Fiat Cryptography: A Formally Verified Compiler for Finite-Field Arithmetic

Adam Chlipala, MIT CSAIL High Confidence Software and Systems Conference May 2022

Joint work with: Andres Erbsen, Jade Philipoom, Jason Gross, and Robert Sloan

About the First Two Stages (Public-Key Crypto)

- Public-key stages only run once per session, but, with many small HTTPS connections common in practice, their performance is still important.
- . Balancing correctness and performance is also more challenging for the public-key algorithms.
	- –Primarily: **big-integer modular arithmetic**

Labor-intensive adaptation, with each combination taking significant expert effort.

We introduced Fiat Cryptography.

Wide Adoption

Web Browsers

Code generated by Fiat Cryptography is used broadly in include code from Fiat Cryptography and what fraction of

Upshot: probably over 95% of HTTPS connections by browsers run our generated code today

Source: <https://andres.systems/fiat-crypto-adoption.html>

Correct-by-Construction Cryptography

Generated Code

Squaring a number (64-bit)

λ '(x7, x8, x6, x4, x2)%core, uint64_t $x9 = x2 * 0x2$; uint64 t x10 = x4 * 0x2; uint64 t x11 = x6 * 0x2 * 0x13; uint64 t $x12 = x7 * 0x13$; uint64 t $x13 = x12 * 0x2$; uint128_t x14 = (uint128_t) x2 * x2 + (uint128_t) x13 * x4 + (uint128_t) x11 * x8; uint128_t x15 = (uint128_t) x9 * x4 + (uint128_t) x13 * x6 + (uint128_t) x8 * (x8 * 0x13); uint128_t x16 = (uint128_t) x9 * x6 + (uint128_t) x4 * x4 + (uint128_t) x13 * x8; uint128_t x17 = (uint128_t) x9 * x8 + (uint128_t) x10 * x6 + (uint128_t) x7 * x12; uint128 t x18 = (uint128 t) x9 * x7 + (uint128 t) x10 * x8 + (uint128 t) x6 * x6; uint64 t x19 = (uint64 t) (x14 >> 0x33); uint64 t x20 = (uint64 t) x14 & 0x7fffffffffffff; uint128 t x21 = x19 + x15; uint64 t x22 = (uint64 t) (x21 >> 0x33); uint64_t $x23 = (uint64_t) x21 & 0x7ffffffffffffff$; uint128 t $x24 = x22 + x16$; uint64_t $x25 = (uint64_t)$ $(x24 \gg 0x33)$; uint64 t x26 = (uint64 t) x24 & $0x7$ ffffffffffff; uint128 t x27 = x25 + x17; uint64_t $x28 = (uint64_t)$ $(x27 >> 0x33)$; uint64_t $x29 = (uint64_t) x27 & 0x7ffffffffffffff$; uint128 t $x30 = x28 + x18$; uint64_t $x31 = (uint64_t) (x30 >> 0x33);$ uint64 t x32 = (uint64 t) x30 & 0x7fffffffffffff; uint64_t $x33 = x20 + 0x13 * x31$; uint64_t $x34 = x33 >> 0x33$; uint64_t $x35 = x33$ & 0x7fffffffffffff; uint64 t x36 = x34 + x23; uint64 t x37 = x36 >> $0x33$; uint64 t $x38 = x36$ & 0x7ffffffffffffff; return (Return x32, Return x29, x37 + x26, Return x38, Return x35))

Squaring a number (32-bit)

λ '(x17, x18, x16, x14, x12, x10, x8, x6, x4, x2)%core, uint64_t x19 = (uint64_t) x2 * x2; uint64_t x20 = (uint64_t) (0x2 * x2) * x4; uint64_t x21 = 0x2 * ((uint64_t) x4 * x4 + (uint64_t) x2 * x6); uint64_t x22 = 0x2 * ((uint64_t) x4 * x6 + (uint64_t) x2 * x8); uint64_t x23 = (uint64_t) x8 * x8 + (uint64_t) (0x2 * x13 + (uint64_t) (0x2 * x12)
uint64_t x23 = 0x2 * ((uint64_t) x8 * x8 + (uint64_t) x4 * x18 + (uint64_t) x2 * x12);
uint64_t x25 = 0x2 * ((uint64_t) x8 * x3 + (uint64_t uint64_t x29 = 0x2 * ((uint64_t) x12 * x12 + (uint64_t) x10 * x14 + (uint64_t) x6 * x18 + 0x2 * ((uint64_t) x4 * x17));
uint64_t x30 = 0x2 * ((uint64_t) x12 * x14 + (uint64_t) x10 * x16 + (uint64_t) x8 * x18 + (uint64_t) x uint64_t x31 = (uint64_t) x14 * x14 + 0x2 * ((uint64_t) x10 * x18 + 0x2 * ((uint64_t) x12 * x16 + (uint64_t) x8 * x17));
uint64_t x32 = 0x2 * ((uint64_t) x14 * x16 + (uint64_t) x12 * x18 + (uint64_t) x10 * x17);
uint64_t x uint64_t x34 = 0x2 * ((uint64_t) x16 * x18 + (uint64_t) x14 * x17); uint64_t x35 = (uint64_t) x18 * x18 + (uint64_t) (0x4 * x16) * x17; uint64_t x36 = (uint64_t) (0x2 * x18) * x17; uint64_t x37 = (uint64_t) (0x2 * x17) * x17; uint64_t x38 = x27 + x37 << 0x4; uint64_t x39 = x38 + x37 << 0x1; uint64_t x40 = x39 + x37; uint64_t x41 = x26 + x36 << 0x4; uint64 t x42 = x41 + x36 << $0x1$ uint64_t x43 = x42 + x36; uint64_t x44 = x25 + x35 << 0x4; uint64_t x45 = x44 + x35 << 0x1; uint64_t x46 = x45 + x35; uint64_t x47 = x24 + x34 << 0x4; uint64 t x 48 = x 47 + x 34 << 0x1 uint64_t $x49 = x48 + x34$; uint64_t $x50 = x23 + x33 \ll 0x4$ uint64_t $x51 = x50 + x33 \le 0 \times 1$ uint64_t x52 = x51 + x33; uint64_t x53 = x22 + x32 << 0x4; uint64_t x54 = x53 + x32 << 0x1; uint64_t x55 = x54 + x32; uint64 t x56 = $x21 + x31 \ll 0x4$ uint64 t $x57 = x56 + x31 \le 0x1$ u int64_t x58 = x57 + x31; uint64 t $x59 = x20 + x30 \ll 0x4$ uint64_t x60 = x59 + x30 << 0x1; uint64_t x61 = x60 + x30; uint64 t x62 = x19 + x29 \leq 0x4 uint64_t $x63 = x62 + x29 \le 0x1$ uint64 t $x64 = x63 + x29$; uint64_t x65 = x64 >> 0x1a; uint32_t x66 = (uint32_t) x64 & 0x3ffffff; uint64_t x67 = x65 + x61; uint64_t x68 = x67 >> 0x19; uint32_t x69 = (uint32_t) x67 & 0x1ffffff; uint64_t x70 = x68 + x58; uint64 t $x71 = x70$ >> $0x18$ uint32_t $x72 = (uint32_t) x70$ & 0x3ffffff; uint64 t $x73 = x71 + x55$; uint64_t $x74 = x73$ >> $0x19$ uint32_t x75 = (uint32_t) x73 & 0x1fffffff u int64 + x76 = x74 + x52; uint64_t $x77 = x76 \gg 0 \times 1a$ uint32_t x78 = $(iint32_t)$ x76 & 0x3ffffff uint64_t $x79 = x77 + x49$ u int64_t x80 = x79 >> 0x19 uint32_t $x81 = (uint32_t) x79 & 0x1ffffff$ uint64_t x82 = x80 + x46; uint32_t x83 = (uint32_t) (x82 >> 0x1a); u int32_t x84 = $(uint32_t)$ x82 & 0x3fffffff;
 u int64 t x85 = x83 + x43; uint64_t x85 = x83 + x43; uint32_t x86 = (uint32_t) (x85 >> 0x19); uint32_t x87 = (uint32_t) x85 & 0x1ffffff; uint64_t x88 = x86 + x40; uint32_t x89 = (uint32_t) (x88 >> 0x1a); uint32 t x90 = $(uint32 t)$ x88 & 0x3ffffff uint64_t x91 = x89 + x28; uint32_t x92 = (uint32_t) (x91 >> 0x19); uint32 t x93 = $(uint32 t)$ x91 & $0x1ffffff$ uint64_t $x94 = x66 + (uint64_t) 0x13 * x92$; uint32_t x95 = (uint32_t) (x94 >> $0x1a$) uint32_t x96 = (uint32_t) x94 & 0x3ffffff; uint32_t x97 = x95 + x69; uint32_t x98 = x97 >> 0x19; uint32_t x99 = x97 & 0x1ffffff; return (Return x93, Return x90, Return x87, Return x84, Return x81, Return x78, Return x75, x98 + x72, Return x99, Return x96))

Surprising (?) Fact About Modular Arithmetic

Different prime moduli have dramatically different efficiency with best code on commodity processors.

 2^{255} – 19 is a popular choice for relatively easy implementation. General pattern: 2^k - c, for c << 2^k . (Called pseudo-Mersenne.) Example of a fast operation: modular reduction

$$
t = x + 2^{k}y \pmod{2^{k} - c}
$$
 too big to fit below the modulus!
= x + (2^k - c + c)y (mod 2^k - c)
= x + (2^k - c)y + cy (mod 2^k - c)
= x + cy (mod 2^k - c)

11 Representing Numbers mod 2²⁵⁵ - 19 t $= t_0^{\prime} t_1^{\prime} t_2^{\prime} t_3^{\prime} t_4^{\prime} t_5^{\prime} t_6^{\prime} t_7$ each "digit" fits in 64-bit register $=$ (t₀ + 2⁶⁴ t₁ + ...) + 2²⁵⁶ (t₄ + 2⁶⁴ t₅ + ...) result of multiplying two numbers in the prime field, so **510 bits wide** darn, that's 2^{256} , not 2^{255} , so we can't use that reduction trick! However.... $51 \times 10 = 510$. $t = (t_{0} + 2^{51} t_{1} + ...) + 2^{255} (t_{5} + 2^{51} t_{6} + ...)$ champion rep. on **64-bit processors** Also.... $25.5 \times 2 = 51$. (note: not using full bitwidth!) $t = s$ $_0$ + 2^{25.5} s₁ + 2^{2 × 25.5} s₂ + 2^{3 × 25.5} s₃ + ... champion rep. on **32-bit processors** $t = s_0 + 2^{26} s_1 + 2^{51} s_2 + 2^{77} s_3 + ...$ Champion rep. on **32-pit pro**
(note: nonuniform bitwidths!)

Example: Multiplication (for modulus 2^{127} - 1)

$$
s = s_0 + 2^{43} s_1 + 2^{85} s_2
$$

\n
$$
t = t_0 + 2^{43} t_1 + 2^{85} t_2
$$

\n
$$
s \times t = 1 \times s_0 t_0 + 2^{43} \times s_0 t_1 + 2^{85} \times s_0 t_2
$$

\n
$$
u_0 = s_0 t_0 + 2^{43} \times s_1 t_0 + 2^{86} \times s_1 t_1 + 2^{128} \times s_1 t_2
$$

\n
$$
u_1 = s_0 t_1 + s_1 t_0 + 2^{85} \times s_2 t_0 + 2^{128} \times s_2 t_1 + 2^{170} \times s_2 t_2
$$

\n
$$
u_2 = s_0 t_2 + 2s_1 t_1 + s_2 t_0
$$

\n
$$
u_3 = 2s_1 t_2 + 2s_2 t_1
$$

\n
$$
u_4 = s_2 t_2
$$

\n<

Time for Some Partial Evaluation

15 f0*g1+f1*g0+19*f2*g9+19*f3*g8+19*f4*g7+19*f5*g6+19*f6*g5+19*f7*g4+19*f8*g3+19*f9*g2, (f0*g9+f1*g8+f2*g7+f3*g6+f4*g5+f5*g4+f6*g3+f7*g2+f8*g1+f9*g0, f0*g8+2*f1*g7+f2*g6+2*f3*g5+f4*g4+2*f5*g3+f6*g2+2*f7*g1+f8*g0+38*f9*g9, f0*g7+f1*g6+f2*g5+f3*g4+f4*g3+f5*g2+f6*g1+f7*g0+19*f8*g9+19*f9*g8, f0*g6+2*f1*g5+f2*g4+2*f3*g3+f4*g2+2*f5*g1+f6*g0+38*f7*g9+19*f8*g8+38*f9*g7, f0*g5+f1*g4+f2*g3+f3*g2+f4*g1+f5*g0+19*f6*g9+19*f7*g8+19*f8*g7+19*f9*g6, f0*g4+2*f1*g3+f2*g2+2*f3*g1+f4*g0+38*f5*g9+19*f6*g8+38*f7*g7+19*f8*g6+38*f9*g5, f0*g3+f1*g2+f2*g1+f3*g0+19*f4*g9+19*f5*g8+19*f6*g7+19*f7*g6+19*f8*g5+19*f9*g4, f0*g2+2*f1*g1+f2*g0+38*f3*g9+19*f4*g8+38*f5*g7+19*f6*g6+38*f7*g5+19*f8*g4+38*f9*g3, f0*g0+38*f1*g9+19*f2*g8+38*f3*g7+19*f4*g6+38*f5*g5+19*f6*g4+38*f7*g3+19*f8*g2+38*f9*g1)

 { fg : tuple Z 10 | (eval w fg) mod (2^255-19) $=$ (eval w f $*$ eval w g) mod (2^255-19) }.

Example base_25_5_mul (f g:tuple Z 10) :

Definition w (i:nat) : Z := 2^{\wedge} Qceiling((25+1/2)*i).

An Example

Compiling to Low-Level Code $1 \times (1 \times 2^{52} + (1 \times x + 0)) + (1 \times (1 \times (-y) + 0) + 0)$

> 16 reify to syntax tree constant-fold $(2^{52} + x) - y$ flatten $\,$ Assume: 0 \leq X, y $\leq 2^{51} + 2^{48}$ let $c = 2^{52} + x$ in Deduce: $2^{52} \le c \le 2^{52} + 2^{51} + 2^{48}$ let d = c – y in Deduce: 2^{51} – 2^{48} \le d \le 2^{52} + 2^{51} + 2^{48} d infer bounds uint64_t c = $2^{52} + x$; uint64_t $d = c - y$; return d

Implementation and Experiments

- \cdot \sim 38 kloc in full library (including significant parts that belong in stdlib)
- Very little code needed to instantiate to new prime moduli.
- In fact, we wrote a Python script (under 3000 lines) to generate parameters automatically from prime numbers, written suggestively, e.g. 2256 - 2224 + 2192 + 296 – 1.
- This script is outside the TCB, since any successful compilation is guaranteed to implement correct arithmetic.

Q: Where do we get a lot of reasonable moduli?

A: Scrape all prime numbers appearing in a popular mailing list.

We used the elliptic curves list at moderncrypto.org. We found about 80 primes.

Only a few turned out to be terrible ideas posted by newbies.

Many-Primes Experiment

64-Bit Field Arithmetic Benchmarks

P256 Mixed Addition

Adoption?

Reason #1: General Paranoia

However, competitors based not on synthesis but verification (like HACL*) bring the same* benefit.

* Our trusted code base is significantly smaller, but practitioners don't seem to be swayed too much by such things.

Adoption?

Adoption?

Did Formal Methods Make a Big Difference?

Maybe yes:

E.g., decreasing our "time-tomarket" to build a reliableenough compiler

Cool; formal methods making a difference in industry!

Maybe no:

Folks just wanted a new kind of compiler

Cool; we managed to formally verify a "production-quality" compiler depending solely on cheap student labor!

<https://github.com/mit-plv/fiat-crypto>