

Evaluating Hazard Analysis Of A Distributed Digital System For Nuclear Reactor Safety

Sushil Birla Division of Engineering Office of Nuclear Regulatory Research October 28, 2013

Hazard Analysis: What we mean

- Hazard as defined in standards
- HA explained via IEEE Std 603 § 4-h
- Many ways in which things can go wrong
- HA place in safety analysis

Motivation & Scope

- Trends scenario 1/2
- Trends scenario 2/2
- Current State & Trends
- Motivation for RIL-1101
- Organizational & analytical framework
- Role of RIL-1101 in review NRC process
- RIL-1101 scope
- Contributory hazard space in focus
- RIL-1101: Relationship with Plant HA
- Research Method
- Envisioned Roadmap

Outline

Dependencies

- Types of dependencies: Examples
- Dependency example: System architecture dimension
- Product-process dependency over lifecycle
- Dependency on a process activity
- Evaluation of Hazard Analysis
 - Factors affecting quality of HA
 - Reasoning Model
 - Techniques surveyed

- (IEC Vocab) Potential for harm
 - Condition. Circumstance. Scenario.
 - Scope boundary: System to be analyzed.
- (ISO/IEC/IEEE 24765 3.1283-1) An intrinsic property or condition that has the potential to cause harm or damage.
 - {Harm OR damage} = Loss

HA explained in terms of IEEE Std 603 criterion 4h

A specific basis shall be established for the design of each safety system of the nuclear power generating station; the design basis shall document as a minimum ...

the <u>conditions</u> having the potential for functional degradation of safety system performance

and for which provisions shall be incorporated to retain the capability of performing the safety functions. Hazard Controls

Hazards

Many ways for things to go wrong

- Not provided, e.g.:
 - Data sent on bus is not delivered
- Provided when not needed
- Incorrect state transition
- Incorrect value provided, e.g.:
 - Invalid data
 - Stale input value treated inconsistently.
 - Undefined type of data
 - Incorrect message format
 - Incorrect initialization
- Provided at wrong time / out of order
- Provided for too long a duration (e.g., for continuous-control functions)

- Provided for too short ~, e.g.:
 - Signal is de-activated too early
- Intermittent instead of steady, e.g.:
 - Chatter or flutter
 - Pulse; spike
 - Impairment is erratic
- Interferes with another action, e.g.:
 - Deprives access to needed resource, e.g.
 - "Babbling idiot"
 - Locking up & not releasing resource
 - Corrupts needed information
- Byzantine behavior

HA is Part of Safety Analysis

10 CFR 52.47(a), "...presents the design bases

10 CFR 52.47(a)(2), "...analysis...performance requirements, the bases ... the description shall be sufficient to permit understanding of the system designs and their relationship to the safety evaluations ..."

Derived requirements & constraints

Trend Scenario 1/2: connections across different-grade elements

Trend Scenario 2/2: connections across redundant divisions

Current State & Trends

[RIL-1001; RIL-1002; NUREG/IA-0254; EPRI]

NRC's technical basis eroded

10

Motivation for RIL-1101

User need Technical basis to review HA of a digital safety system •Support mPower DSRS Chapter 7 Appendix A •Support reviewer in judgment

Protecting People and the Environment

RIL-1101 Scope

Includes

- Contributory hazards rooted in systemic causes through system development activities
- Focused on evaluation of HA (rather than performance of HA)
- Digital Safety System AND
 - Any system or element interfacing with or affecting digital safety system
 - Any correct timely performance of a safety function is dependent

Excludes

Risk Quantification

U.S.NRC RIL-1101: Relationship with Plant HA

Protecting People and the Environment

Product-Process Dependency Over Lifecycle

Protecting People and the Environment

Focus: Licensing Basis for new reactors

Protecting People and the Environment

HA Task	Input	Output	
T1: Generate Baseline HA Plan	 Concept Requirements Premises & Assumptions Plat to validate assumptions 	I. Concept 2. Requirements	Baseline HA Plan
		Dependencies of Plan	
T2: Identify dependencies of HA plan	 Consequences of behavior shortfall Overall V&V Plan Mainstream Development Plan Corresponding information about or from entities in the dependency path 	 Evaluation report. 1. Deficiencies. 2. Changes needed. 3. Request for additional information (RAI). 	
T3 Evaluate other plans, following the		Rejection or Acceptance	
dependencies identified above. T3.1. Coordinate information exchanges with HA activities		Revision to HA Plan, as needed	
T4. Understand HA-relevant characteristics of the object to be analyzed	Items above + 9. Other requirements allocated to the object. 10 .Non-safety related constraints on the object. 11. Relationship with NPP-wide I&C architecture. 12. Distribution of responsibilities across organizational units/interfaces. 13. Provisions for information exchange across organizational units/interfaces. 14. Lifecycle models; processes; resources; information exchange interfaces. 15. Identification of reused objects and	 Revision to HA plan. Addition to hazard log Change needed; RAI 	
	conditions of use. 16. Explicit record of dependencies.	19	

HA Task	Input	Output	
T5. Analyze object for	Items above + Information specific to object of analysis	1. Addition to Hazard log	
(contributory) hazards.		2. Changes Needed	
		3. Rejection / Acceptance	
		4. Revision to HA Plan	
		5. RAI	
T6. Integrate analyses from lower levels in the integration hierarchy and contribution paths up to the top-level analysis.	Items above + information needed about inter-object dependencies for overall system HA	As in T5.	
T7. Analyze change proposal (e.g., hazard control proposal).	Change proposal, including information on which it depends (e.g, items listed above).	As in T5.	

- ID Description
- T1 Generate Baseline HA Plan
- T2 Identify dependencies of HA plan
- T3 Evaluate other plans on which HA plan depends. Co-ordinate information exchanges.
- T4 Understand HA-relevant characteristics of the object to be analyzed
- T5 Analyze object for hazards \leftarrow contributors / causes
- T6 Integrate analyses from lower levels in the integration hierarchy and contribution paths up to the top-level analysis
- T7 Analyze change proposal (e.g., for hazard control).

HA planning tasks (T1 – T3)

Inputs

- 1. Concept
- 2. Requirements
- 3. Premises & Assumptions

- 4. Plan to validate assumptions
- 5. Consequences of behavior shortfall
- 6. Overall V&V Plan
- 7. Mainstream Development Plan
- Corresponding information (items 1-7) about or from other objects in the dependency path

Outputs

Baseline HA Plan

Dependencies of Plan

Evaluation report.

- 1. Deficiencies.
- 2. Changes needed.
- 3. Request for additional information (RAI).

Rejection or Acceptance

Revision to HA Plan, as needed

HA task T4: Understand HA-relevant characteristics of the object to be analyzed

Inputs

- 1. Input items identified for tasks T1-T3
- 2. Other requirements allocated to the object
- 3. Non-safety related constraints on the object.
- 4. Relationship with NPP-wide I&C architecture.
- 5. Distribution of responsibilities across organizational units.
- 6. Provisions for information exchange across them.
- 7. Lifecycle models; processes; resources; information exchange interfaces.
- 8. Identification of reused objects; Their conditions of use.
- 9. Explicit record of dependencies.
- 10. Prior HA results, if any

Outputs

Revision to HA Plan Addition to hazard log Change needed; RAI

- Knowledge available in technical literature
 - Over 150 public / non-public articles / reports
 {journals, conferences, technical meetings, and technical orgs}.
- Knowledge acquired from respective experts
 - Comments unresolved in RIL-1101 \rightarrow Candidates for future work

Factors Affecting Quality of HA

Some Surveyed HA Techniques (1/2)

HA Technique	Salient Feature
Hazard and operability studies (HAZOP)	 Concept of using teamwork, aided by HAZOP process expert. Systematizing enquiry through key words. Systematizing understanding effects through understanding the associated deviations.
Fault Tree Analysis (FTA)	Representation and understanding of fault propagation paths, when the paths are branches of a tree.
Design Failure Mode and Effects Analysis D-FMEA	Representation of faulted behavior of a hardware component for understanding its effect, without requiring knowledge of its internals.
Functional Failure Mode and Effects Analysis	 Understanding effect of unwanted behavior of a function of the system, without requiring knowledge of its internals. Useful in concept phase.
Cause Consequence Analysis	Concept of using causality model to understand fault propagation paths.
Hazard Analysis & Critical Control Points	Concept of focusing on critical process variables that affect the outcome.
Software hazard analysis and resolution	Adaptation of HAZOP to software, through customization of the key words.

Some Surveyed HA Techniques (2/2)

HA Technique	Salient Feature
Fault propagation and transformation network/calculus FPTC	Representation and analysis of fault propagation, when the faults are transformed during propagation, and when there are feedback paths, supporting mechanized traversal and reasoning.
Dynamic Flowgraph Method DFM	 Behavior modeling of the system in the finite state machine paradigm facilitates or enables: Mathematical underpinning. Analysis of its interactions with environment. Analysis of dynamic behavior across its elements. Mechanized traversal. Mechanized reasoning, esp. if directed cyclic graph.
System-Theoretic Process Approach STPA	 Applicable at concept phase (without a finished design). Applicable to understanding of organization-culture systems.

Quality-levels of Input in Phase Work Products (1/3)

ID	Work Product of Lifecycle Phase	Common Practice	State of the Practice	State of the Art
1	Requirements from next higher level of integration, e.g. from NPP-level safety analysis	Textual narrative. No configuration- controlled vocabulary. "Flat list"	Restricted natural language with defined vocabulary and structure across elements of a statement.	Use case scenarios
		organization (i.e., no explicit relationship across requirements is identified).	SpecTRM-RL	Framework for specification & analysis
			Requirements engineering support in Naval Research Labs (NRL). Tables (Darlington) 4-variable Models to support mechanized reasoning.	
2	Plans {Safety plan; V&V plan; HA plan}	Low level of detail; relatively late in the lifecycle.	V&V plan Safety plan	Integrated safety and security plan.

Quality-levels of Input in Phase Work Products (2/3)

ID	Work Product of Lifecycle Phase	Common Practice	State of the Practice	State of the Art
3	Concept	Combination of (a) block diagram without semantics on the symbols and (b) textual narrative	Models to support mechanized reasoning. SysML. AADL - Extensions	META
4	REQuirements of digital system	See row 1	See row 1	See row 1
5	ARCHitecture of digital system	See row 3	See row 3	META
6	Requirements for software	See row 1		See row 1
7	Architecture for software	See row 3	See row 3. MASCOT AADL	META

Quality-levels of Input in Phase Work Products (3/3)

Row ID	Work Product of Lifecycle Phase	Common Practice	State of the Practice	State of the Art
8	Detailed design of software	For application logic: Function block diagram. For platform software: Combination of (a) block diagram without semantics on the symbols and (b) textual narrative.	SPARK	META Refinement from architectural specifications
9	Implementation of software (code)	For platform software, including communication protocols: C programming language + processor-specific assembler language	Concept of using safe subset of an implementation language: MISRA C Language for programming FPGAs	Auto-generation from detailed design.

Some ongoing work; issues

- Catalog(s) of contributors?
- HA example for FPGA environment.
- Competence.
- "Quality of Safety" Requirements.
- Refinement. "Integrate-then-build."
- Composition. Compositionality.
- Completeness issue ... (open-ended) ...

Collaborative R&D Potential

- NRC's "long term" research projects (LTRP)
 - Extent of automation support for efficiency?
 - Automation support in HA activities?
 - Automation support in specification of logic
 - Automated code generation
 - Automated proof generation
- USA-Canada collaboration
- OECD/NEA: Broader international collaboration
- Learning from operating experience

Back-up slides

Types of Dependencies: Examples

- Function
- Control flow
- Data; information
- Resource sharing or constraint
- Conflicting goals or losses of concern
- States or conditions in the environment
 - Controlled processes
 - Supporting physical processes
- Concept
- Some unintended, unrecognized form of coupling.

Functional dependency Example: System Architecture Dimension

Dependency on a Process Activity

- ACRS Advisory Committee for Reactors and Safeguards
- CFR Code of Federal Regulations
- DI&C Digital Instrumentation and Control
- DSRS Design Specific Review Standard
- ESFASEngineered Safety Features
 Actuation System
- EPRI Electrical Power Research Institute
- HA Hazard Analysis
- **I&C** Instrumentation and Control
- I/O Input/Output
- **INPO** Institute of Nuclear Power Operations
- **ITAAC** Inspections, Tests, Analyses, and Acceptance Criteria
- NPP Nuclear Power Plant

Acronyms

- NRC Nuclear Regulatory Commission
- NRO NRC Office of New Reactors
- PWR Pressurized Water Reactor
- R&D Research and Development
- RAI Request for Additional Information
- RES NRC Office of Nuclear Regulatory Research
- RG: Regulatory Guides
- **RIL** Research Information Letter
- **RPS** Reactor Protection System
- SAR Safety Analysis Report
- SMR Small Modular Reactor
- SRP Standard Review Plan
- V&V Verification and Validation