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Android & Security

• There is a powerful need for mobile devices that allow users to
run a diverse array of apps while keeping confidential
information secure.

• In recent times the Android mobile platform has rapidly grown
in popularity, but there have been many security problems.

• e.g., jail-breaking, permission escalation, trojan apps.

• “Mobile is the new platform. Mobile is a very intimate
platform. It’s where the attackers are going to go.” [Schneier]
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Security Evaluation in the App Life-Cycle

The security of Android apps may be evaluated:

• by the developer (during coding)
• . . . but more than 50% of apps include 3rd-party libraries, some

of which download and run code from remote servers [NCSU]

• by the marketplace owner (at release time)
• . . . but traditional app evaluation can’t keep up without

automatic tool support

• by the user (at installation time)
• . . . but “given a choice between dancing pigs and security,

users will pick dancing pigs every time” [Felten & McGraw]

• by anti-virus software on the device (at run-time)
• . . . but by then it’s too late

And all of these evaluations are restricted to individual apps.
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Android Security Layers

The security of an Android device processing
confidential data breaks down into three cate-
gories:

1 Platform: Apps cannot bypass the
platform security mechanisms.

2 App: Apps contain no exploitable security
vulnerabilities (e.g., by scanning their
source code using static analysis).

3 Inter-app: App communications satisfy
the security policy (e.g., all information
flows from red apps to black apps are
mediated by the guard app G ).

This talk is focused on inter-app security.
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Built-In Android Inter-App Security

• The problem is that the Android security model based on
permissions does not provide sufficient protection against
inter-app collusions.

• Example: We demonstrated this by implementing a simple
pair of apps:

1 App A requires permission to read your contact information
and also requires permission P.

2 App B declares permission P and uses it to protect an
inter-app capability to publish information to the internet.

• Apps A & B are individually secure, but collectively insecure.

• Also: A user installing apps A & B in this order will not even
be told of the existence of permission P.
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FUSE Project Vision

• The FUSE project is an effort funded by the DARPA
TransApps program to defend against data exfiltration by
multiple colluding apps.

• Galois is developing the FUSE tool to carry out an inter-app
security analysis and reveal app collusions on the marketplace.

• The marketplace contains every app available, and app
collusions can be discovered even if the vulnerable collection
has never been installed on a device.

• Dedicated marketplace servers can perform the analysis,
rather than repeating work on limited-power mobile devices.
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Adding an App to the Marketplace

• When adding an app to the marketplace, we carry out the
following analysis to compute its inter-app signature:

1 Extract information from the app package manifest.
2 Supplement this by using automatic static analysis techniques

to carry out a white-box analysis of the app code.
3 Derive the possible information flows from app sources to sinks

(supported by control flows from app entry points).

• Note that the inter-app signature analysis is compositional.
• i.e., it only analyzes one app at a time.
• Compositional analyses have better scalability properties.

• Add the inter-app signature into a marketplace database.
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Inter-App Security Analysis

• Example Use-Case 1: Data-mining the inter-app signatures.
• Constantly scan the marketplace database for insecure

information flows supported by colluding apps.
• Success Metric: Discover a small set of colluding apps in a

large collection of benign apps.

• Example Use-Case 2: Device provisioning check.
• Perform a deeper inter-app security analysis on the set of apps

selected for installation on a device.
• Success Metric: Detect subtle inter-app collusions within a

small set of apps.
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Feasibility Study

To assess the feasibility of the FUSE project vision, we carried out
a study to answer the following two questions:

1 Is the Android security model and packaging of apps
amenable to an inter-app security analysis?

2 If so, can the analysis scale up to an entire marketplace?

In this talk we present the results of this feasibility study.
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Background: Android Inter-App Communication

• Android apps are made of components.
• Activities provide a user interface to an app.
• Services perform an action in the background.
• Broadcast receivers listen for messages from other apps.
• Content providers store potentially-shared data.

• Components communicate using intents, composed of:
• an optional action (e.g., EDIT),
• an optional target component (e.g., a specific editor),
• and some optional meta-data (e.g., a file name).

c© 2012 Galois, Inc. All Rights Reserved.



Background: Android Security Model

• App components are annotated with intent filters that
describe what intents they can respond to.

• The Android security model allows apps to protect critical
components by specifying a permission that calling apps are
required to hold.

• The app components, permissions and intent filters are
specified in the package manifest, which the user must
approve at installation time.
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Feasibility Study: Analyzing App Packages

• Most of the relevant information for an inter-app security
analysis is readily available in the package manifest.

• Components, permissions and intent filters are present.
• Intent calls are missing.

• The FUSE project vision relies on a capability to
automatically extract security-relevant information directly
from app packages.

• The absence of intent calls from package manifests offered an
opportunity to test the feasibility of this.

• Feasibility Test: Is it possible to automatically extract intent
call information from an app package?
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Inferring Inter-App Communication

• All inter-app communication occurs in three steps:

1 Create an intent object.
2 Set the action, component or meta-data fields of the intent.
3 Call one of a small set of app communication methods

(startActivity, startService, etc.)

• We can identify all occurrences of these steps by inspecting
the bytecode in the app package.

• No need for the app source code.
• No need to trust the compiler.

• Standard static analysis techniques can identify object
creation, field update and method calls.
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The FUSE App Analysis Tool

• To support the feasibility study we developed the FUSE tool to
compute conservative over-approximations of app intent calls.

• A conservative over-approximation is appropriate for an
inter-app security analysis.

• No False Negatives: If an intent call is possible, the FUSE
tool will identify it.

• Some False Positives: The FUSE tool may identify intent
calls that will never be executed.

• Note: Computing the precise set of possible intent calls is an
undecidable problem.
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External Tools

1 The FUSE tool uses the open source dex2jar tool to convert
the Dalvik bytecode in the app package to equivalent Java
bytecode.

• Pro: This allows us to reuse Java infrastructure (e.g., the
bytecode parser).

• Con: dex2jar sometimes generates semantically ill-formed
Java bytecode (we have filed a bug report).

2 The FUSE tool also uses the open source apktool to extract
the manifest from the app package.
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Core Static Analysis

The core of the FUSE tool is a static analysis of Java bytecode
that operates as follows:

1 Extract information from the bytecode.
• Identify instructions that create new intent objects.
• Identify instructions that set intent action or component fields.
• Identify app communication method calls (e.g., startService).

2 For each method of an app component:
• If it contains one instruction to create an intent object and one

app communication method call then one intent call is
generated for the component.

• If it contains multiple create instructions or communication
calls then we generate intent calls for all possible
combinations: imprecise but conservative.

• The precision can be improved with well-known techniques.
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FUSE Tool Use

• The FUSE tool computes the intent calls from an app
package as follows:

1 The dex2jar tool converts the Dalvik bytecode in the app
package to a Java JAR file.

2 The apktool extracts the manifest from the app package.
3 The core static analysis extracts the intent calls from the Java

bytecode in the JAR file.
4 The intent calls are added to the package manifest, and the

result is output in extended package manifest format.

• The extended package manifest format is an extension of the
XML standard format for Android package manifests which
includes the possible intent calls for each app component.
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Extended Package Manifests

• The intent-filter tag already exists in manifest files,
describing the form of intents a component can receive.

• The intent-call tag is added by the FUSE tool, describing the
form of intents a component can issue.

Extended Package Manifest (Excerpt from a password safe)
<service android:name=".service.ServiceDispatchImpl">

<intent-call>

<action android:name="org.openintents.action.CRYPTO_LOGGED_OUT" />

</intent-call>

<intent-filter>

<action android:name=".safe.service.ServiceDispatchImpl" />

</intent-filter>

</service>

• The Android security model could be extended to enforce
intent calls in package manifests as it already does for intent
filters, making inter-app communication more explicit.
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Feasibility Study: Analyzing App Packages

• The static app analysis performed by the FUSE tool:
• works quickly on existing apps; and
• can be easily integrated with other tools.

• Feasibility Assessment: Android app packages can be
analyzed using well-understood static analysis techniques.
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Feasibility Study: Scaling to the Marketplace

• To test the scalability of the inter-app security analysis we
assembled a benchmark of 104 apps:

• 42 apps from the Android SDK R8 (Android 2.2);
• plus 62 open source apps hosted on code.google.com.

• The 104 apps consisted of:
• 920 components;
• 861 intent filters;
• plus 357 intent calls added by the FUSE tool.

• Feasibility Test: Is it possible to analyze the inter-app calls
in this benchmark set of apps?
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Inter-App Control Flow Implemented in SQL

• To support the feasibility study, we developed an inter-app
control flow analysis as a sequence of SQL statements:

1 Initialization: For each app, insert the information from the
extended package manifests.

2 Inter-App Component Calls: Create a database table
relating app components with matching intent calls and intent
filters (and also respecting permissions).

3 Inter-App Calls: Create a database table projecting the
inter-app component calls to the owning app, relating apps
that may call each other.
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Feasibility Study: Scaling Up To An Apps Marketplace

• We used the simple database engine SQLite (version 3.6.12)
to compute the inter-app control flow on our benchmark set
of 104 apps.

• The inter-app component call table resulted in 3,290 possible
intent calls between app components.

• The inter-app call table resulted in 1,152 possible intent calls
between apps.

• On a 2.53GHz MacBook Pro with 8Gb of RAM the
experiment completed within 10 seconds.

• Feasibility Assessment: Existing database technology gives
promising results for scaling up the inter-app security analysis.
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Viewing Inter-App Control Flow

The SQLite database containing all the inter-app control-flow data:

The highlighted row shows a possible intent call from the Android
browser to the contacts app.
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Visualizing Inter-App Control Flow

This is a directed graph view of the calls between the 62 open source

apps from code.google.com:
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Zooming in on Inter-App Control Flow

• Potential insecurities can be observed in the inter-app call graph.

• Example: A notepad app has access to both the password safe and
an SMS app:
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Feasibility Study Results

• We carried out a study to test the feasibility of the following
approach to inter-app security analysis:

1 Use static program analysis on individual apps to extract
inter-app signatures.

2 Query combinations of these signatures to reveal insecure
inter-app behavior.

• We demonstrated the feasibility of this method by
implementing an inter-app control-flow analysis on a
benchmark set of 100 apps:

1 The FUSE static analysis tool extracted the possible intent
calls from individual apps.

2 The intent calls and package manifest data were used to
populate a database, and SQL queries extracted possible
inter-app calls exercising dangerous permissions.
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Future Work

• We are currently extending the FUSE tool to perform
inter-app information flow and value analysis.

• Information flow analysis reveals threats to confidentiality and
integrity on mobile device data.

• Value analysis allows us to precisely define possible app
behavior (e.g., narrowing down the possible target URLs when
exercising an INTERNET permission).

• We are also developing a sample set of security policies that
constrain inter-app communication.

• The policy rules will be automatically compiled to queries over
the marketplace database of inter-app signatures.

• It is important to separate the policy from the checking tool to
ease maintainence and support deployment in new domains.
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Questions?

http://www.galois.com/

joe@galois.com
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