass the firewall using 
q  static fields and methods (firewall only applies to objects) 
q  Shareable Interface Objects (= mechanism for explicit inter-

applet communication) 
q  discretionary, not mandatory access control 
q  Java package boundaries may not align with domain 

boundaries (e.g. two instances of the same applet 
may operate on data belonging to different domains) 



policies enforced by 
JCRE + applets 

(vs. JCRE alone) 

standard 
JCRE 

standard 
JCRE 

rogue or incorrect 
applets may cause 

policy violations 

appB appA appB appA 



Approach: Extend JCRE with 
Run-Time Policy Monitor 

standard 
JCRE 

policy 
monitor 

extended 
JCRE + = 



policies enforced by 
JCRE alone 

extended 
JCRE 

extended 
JCRE 

rogue or incorrect 
applets cannot cause 

policy violations 

appB appA appB appA 



code 
level + = 

difficult to do & gain assurance 

extended 
JCRE code 

policy 
monitor code 

standard 
JCRE code 



extended 
JCRE spec 

policy 
monitor spec 

standard 
JCRE spec 

Generative Approach 

+ = 

difficult to do & gain assurance 

+ = 

much easier 

extended 
JCRE code 

policy 
monitor code 

standard 
JCRE code 

generate 

code 
level 

specification 
level 



extended 
JCRE spec 

policy 
monitor spec 

standard 
JCRE spec 

Generative Approach 

problem simplified 
by factoring 

+ = 

much easier 

extended 
JCRE code 

standard 
JCRE code 

generate generate 

code 
level 

specification 
level 



Specware 
q  Kestrel’s main tool for generative development 
q  Specifications written in higher-order logic 
q  Refinement 

q  automated via proof-generating transformations 
q  manual with proof obligations 

q  Interfaces to theorem provers (e.g. Isabelle/
HOL) 

q  Automatic code generation for subset of 
specification language 



Leverage among 3 Projects 

• ~ 200 instructions 
• cryptography 
• applet firewall 
• transactions 
• transient objects 
• PINs 
• security domains 
• GlobalPlatform 
commands 

• secure channel 
protocols 

• I/O 
• … 

formal spec of JCRE subset 
(~ 4K lines in Specware) 

• ~ 30 instructions 
• applet firewall 
• security domains 
• I/O 
• … 

formal spec of full JCRE 
(~ 34K lines in Specware) 

keep salient features 
and remove irrelevant 
features w.r.t. 
information flow 

generalize 

develop 

previous project 
this project 

ongoing project 

solution 



Space of Exploration of This Project 

complexity of 
information 
flow policy 

JCRE Classic Edition 
(single-threaded) 

complexity of 
Runtime Environment 



JCRE Classic Edition 

Java Card Runtime Environment 
 
 
 

Virtual Machine standard API 

HW 
input 

output 

inputs/outputs dispatched by JCRE to/from applets 

(synchronous) 

sec.domainA 
 
 
 

sec.domainB 
 
 
 

app1 app2 app3 app4 app5 
… 

applets partitioned into security domains 



JCRE in Specware 

% observables: 
type Input = ... 
type Output = ... 
type Exchange = {in:Input, out:Output} 
type Trace = Seq Exchange 
type SecurityDomain = ... 
op domainOf : Input -> SecurityDomain = ... 
op domainOf(exch:Exchange):SecurityDomain = domainOf exch.in 

I1 

O1 

I2 

O2 

I3 

O3 

I4 

O4 

… I5 

O5 

trace of exchanges: 
sec.domainA 
sec.domainB 



% observables: 
... 
type Exchange = {in:Input, out:Output} 
type Trace = Seq Exchange 
... 

% standard JCRE’s set of traces: 
... 
type Object = | clinst ClassInstance | array Array 
type Heap = Set Object 
type Frame = Method * ProgramCounter * ... 
type State = Heap * (Seq Frame) * ... 
op initState : State = ...  % includes installed applets 
op step : State -> State = ... 
op process : Input * State -> Output * State = ... 
op standardTraces : Set Trace = ... process ... 

JCRE in Specware 



Space of Exploration 

Multiple Independent 
Levels of Security 

(MILS) 

complexity of 
information 
flow policy 

JCRE Classic Edition 
(single-threaded) 

complexity of 
Runtime Environment 

1 
 



MILS Policy 

HW 
input 

output 

no information flow among security domains 

sec.domainA 
 
 
 

sec.domainB 
 
 
 

app1 app2 app3 app4 app5 
… 

Java Card Runtime Environment 
 
 
 

Virtual Machine standard API 



Scope of our MILS Policy 
q  Only inputs & outputs are observable 
q  Internal state is not directly observable 

q  only indirectly via I/O exchanges 
q  smart cards have HW protections against direct physical access 

to internal memory 
q  Under these assumptions, policy is expressed in terms of 

I/O exchanges only 
q  Policy, intuitively: running a security domain together 

with other domains yields the same results as running 
that domain alone 



I 
… 

I1 

O1 

I2 

O2 

sec.domainA 
sec.domainB 

I1’ 

O1’ 

I’ 
… 

I’’ 
… 

I2’ 
O2’ 

MILS Policy Graphically 

trace #1 

trace #2 

I1 = I1’   ∧   I2 = I2’   ⇒   O1 = O1’   ∧   O2 = O2’ 
(regardless of I, I’, I’’, …) 



MILS Policy in Specware 

% non-interference predicate over sets of traces: 
op satisfiesMILS? (TRS:Set Trace) : Boolean = 
  % given a security domain and two traces: 
  fa (sd:SecDomain, tr1:Trace, tr2:Trace) 
    tr1 in? TRS && tr2 in? TRS && 
  % extract the inputs and outputs for the domain: 
    (let subtr1 = filterTrace sd tr1 in 
     let subtr2 = filterTrace sd tr2 in 
  % if the inputs coincide: 
    mapSeq (project in) subtr1 = 
    mapSeq (project in) subtr2 => 
  % then the outputs must coincide: 
    mapSeq (project out) subtr1 = 
    mapSeq (project out) subtr2 



MILS Monitor 

runtime monitor sees only current trace 

it cannot directly check MILS policy predicate, 
which is over sets of traces 

we find stronger policy predicate over single traces 
(more than one choice possible) 

monitor enforces the stronger policy 

⇓ 

⇓ 

⇓ 

MILS policy is satisfied 
⇓ 



MILS Monitor 

q  Several choices possible 
q  block illicit information flow sooner vs. later 
q  corrective action could throw exception vs. turn 

attempt into no-op 
q  Our choice 

q  block attempts to access static fields across domains 
q  block attempts to obtain shareable objects across 

domains 
q  throw security exception if any of these attempts take 

place 



MILS Monitor in Specware 

% standard JCRE’s set of traces: 
... 
op step : State -> State = ... 
op standardTraces : Set Trace = ... step ... 

% recognize operations that may transfer info cross-domain: 
op violates? : State -> Boolean = ... 
% define corrective action (e.g. throw Java exception): 
op correct : (State | violates?) -> State = ... 

% compose monitor with standard JCRE: 
op step’(st:State):State = if violates? st then correct st 
                           else step st  % do as usual 
op monitoredTraces: Set Trace = ... step’ ... 
% stronger monitoring policy implies MILS policy: 
theorem monitor_enforces_MILS is 
  satisfiesMILS? monitoredTraces 



Proof that Monitor Guarantees MILS 

q  Partitioning of state by domains 
q  Closure: pointers in each partition reference only 

objects in the same partition 
q  proved by cases on all possible execution steps 

(every bytecode, every API call, etc.) 
q  run-time monitor curbs execution steps that would 

break closure 
q  Thus, execution step in a partition does not 

change, and is not affected by, other partitions 
q  Thus, two traces with the same inputs to a 

domain yield “parallel” executions w.r.t. the 
domain 
q  equivalent sub-states (i.e. partitions) 
q  in particular, same outputs 



q  Some tricky bits 
q  sub-state equivalence is modulo consistent pointer 

renaming 
q  I/O buffer shared among domains 

q  but OK because zeroed before each new I/O exchange 
q  exception object shared among domains 

q  not zeroed before each new I/O exchange 
q  but only way to reference it is via an API that overwrites its 

content, thus destroying any value stored there belonging to 
other domains 

q  The fact that the main theorem is proved, means 
that our run-time monitor does not miss any case 
(if it did, the theorem could not be proved) 

Proof that Monitor Guarantees MILS 



classified 
network 

unclassified 
network 

troop 
locations 

weather 
data 

MILS 
token 



Space of Exploration 

Multiple Independent 
Levels of Security 

(MILS) 

Multi-Level 
Security 
(MLS) 

complexity of 
information 
flow policy 

JCRE Classic Edition 
(single-threaded) 

complexity of 
Runtime Environment 

1 
 

2 
 



MLS vs. MILS 

security 
domain A 

security 
domain B MILS 

MLS 

symmetric 

security 
domain A 

security 
domain B 

partial order 



MLS Policy 

I 
… 

I1 

O1 

J 

… 

sec.dom.B 

I1’ 
O1’ 

K’ 
… 

I’ 
… 

J’ 
… 

trace #1 

trace #2 

I1 = I1’   ∧   J = J’   ∧   I2 = I2’   ⇒   O1 = O1’   ∧   O2 = O2’ 

(regardless of I, I’, I’’, K, K’, …) 

sec.dom.A 

sec.dom.C 

sec.dom.D 

K 

… 

I’’ 
… 

I2 

O2 

I2’ 
O2’ 

partial order: 



getfield 

putfield 

MLS Monitor 
q  2 possible ways to share information across domains 

q  instance fields in shared objects 
q  static fields 

q  MLS monitor blocks operations that would violate policy 

Server 
Applet 

Client 
Applet 

Shareable 
Object 

owner 

Security 
Domain S 

Security 
Domain C 

Partial 
Order < 

Instance Field 

get field put field 

C < S X 
C = S 

S < C X 
C & S 

incomparable X X 



MLS Monitor 

Client 
Applet Class 

Security 
Domain S 

Security 
Domain C 

getstatic 

Partial 
Order < 

putstatic 

getstatic putstatic 

C < S X 
C = S 

S < C X 
C & S 

incomparable X X 
(same table as for instance field) 

Static Field 



Proof that Monitor Guarantees MLS 

q  Analogous to proof for MILS 
q  Weaker notions and invariants, e.g. 

q closure of pointers in each domain & lower 
domains (no references to higher or 
incomparable domains) 

q execution step in a domain 
q does not change lower or incomparable domains 
q  is not affected by higher or incomparable domains 



classified 
network 

unclassified 
network 

troop 
locations 

weather 
data 

MLS 
token 



Space of Exploration 

Multiple Independent 
Levels of Security 

(MILS) 

Multi-Level 
Security 
(MLS) 

complexity of 
information 
flow policy 

JCRE Classic Edition 
(single-threaded) 

JCRE Connected Edition 
(multi-threaded) 

complexity of 
Runtime Environment 

1 
 

2 
 



 J 
C 
R 
E 

HW 

… 

one I/O interface per security domain 

Multi-Threading Model 

… 

I/O interfaces operate in parallel, independently 

sec.domainA 
 
 
 

sec.domainB 
 
 
 

app1 app2 app3 app4 app5 



 J 
C 
R 
E 

HW 

… 

one thread per security domain 

Multi-Threading Model 

scheduler interleaves threads’ execution steps 

sec.domainA 
 
 
 

sec.domainB 
 
 
 

app1 app2 app3 app4 app5 

scheduler 

… 

The image 
cannot be 
displayed. 
Your 
computer may 
not have 
enough 
memory to 
open the 
image, or the 

⇒ potential for timing channels 



Multi-Threading Model 

q  Simple, but exhibits salient features (e.g. 
potential for timing channels) 

q  Consistent with Java Card Connected 
Edition 

q  Parameterized over scheduling policy 
q scheduling policy may affect information flow 

(e.g. domain A may preempt domain B) 



Multi-Threading Model in Specware 

% observables include time: 
type Input = ... 
type Output = ... 
type Time = NonNegReal 
type IOTrace = Map (Time, (Input | Output)) 
type SecurityDomain = ... 
type MultiIOTrace = Map (SecurityDomain, IOTrace) 

0 

I1 I2 I3 

O1 O2 O3 

I/O trace for 
sec. domain A 

I/O trace for 
sec. domain B 0 

I1 I2 

O1 O2 

multi I/O trace 



Space of Exploration 

Multiple Independent 
Levels of Security 

(MILS) 

Multi-Level 
Security 
(MLS) 

complexity of 
information 
flow policy 

JCRE Classic Edition 
(single-threaded) 

JCRE Connected Edition 
(multi-threaded) 

complexity of 
Runtime Environment 

1 
 

2 
 

3 
 



MILS Policy that Includes Time 

0 

I 

sec. dom. A 
sec. dom. B 

0 

I1 I2 

O1 O2 

multi I/O trace #1 

multi I/O trace #2 
I1’ I2’ 

O1’ O2’ 

I’ I’’ 

I1 = I1’   ∧   I2 = I2’   ∧   t(I1) = t(I1’)   ∧   t(I2) = t(I2’)    
⇒ 

O1 = O1’   ∧   O2 = O2’   ∧   t(O1) = t(O1’)   ∧   t(O2) = t(O2’) 

(regardless of I, I’, I’’, …) 

no explicit channels no timing channels 



MILS Monitor + Scheduler 
q  Run-time checks 

q  block instructions that move data across security 
domains 

q  same as single-threaded JCRE 
q  closes explicit channels 

q  Scheduling policy 
q  each security domain is allocated a fixed time slot in a 

fixed cycle 
q  time slot is allocated even if security domain not active 

q  closes timing channels 

O 

I I 

O 

I´ 

O´ 



Proof that Monitor + Scheduler 
Guarantee Policy 

q  Proof that monitor blocks explicit flows is similar 
to single-threaded case 
q  in particular, execution in a domain does not affect 

and is not affected by other domains, i.e. depends on 
domain’s sub-state only 

q  Proof that scheduler blocks timing flows 
q  scheduling decision depends on thread’s (= domain’s) 

sub-state only 
q  therefore, two arbitrary traces with the same inputs at 

the same times to a domain have parallel executions 
also w.r.t. timing 



Space of Exploration 

Multiple Independent 
Levels of Security 

(MILS) 

Multi-Level 
Security 
(MLS) 

complexity of 
information 
flow policy 

JCRE Classic Edition 
(single-threaded) 

JCRE Connected Edition 
(multi-threaded) 

complexity of 
Runtime Environment 

1 
 

2 
 

3 
 

4 
 



MLS for Multi-Threaded JCRE 
q  Combines features of MLS and multi-threading 
q  We use the same MLS monitor as in the single-

threaded case 
q  We use the same scheduler as in the MILS case 

(i.e. fixed time slot in a fixed cycle) 
q  adequate, because we just need to close timing 

channels (no need to allow timing flows from lower to 
higher, because there are explicit flow mechanisms) 

q  but it could be relaxed, for better processor utilization 
(allow timing flows from lower to higher, if that 
improves processor utilization) 



Space of Exploration 

Multiple Independent 
Levels of Security 

(MILS) 

Multi-Level 
Security 
(MLS) 

… complexity of 
information 
flow policy 

JCRE Classic Edition 
(single-threaded) 

JCRE Connected Edition 
(multi-threaded) 

complexity of 
Runtime Environment 

… 

1 
 

2 
 

3 
 

4 
 



Recap 
q  Java Card 
q  Multi-domain token 
q  Information flow policies in Java Card 
q  Generative approach 
q  MILS in single-threaded Java Card 

q  policy as non-interference of I/O exchanges 
q  run-time monitor 
q  proof that monitor guarantees policy 

q  MLS in single-threaded Java Card 
q  more flexible policy 
q  more flexible monitor 
q  proof that monitor guarantees policy 

q  MILS in multi-threaded Java Card 
q  time and timing channels 
q  scheduling policy to prevent timing channels 
q  proof that monitor + scheduler guarantee policy 

q  MLS in multi-threaded Java Card 
q  combines features from previous two cases 


