
1

Fiat Cryptography: A
Formally Verified Compiler
for Finite-Field Arithmetic

Adam Chlipala, MIT CSAIL
High Confidence Software and Systems Conference
May 2022

Joint work with:
Andres Erbsen, Jade Philipoom, Jason Gross, and Robert Sloan

2

Web Browsing with SSL

Public
Key /

Certificate

Private
Key

Browser

Web Server

Key exchange:
Establish a shared
secret

Symmetric
Key

Symmetric
Key

Digital signature:
Server proves it was
the one who helped
pick the shared secret

Symmetric crypto:
main communication
bytestream

3

About the First Two Stages (Public-Key
Crypto)

● Public-key stages only run once per session, but,
with many small HTTPS connections common in
practice, their performance is still important.

● Balancing correctness and performance is also
more challenging for the public-key algorithms.
–Primarily: big-integer modular arithmetic

4

But the experts know how to do all this, right?

Algorithms Prime #s


HW Arches


Labor-intensive adaptation, with each combination taking
significant expert effort.

5

We introduced Fiat Cryptography.

Library of generic
cryptographic
algorithms (functional
programs)

2255 - 19

2256-2224+2192+296-1

2384 – 2128 – 296 + 232 – 1

Parameters

Specializing compiler

C

Go
Rust

Bedrock

Compiler

Processor

6

Wide Adoption

Source: https://andres.systems/fiat-crypto-adoption.html

Upshot: probably over 95% of
HTTPS connections by browsers
run our generated code today

https://andres.systems/fiat-crypto-adoption.html

7

Correct-by-Construction Cryptography

Abstract
security
property

“Knowledge of the secret key is
needed to produce a signature in
polynomial time.”

Mathematical
algorithm y2 = x3 – x + 1

protocol
verification

Low-level
code

implementation
synthesisspecialized assembly code

8

Correct-by-Construction Cryptography

Mathematical
algorithm point = (x, y)

High-level
modular
arithmetic

x = x
0
, x

1
, …, x

n

(mathematical integers)

classic verification
of functional programs

Low-level
code

compile-time code
specialization

compiler verificationspecialized low-level code
(assumes fixed set of integer sizes)

classic verification
of functional programs

Optimized
point format point = (x, y, z, t)

9

Generated Code
Squaring a number (64-bit)
 λ '(x7, x8, x6, x4, x2)%core,
 uint64_t x9 = x2 * 0x2;
 uint64_t x10 = x4 * 0x2;
 uint64_t x11 = x6 * 0x2 * 0x13;
 uint64_t x12 = x7 * 0x13;
 uint64_t x13 = x12 * 0x2;
 uint128_t x14 = (uint128_t) x2 * x2 + (uint128_t) x13 * x4 + (uint128_t) x11 * x8;
 uint128_t x15 = (uint128_t) x9 * x4 + (uint128_t) x13 * x6 + (uint128_t) x8 * (x8 * 0x13);
 uint128_t x16 = (uint128_t) x9 * x6 + (uint128_t) x4 * x4 + (uint128_t) x13 * x8;
 uint128_t x17 = (uint128_t) x9 * x8 + (uint128_t) x10 * x6 + (uint128_t) x7 * x12;
 uint128_t x18 = (uint128_t) x9 * x7 + (uint128_t) x10 * x8 + (uint128_t) x6 * x6;
 uint64_t x19 = (uint64_t) (x14 >> 0x33);
 uint64_t x20 = (uint64_t) x14 & 0x7ffffffffffff;
 uint128_t x21 = x19 + x15;
 uint64_t x22 = (uint64_t) (x21 >> 0x33);
 uint64_t x23 = (uint64_t) x21 & 0x7ffffffffffff;
 uint128_t x24 = x22 + x16;
 uint64_t x25 = (uint64_t) (x24 >> 0x33);
 uint64_t x26 = (uint64_t) x24 & 0x7ffffffffffff;
 uint128_t x27 = x25 + x17;
 uint64_t x28 = (uint64_t) (x27 >> 0x33);
 uint64_t x29 = (uint64_t) x27 & 0x7ffffffffffff;
 uint128_t x30 = x28 + x18;
 uint64_t x31 = (uint64_t) (x30 >> 0x33);
 uint64_t x32 = (uint64_t) x30 & 0x7ffffffffffff;
 uint64_t x33 = x20 + 0x13 * x31;
 uint64_t x34 = x33 >> 0x33;
 uint64_t x35 = x33 & 0x7ffffffffffff;
 uint64_t x36 = x34 + x23;
 uint64_t x37 = x36 >> 0x33;
 uint64_t x38 = x36 & 0x7ffffffffffff;
 return (Return x32, Return x29, x37 + x26, Return x38, Return x35))

Squaring a number (32-bit)
 λ '(x17, x18, x16, x14, x12, x10, x8, x6, x4, x2)%core,
 uint64_t x19 = (uint64_t) x2 * x2;
 uint64_t x20 = (uint64_t) (0x2 * x2) * x4;
 uint64_t x21 = 0x2 * ((uint64_t) x4 * x4 + (uint64_t) x2 * x6);
 uint64_t x22 = 0x2 * ((uint64_t) x4 * x6 + (uint64_t) x2 * x8);
 uint64_t x23 = (uint64_t) x6 * x6 + (uint64_t) (0x4 * x4) * x8 + (uint64_t) (0x2 * x2) * x10;
 uint64_t x24 = 0x2 * ((uint64_t) x6 * x8 + (uint64_t) x4 * x10 + (uint64_t) x2 * x12);
 uint64_t x25 = 0x2 * ((uint64_t) x8 * x8 + (uint64_t) x6 * x10 + (uint64_t) x2 * x14 + (uint64_t) (0x2 * x4) * x12);
 uint64_t x26 = 0x2 * ((uint64_t) x8 * x10 + (uint64_t) x6 * x12 + (uint64_t) x4 * x14 + (uint64_t) x2 * x16);
 uint64_t x27 = (uint64_t) x10 * x10 + 0x2 * ((uint64_t) x6 * x14 + (uint64_t) x2 * x18 + 0x2 * ((uint64_t) x4 * x16 + (uint64_t) x8 * x12));
 uint64_t x28 = 0x2 * ((uint64_t) x10 * x12 + (uint64_t) x8 * x14 + (uint64_t) x6 * x16 + (uint64_t) x4 * x18 + (uint64_t) x2 * x17);
 uint64_t x29 = 0x2 * ((uint64_t) x12 * x12 + (uint64_t) x10 * x14 + (uint64_t) x6 * x18 + 0x2 * ((uint64_t) x8 * x16 + (uint64_t) x4 * x17));
 uint64_t x30 = 0x2 * ((uint64_t) x12 * x14 + (uint64_t) x10 * x16 + (uint64_t) x8 * x18 + (uint64_t) x6 * x17);
 uint64_t x31 = (uint64_t) x14 * x14 + 0x2 * ((uint64_t) x10 * x18 + 0x2 * ((uint64_t) x12 * x16 + (uint64_t) x8 * x17));
 uint64_t x32 = 0x2 * ((uint64_t) x14 * x16 + (uint64_t) x12 * x18 + (uint64_t) x10 * x17);
 uint64_t x33 = 0x2 * ((uint64_t) x16 * x16 + (uint64_t) x14 * x18 + (uint64_t) (0x2 * x12) * x17);
 uint64_t x34 = 0x2 * ((uint64_t) x16 * x18 + (uint64_t) x14 * x17);
 uint64_t x35 = (uint64_t) x18 * x18 + (uint64_t) (0x4 * x16) * x17;
 uint64_t x36 = (uint64_t) (0x2 * x18) * x17;
 uint64_t x37 = (uint64_t) (0x2 * x17) * x17;
 uint64_t x38 = x27 + x37 << 0x4;
 uint64_t x39 = x38 + x37 << 0x1;
 uint64_t x40 = x39 + x37;
 uint64_t x41 = x26 + x36 << 0x4;
 uint64_t x42 = x41 + x36 << 0x1;
 uint64_t x43 = x42 + x36;
 uint64_t x44 = x25 + x35 << 0x4;
 uint64_t x45 = x44 + x35 << 0x1;
 uint64_t x46 = x45 + x35;
 uint64_t x47 = x24 + x34 << 0x4;
 uint64_t x48 = x47 + x34 << 0x1;
 uint64_t x49 = x48 + x34;
 uint64_t x50 = x23 + x33 << 0x4;
 uint64_t x51 = x50 + x33 << 0x1;
 uint64_t x52 = x51 + x33;
 uint64_t x53 = x22 + x32 << 0x4;
 uint64_t x54 = x53 + x32 << 0x1;
 uint64_t x55 = x54 + x32;
 uint64_t x56 = x21 + x31 << 0x4;
 uint64_t x57 = x56 + x31 << 0x1;
 uint64_t x58 = x57 + x31;
 uint64_t x59 = x20 + x30 << 0x4;
 uint64_t x60 = x59 + x30 << 0x1;
 uint64_t x61 = x60 + x30;
 uint64_t x62 = x19 + x29 << 0x4;
 uint64_t x63 = x62 + x29 << 0x1;
 uint64_t x64 = x63 + x29;
 uint64_t x65 = x64 >> 0x1a;
 uint32_t x66 = (uint32_t) x64 & 0x3ffffff;
 uint64_t x67 = x65 + x61;
 uint64_t x68 = x67 >> 0x19;
 uint32_t x69 = (uint32_t) x67 & 0x1ffffff;
 uint64_t x70 = x68 + x58;
 uint64_t x71 = x70 >> 0x1a;
 uint32_t x72 = (uint32_t) x70 & 0x3ffffff;
 uint64_t x73 = x71 + x55;
 uint64_t x74 = x73 >> 0x19;
 uint32_t x75 = (uint32_t) x73 & 0x1ffffff;
 uint64_t x76 = x74 + x52;
 uint64_t x77 = x76 >> 0x1a;
 uint32_t x78 = (uint32_t) x76 & 0x3ffffff;
 uint64_t x79 = x77 + x49;
 uint64_t x80 = x79 >> 0x19;
 uint32_t x81 = (uint32_t) x79 & 0x1ffffff;
 uint64_t x82 = x80 + x46;
 uint32_t x83 = (uint32_t) (x82 >> 0x1a);
 uint32_t x84 = (uint32_t) x82 & 0x3ffffff;
 uint64_t x85 = x83 + x43;
 uint32_t x86 = (uint32_t) (x85 >> 0x19);
 uint32_t x87 = (uint32_t) x85 & 0x1ffffff;
 uint64_t x88 = x86 + x40;
 uint32_t x89 = (uint32_t) (x88 >> 0x1a);
 uint32_t x90 = (uint32_t) x88 & 0x3ffffff;
 uint64_t x91 = x89 + x28;
 uint32_t x92 = (uint32_t) (x91 >> 0x19);
 uint32_t x93 = (uint32_t) x91 & 0x1ffffff;
 uint64_t x94 = x66 + (uint64_t) 0x13 * x92;
 uint32_t x95 = (uint32_t) (x94 >> 0x1a);
 uint32_t x96 = (uint32_t) x94 & 0x3ffffff;
 uint32_t x97 = x95 + x69;
 uint32_t x98 = x97 >> 0x19;
 uint32_t x99 = x97 & 0x1ffffff;
 return (Return x93, Return x90, Return x87, Return x84, Return x81, Return x78, Return x75, x98 + x72, Return x99, Return x96))

10

Surprising (?) Fact About Modular
Arithmetic

Different prime moduli have dramatically different
efficiency with best code on commodity processors.

2255 – 19 is a popular choice for relatively easy implementation.
General pattern: 2k – c, for c << 2k. (Called pseudo-Mersenne.)
Example of a fast operation: modular reduction

t = x + 2ky (mod 2k – c)
 = x + (2k – c + c)y (mod 2k – c)
 = x + (2k – c)y + cy (mod 2k – c)

= x + cy (mod 2k – c)

too big to fit below the modulus!

11

Representing Numbers mod 2255 - 19

t
= t

0
 t

1
 t

2
 t

3
 t

4
 t

5
 t

6
 t

7

= (t
0
 + 264 t

1
 + …) + 2256 (t

4
 + 264 t

5
 + ...)

result of multiplying two numbers in the prime field, so 510 bits wide

each “digit” fits in 64-bit register

darn, that's 2256, not 2255, so we can't use that reduction trick!

However.... 51 × 10 = 510.
t = (t

0
 + 251 t

1
 + …) + 2255 (t

5
 + 251 t

6
 + ...)

champion rep. on 64-bit processors
(note: not using full bitwidth!)Also.... 25.5 × 2 = 51.

t = s
0
 + 225.5 s

1
 + 22 × 25.5 s

2
 + 23 × 25.5 s

3
 + …

champion rep. on 32-bit processors
(note: nonuniform bitwidths!)

t = s
0
 + 226 s

1
 + 251 s

2
 + 277 s

3
 + ...

12

The Basic Idea

Our
Library

Choice of base-system representation

Fast C code

proof

Choice of base-system representation

Generic Operations
(functional programs)

Specialized Operations
(flatter functional programs)

partial evaluation

Low-Level Code

bounds inference
other compiler opts.

13

Example: Multiplication (for modulus 2127 - 1)

s = s
0
 + 243 s

1
 + 285 s

2

t = t
0
 + 243 t

1
 + 285 t

2

s  t = 1  s
0
t

0
+ 243  s

0
t

1
+ 285  s

0
t

2

+ 243  s
1
t

0
+ 286  s

1
t

1
+ 2128  s

1
t

2

+ 285  s
2
t

0
+ 2128  s

2
t

1
+ 2170  s

2
t

2

s  t = u = u
0
 u

1
 u

2
 u

3
 u

4

u
0
 = s

0
t

0

u
1
 = s

0
t

1
 + s

1
t

0

u
2
 = s

0
t

2
 + 2s

1
t

1
 + s

2
t

0

u
3
 = 2s

1
t

2
 + 2s

2
t

1 u
4
 = s

2
t

2u = u
0
 + 243 u

1
 + 285 u

2
 + 2127 (u

3
 + 243 u

4
)

= (u
0
 + u

3
) + 243 (u

1
 + u

4
) + 285 u

2

14

Time for Some Partial Evaluation

Multiply

Digit
Bitwidths

s Digits t Digits

s × t Digits

Multiply

Digit
Bitwidths

s Digitst Digits

s × t Digits

Specialize

Multiply

s Digitst Digits

s × t Digits

Reduce

In Coq:
just partially
applying a
curried function

In Coq:
just calling
a standard
term-reduction tactic

15

An Example
Definition w (i:nat) : Z := 2^Qceiling((25+1/2)*i).

Example base_25_5_mul (f g:tuple Z 10) :
 { fg : tuple Z 10 |
 (eval w fg) mod (2^255-19)
 = (eval w f * eval w g) mod (2^255-19) }.

(f0*g9+f1*g8+f2*g7+f3*g6+f4*g5+f5*g4+f6*g3+f7*g2+f8*g1+f9*g0,
 f0*g8+2*f1*g7+f2*g6+2*f3*g5+f4*g4+2*f5*g3+f6*g2+2*f7*g1+f8*g0+38*f9*g9,
 f0*g7+f1*g6+f2*g5+f3*g4+f4*g3+f5*g2+f6*g1+f7*g0+19*f8*g9+19*f9*g8,
 f0*g6+2*f1*g5+f2*g4+2*f3*g3+f4*g2+2*f5*g1+f6*g0+38*f7*g9+19*f8*g8+38*f9*g7,
 f0*g5+f1*g4+f2*g3+f3*g2+f4*g1+f5*g0+19*f6*g9+19*f7*g8+19*f8*g7+19*f9*g6,
 f0*g4+2*f1*g3+f2*g2+2*f3*g1+f4*g0+38*f5*g9+19*f6*g8+38*f7*g7+19*f8*g6+38*f9*g5,
 f0*g3+f1*g2+f2*g1+f3*g0+19*f4*g9+19*f5*g8+19*f6*g7+19*f7*g6+19*f8*g5+19*f9*g4,
 f0*g2+2*f1*g1+f2*g0+38*f3*g9+19*f4*g8+38*f5*g7+19*f6*g6+38*f7*g5+19*f8*g4+38*f9*g3,
 f0*g1+f1*g0+19*f2*g9+19*f3*g8+19*f4*g7+19*f5*g6+19*f6*g5+19*f7*g4+19*f8*g3+19*f9*g2,
 f0*g0+38*f1*g9+19*f2*g8+38*f3*g7+19*f4*g6+38*f5*g5+19*f6*g4+38*f7*g3+19*f8*g2+38*f9*g1)

16

Compiling to Low-Level Code
1 × (1 × 252 + (1 × x + 0)) + (1 × (1 × (-y) + 0) + 0)

reify to syntax tree

constant-fold

(252 + x) - y
flatten

let c = 252 + x in
let d = c – y in
d

infer bounds

Assume: 0 ≤ x, y ≤ 251 + 248

Deduce: 252 ≤ c ≤ 252 + 251 + 248

Deduce: 251 – 248 ≤ d ≤ 252 + 251 + 248

uint64_t c = 252 + x;
uint64_t d = c – y;
return d

17

Implementation and Experiments

● ~38 kloc in full library (including significant parts that
belong in stdlib)

● Very little code needed to instantiate to new prime moduli.
● In fact, we wrote a Python script (under 3000 lines) to

generate parameters automatically from prime numbers,
written suggestively, e.g. 2256 - 2224 + 2192 + 296 – 1.

● This script is outside the TCB, since any successful
compilation is guaranteed to implement correct arithmetic.

18

Q: Where do we get a lot of reasonable
moduli?

A: Scrape all prime numbers appearing in a popular mailing list.

We used the elliptic curves list at moderncrypto.org.
We found about 80 primes.

Only a few turned out to be terrible ideas posted by newbies.

19

Many-Primes Experiment

20

P256 Mixed Addition

21

Adoption?

Reason #1: General Paranoia

However, competitors based not on synthesis but verification
(like HACL*) bring the same* benefit.

* Our trusted code base is significantly smaller, but
practitioners don’t seem to be swayed too much by such things.

22

Adoption?

Reason #2: The “Dusty Deck” Problem

P-256:
64-bit C code

fiat-crypto

P-256:
64-bit C code

P-256:
32-bit C code

?

?

?

23

Adoption?

Reason #3: Proofs → Performance?!

Curve25519:
64-bit asm code

fiat-crypto
Curve25519:
64-bit C code

2X the speed!

24

Did Formal Methods Make a Big Difference?

Maybe yes:

E.g., decreasing our “time-to-
market” to build a reliable-
enough compiler

Cool; formal methods making
a difference in industry!

Maybe no:

Folks just wanted a new kind
of compiler

Cool; we managed to formally
verify a “production-quality”
compiler depending solely on
cheap student labor!

25

https://github.com/mit-plv/fiat-crypto

https://github.com/mit-plv/fiat-crypto

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

