Evaluating Mail-Based Security for Electoral Processes Using Attack Trees

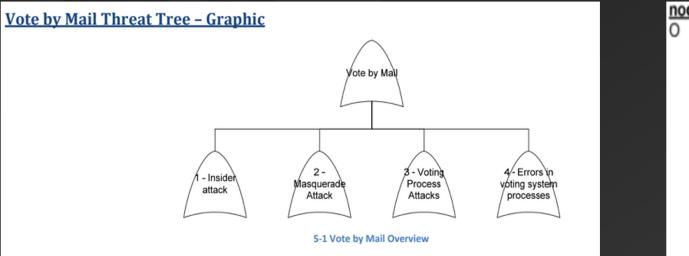
Natalie M. Scala, Paul Goethals, Josh Dehlinger, Yeabsira Mezgebe, Betelhem Jilcha, Isabella Bloomquist HotSoS Virtual Symposium | April 2022

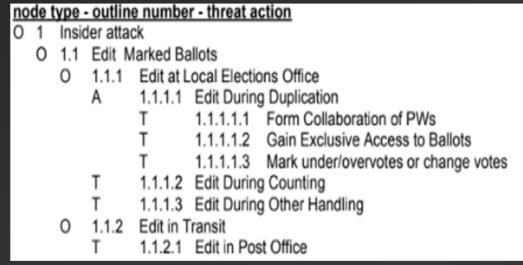
Supply Chain Management

Why We Are Here

- Interference and attacks on U.S. voting systems
 - DHS (2017): 21 states target of attacks to voting systems during the 2016 Presidential Election
 - Senate Intel Committee (2019): Election systems in all 50 states targeted in 2016
 - Robert S. Mueller, III (2019): Interference ongoing
- DHS (2017): Election infrastructure is critical infrastructure
 - Voting systems, storage of ballots and equipment, associated infrastructure
 - Government Facilities sector

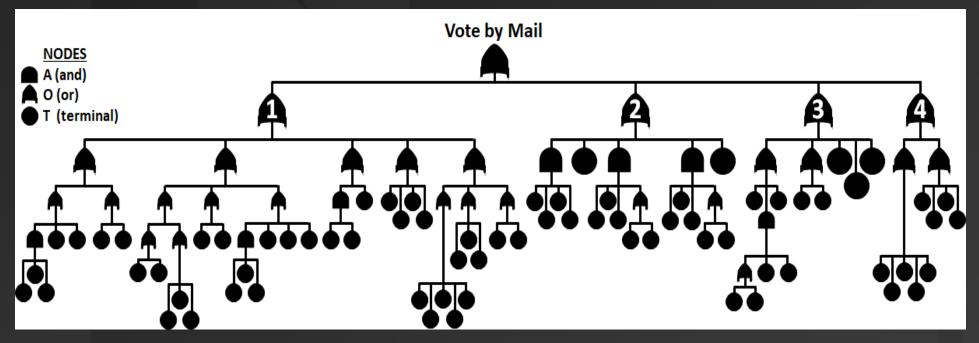
What about COVID-19?


- Crowding, lines, sick poll workers were problems
- Poll workers dropped out
- Constant state of flux, plans changing, shifts in process
 - 40% of states had process change in primary
 - 47 states continued with expanded mail for General Election
- Need access in place
 - Safe, socially distant methods of voting
- Attacks on legitimacy of mail votes
- Mix of mail with in-person voting adds complexity
 - Harder for adversary to infiltrate, less impact or value



How Can Mail Voting Be Targeted?

- Elections Assistance Commission (2009) attack tree data
- Attack tree is inventory of risks
 - Does not identify strength or likelihood
- Decompose complex actions into hierarchical levels
- Graphic representation of security problem
- Much has changed
 - 5 states fully or mostly mail voting
 - COVID-19
 - Adaptive adversary


Vote by Mail Attack Tree (EAC, 2009) TOWSON UNIVERSITY. Supply Chain Management

- Insider threats, external threats, voter error
- Hierarchy consists of *or* (O), *and* (A), *terminal* (T) nodes

Vote by Mail Attack Tree (EAC, 2009) TOWSON Management

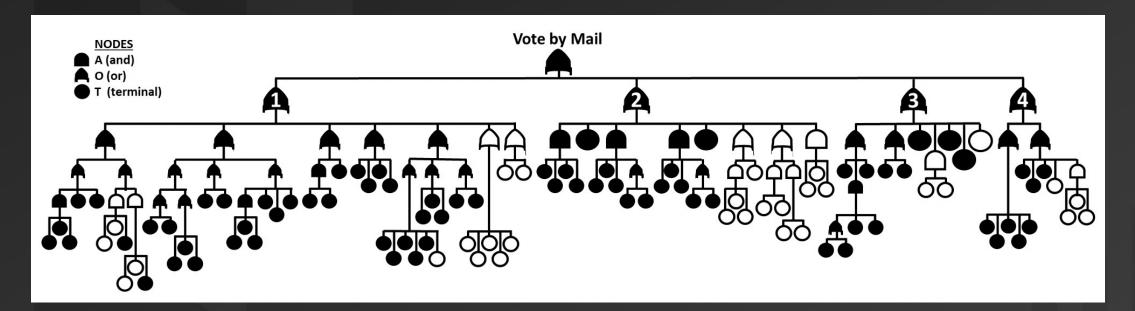
- Threat scenarios
 - Insider = 32
 - External = 16
 - Voter error = 9
 - Total = 57

Investigating Attack Tree Revisions

Needs

- Pandemic implications
- Threats to critical infrastructure
- Adaptive adversary

Validation


- Boards of Elections
 - Maryland counties

Sources of data

- Mainstream, non-partisan news articles
 - January through August 2020
- Bipartisan or non-political think tanks
- Academic centers
- Voter instruction sheets
- State-created documentation
- Price, et al. (2019)
- Locraft, et al. (2019)
- Scala, et al. (2020) & modules
- Poll worker training manuals

Updated Attack Tree

- 30 new threats
- Threat scenarios
 - Insider = 40
 - External = 23
 - Voter error = 10

What are the New Threats?

Node	Vulnerability	Branch
X ₇₃	Form collaboration with mail worker and acquire access	Insider
X 74	Break into post office	Insider
X ₇₅	Form collaboration with mail worker and acquire access	Insider
X ₇₆	Break into intermediate mail room	Insider
X ₇₇	Manipulate return envelope	Insider
X ₇₈	Misallocate polling or drop-box locations	Insider
X 79	Provide regional mail-in voting misinformation	Insider
X ₈₀	Hinder or suppress regional postal services	Insider
X ₈₁	System outage	Insider
X ₈₂	Name deliberately misspelled on ballot	Insider
X ₈₃	Paper ballot scanner hacked	Insider
X 84	Vote denied or altered	Insider
X ₈₅	Identify target	External
X ₈₆	Acquire access to drop box	External
X ₈₇	Alter marks and return their ballots	External

Node	Vulnerability	Branch					
X ₈₈	Destroy drop box	External					
X ₈₉	Gain exclusive access to ballot storage	External					
X 90	Alter marks and return to storage						
X_{91}	Gain exclusive access to ballot storage	External					
X ₉₂	Steal/destroy ballots	External					
X ₉₃	Steal blank ballot from mailbox	External					
X 94	Mark and return their ballot	External					
X 95	Defeat signature check	External					
X 96	Paper ballot scanner hacked	External					
X 97	Vote denied or altered	External					
X ₉₈	Invalid ID card attack	External					
X ₉₉	Error in instructions	Voter error					
X ₁₀₀	Unclear assistance instructions when not required	Voter error					
X ₁₀₁	Ballot says ID required when not required	Voter error					
X ₁₀₂	Expired Voter ID	Voter error					

Evaluation Measure

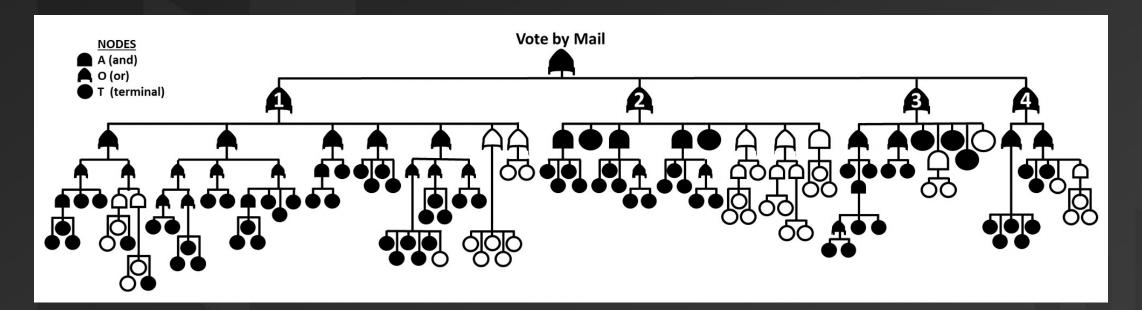
- Strength or likelihood of threat
- Each terminal node assessed for utility on three dimensions
 - Attack cost (AC) u_1
 - Technical difficulty (TD) u_2
 - Discovering difficulty (DD) u_3
- Delphi Method

• Criteria adapted from Du and Zhu (2013)

	Attack Cost (AC)	Techr	nical Difficulty (TD)	Discovering Difficulty (DD)		
Grade	Standard	Grade	Standard	Grade	Standard	
5	Severe consequences likely	5	Extremely difficult	1	Extremely difficult	
4	High consequences likely	4	Difficult	2	Difficult	
3	Moderate consequences likely	3	Moderate	3	Moderate	
2	Mild consequences likely	2	Simple	4	Simple	
1	Little to no consequences likely	1	Very simple	5	Very simple	

Calculating Relative Likelihood

• Relative likelihood for each terminal node X_j :


 $P(X_j) = w_1 u_{1j} + w_2 u_{2j} + w_3 u_{3j}$

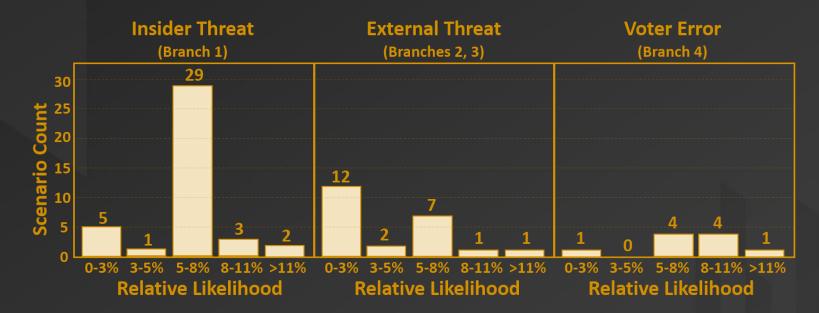
- $j \in \{1, 2, ..., n\}$, *n* terminal nodes
- $w_k, k \in \{1, 2, 3\}$, weight assigned to utility function k; $\sum w_k = 1$
 - $w_k = \frac{1}{3} \forall k$
- $u \in [0, 1]$, using scale factor (0.2) to convert ordinal scales

Terminal Node	AC	TD	DD	Relative Likelihood	Terminal Node	AC	TD	DD	Relative Likelihood
T 1.1.1.1 (X ₁)	4	2	2	0.08	T 2.1.3 (X ₄₀)	5	2	3	0.07
T 1.1.1.1.2 (X ₂)	4	3	2	0.07	T 2.1.4 (X ₄₁)	4	2	1	0.12
T 1.1.1.1.3 (X ₃)	3	4	2	0.07	T 2.2 (X ₄₂)	5	2	2	0.08
T 1.1.1.2 (X ₄)	5	3	3	0.06	T 2.3.1 (X ₄₃)	4	3	3	0.06
T 1.1.1.3 (X ₅)	3	4	3	0.06	T 2.3.2 (X ₄₄)	4	2	3	0.07

What about Scenarios?

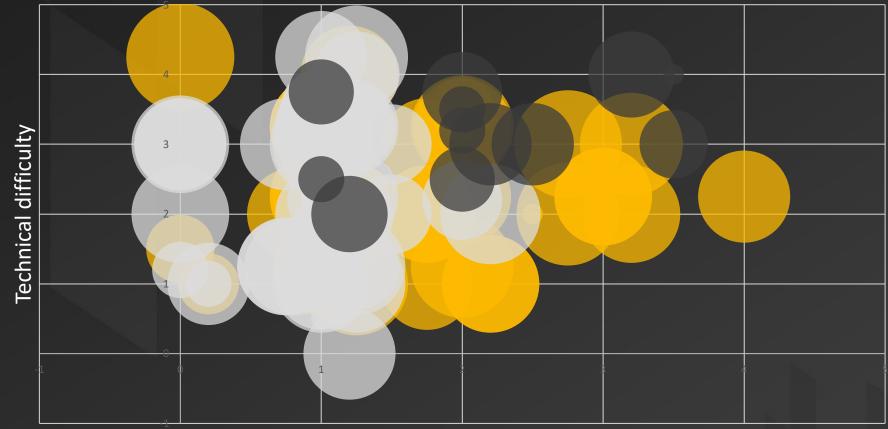
- Threat scenarios
 - Insider = 40
 - External = 23
 - Voter error = 10
 - Total = 73

Relative Likelihood for Scenarios


- For an attack scenario $S_i = (X_{i1}, X_{i2}, \dots, X_{iN})$
 - AND structure: $P(S_i) = P(X_{i1})P(X_{i2}) \dots P(X_{iN})$
 - OR structure: $P(S_i) = P(X_{i1})$
- Least likely: High cost, difficult to pursue, easy to discover

Attack Sequence	Leaf Node(s)	Relative Likelihood	Attack Sequence	Leaf Node(s)	Relative Likelihood
S ₁	X ₁ , X ₂ , X ₃	0.0004	S ₃₈	X ₈₂	0.0600
S ₂	X ₄	0.0600	S ₃₉	X ₈₃	0.0600
S ₃	X 5	0.0600	S ₄₀	X ₈₄	0.0700
S ₄	X ₇₃ , X ₇₄ , X ₆	0.0002	S ₄₁	X ₃₈ , X ₃₉ , X ₄₀ , X ₄₁	0.0000

Scenario Likelihood



- Insider: Majority of scenarios
- External: Very low relative likelihood
 - External actors may not be interested or incentivized
- Voter error: Only 13.7% of total scenarios

Threat Impact on Mail Voting

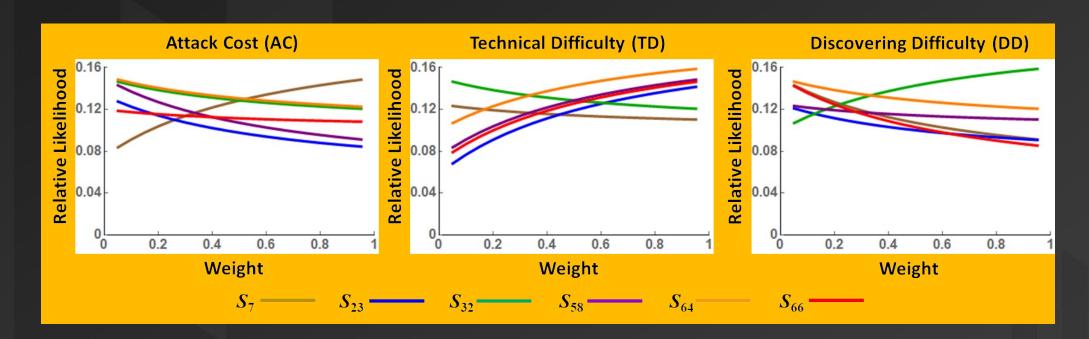
Attack cost

- Considering attack cost, technical difficulty, discovering difficulty
- Yellow = insider threats, white = external threats, black = voter error threats

Threats of Most Concern

Scenario		Threat	Relative Likelihood	Branch
S ₇	X ₉	Errant failed signature	0.12	Insider
S ₁₂	X ₁₄	Accidental loss	0.10	Insider
S ₂₃	X ₂₈	Fail to stuff envelope	0.11	Insider
S ₃₂	X ₃₆	Lost in destination mailroom	0.13	Insider
S ₄₇	X ₅₃	Malicious "messenger ballots"	0.10	External
S ₅₈	X ₆₁	Debate and vote parties	0.12	External
S ₆₄	X 65	Failure to sign correctly	0.13	Voter Error
S ₆₆	Х ₆₇	Failure to bundle correctly	0.11	Voter Error

- All scenarios included in EAC (2009) attack tree
- No new threats identify as high concern
- Quick move to mail-based voting due to COVID-19 does not necessarily make the process less safe
- Threats in bold are most likely for branch



Sensitivity Analysis

- All utility functions equally weighted $w_i = 1/3$, i = 1, 2, 3
- What if the weights changed?
 - Evolving priorities of election officials
 - Information assurance considerations
 - Sophistication of actors
- How would relative likelihood change?
- Would that impact or change the threats of most concern?

Sensitivity Analysis

- Minor sensitivity in results
- Election officials need to consider mitigations for all threats of most concern
- Most scenarios remained below 0.10 relative likelihood

Conclusions

- First to consider likelihood of threat
- Updates only known attack tree for mail voting
- Majority of threat scenarios are tied to insider actions
- Extends into future as mail voting will continue to be used
 - Mail-based voting not as attractive for the adversary
 - Increases voter access
- Greater awareness of where vulnerabilities may exist and relative likelihood
 - Enable elections officials to apply security measures more effectively and efficiently
- Paper *Risk Analysis:* onlinelibrary.wiley.com/doi/10.1111/risa.13876
- Newsweek, AAAS, Yahoo Finance, Tucson Sentinel
 - tinyurl.com/2p98dbbn tinyurl.com/2p9xftc4 tinyurl.com/2p83bxbd

Questions?

Dr. Natalie M. Scala Email: nscala@towson.edu Web: www.drnataliescala.com

Dr. Paul L. Goethals Email: paul.goethals@westpoint.edu

Dr. Josh Dehlinger Email: jdehlinger@towson.edu **Empowering Secure Elections**

- tinyurl.com/ScalaEtAl2021
- tinyurl.com/ScalaEtAl2020
- tinyurl.com/PriceEtAl2019
- tinyurl.com/LocraftEtAl2019
- drnataliescala.com/projects
- drnataliescala.com/media