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the data of interest for solving these problems have been generated 
and are being used within the computer system.

However, not all problems map well to the physics-oriented 
computer architecture. For some, the data to be analyzed are 
stored externally, on hard disks and other storage devices. These 
data might be millions of star images gathered from telescopes all 
over the world, detailed tables of genomic data, or data on social 
networks. (See the figure on p. 24.)

With social networks, for example, each person would be 
characterized as a “cell” or node, and the connection between 
one person and another would be an edge. The number of edges 
between nodes can vary immensely: A person might have a 
connection to only one other person on the network or connections 
to tens, hundreds, even thousands of people. “Methods have been 
developed to access such data for analysis,” says Gokhale, “but 
when speed is of the essence, we want faster, more convenient 
ways to access and analyze data. One solution is to have an 
architecture in which the database exists ‘closer’ to where the work 
is done.” 

Bringing Data Closer
To meet the data-intensive computing requirements, Gokhale 

and her team are working on an innovative hardware technology 
project that is funded by the Laboratory Directed Research and 
Development Program. The technology, called “persistent” 
memory, incorporates large, parallel arrays of solid-state storage 
devices within the compute node. Persistent memory is embodied 
as flash memory, for example, in a USB memory stick.

Options for storing data range from permanent to transient 
memory. Permanent memory can be stored on devices such as 
hard disk drives and flash drives (or memory sticks) outside the 
computer. Transient memory, such as dynamic random access 
memory (DRAM) and central-processing-unit (CPU) cache, exists 

IN the ever-connected world of faster and faster computers with  
 more and more memory, researchers in many fields suffer from 

an avalanche of data. It is an embarrassment of riches that is nearly 
impossible to grasp and manipulate, particularly when the goal is 
to find the one anomalous bit in a million (or billion, or trillion). 
As a result, scientists at Lawrence Livermore and elsewhere are 
exploring innovative ways to store, index, retrieve, assimilate, and 
synthesize mountains of raw data into useful information.

One way that computer scientists are tackling this challenge is 
by developing and optimizing algorithms and architectures that 
interact closely with large volumes of data. These data-intensive 
computing approaches combine techniques from computer 
science, statistics, and applied mathematics to speed up data 
manipulation in fields as diverse as astrophysics, bioinformatics, 
and social networks.

Not the Usual Data-Crunching
Computer scientist Maya Gokhale leads a team in the 

Laboratory’s Center for Applied Scientific Computing that is 
creating computer architectures to address this “data overload” 
problem. “Not only is the amount of data being generated growing 
exponentially,” explains Gokhale, “but when the raw data are 
analyzed, more data—called metadata—are generated as well. It’s 
truly an issue of ‘drowning in data.’”

The solutions evolving to address these problems are vastly 
different from those developed to manage the data generated 
by large number-crunching physics simulations. Many physics 
problems, such as modeling a solid piece of metal as a shock wave 
moves through it, can be characterized as three-dimensional (3D) 
mesh problems. Computationally, these problems are modeled as 
“cells” in a 3D space. In this way, each cell’s behavior is influenced 
only by its nearest neighboring cells, where shared “edges” exist. 

Physics computations run efficiently on huge supercomputers, 
such as Livermore’s BlueGene/P, because those machines have 
many compute nodes, each of which can map to a spatially 
contiguous collection of cells. These systems have a favorable ratio 
of computation to communication; that is, each node can perform a 
lot of computing before it needs to communicate with other nodes. 
Thus, relatively little memory is required on each node. In general, 
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(LSST), a project for which the Laboratory is a contributing member. 
When completed in 2013, the telescope will have the world’s largest 
digital camera to survey the entire visible sky. Researchers will use 
the resulting images to study dark matter through its light-bending 
gravitational effect in an effort to chart the expansion history of the 
universe and probe the nature of dark energy. 

LSST will generate 30 terabytes of data every night, yielding 
a total database of 100 petabytes. “They will do triage on the 
data right away,” says Gokhale. “A software pipeline will look 
for starlike objects, compare them to a template, and store likely 
candidates for immediate consideration. The raw data will be saved 
and stored. One challenge is how to later retrieve and examine the 
raw data for a very specific item; that is, identify an anomaly in 
that enormous database. Our persistent-memory architecture will 
speed up such tasks.”

Global security is another arena that will benefit from the 
team’s inventive solution for data-intensive computing. Scott 
Kohn of the Information Operations and Analytics Program 
is enthusiastic about the possible application to cybersecurity 
efforts. A primary concern in cybersecurity is getting a big 
picture view, or situational awareness, of how machines 
are communicating with each other in a network. These 
communications are modeled as a graph, but the graph is so 
large that to store and analyze it typically requires the memory 
resources of a small supercomputer. “Maya’s work  
is exciting,” says Kohn. “It may allow us to analyze these 
massive communication graphs on a relatively inexpensive 
workstation instead of spending tens of millions of dollars  
on a custom supercomputer.”

within a computer. DRAM consists of capacitors that each store a 
bit of data within integrated circuits in the computer. CPU cache 
holds copies of data from the computer’s main memory that are 
frequently used by the processor. 

Permanent and transient memories each have their pluses and 
minuses. Pull the plug from the wall, and permanent memory data 
remain, but transient memory data vanish. On the other hand, 
access to data on permanent memory is slow: a factor of 100,000 
slower than data stored on DRAM. Persistent memory embraces 
the best of both permanent and transient memory. Data stored in 
persistent memory are both permanent and close to the compute 
node, allowing for fast access and manipulation. 

“Plentiful, inexpensive persistent memory in the form of flash 
storage array technology makes it possible to create very large 
databases that can be accessed later for searches,” says Gokhale. 
“However, we still need to address the research challenges in 
organizing and accessing such databases in flash memory arrays, 
which have, at best, 1,000 times the access latency of main 
memory.” Latency, or delay, is defined as the time required for 
a data packet to travel from one point to another, or in this case, 
from memory to a compute node. Gokhale and colleagues have 
made inroads on the latency problem by developing a highly 
multithreaded parallel algorithm for flash storage arrays that allows 
flash memory to outperform a serial algorithm in plentiful main 
memory by a factor of four.

From Galaxies to Global Security to Genomes
One area that will benefit from the team’s novel approach is 

astrophysics, including the Large Synoptic Survey Telescope 
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many analytics workloads in applications, such as those for 
cybersecurity, medical informatics, and social networks. Rankings 
indicate which computer and algorithm combination solved the 
largest instance of the problem and had the fastest time to solution 
for a particular problem size. A machine on the top of this list can 
quickly and efficiently analyze huge quantities of data to find the 
proverbial needle in the haystack.

The Graph 500 benchmark calculations were run on Livermore’s 
Kraken, a large memory server with 32 cores, 512 gigabytes of 
DRAM, and 2 terabytes of direct-attached flash memory. The 
approach, which used a highly multithreaded, shared-memory 
algorithm, was unique among the competitors in achieving high 
performance on a single compute node with very large memory. 
“The graph problem is part of our research that seeks to enlarge 
the memory available to a compute node by augmenting DRAM 
with high-performance, direct-attached flash arrays,” says Gokhale. 
“This configuration enables higher utilization of the cores by giving 
each core more aggregate memory, a combination of DRAM and 
flash. It also reduces the energy required by the node, trading 
power-hungry DRAM for flash.”

The team has since developed a multinode version of the 
algorithm and tested it in distributed memory runs on the Hyperion 
Data Intensive Testbed at Livermore and the Trestles machine at 
the San Diego Supercomputing Center. As for what’s next, says 
Gokhale, “We are working on additional flash-based, multithreaded 
graph-analysis algorithms including Google’s page-rank search 
algorithm and connected components identification, which finds 
clusters of nodes in a graph that indicate close relationships.”

—Ann Parker

Key Words: bioinformatics, computer algorithm, computer architecture, 
database, data-intensive computing, flash memory, Large Synoptic Survey 
Telescope (LSST), persistent memory.

For further information contact Maya Gokhale (925) 422-9864 

(gokhale2@llnl.gov).

The team’s work can also be applied to bioinformatics. Tom 
Slezak, associate program leader for Informatics, explains that 
bioinformatics has a class of problems in which large amounts 
of DNA sequence data are analyzed, creating an efficient data-
indexing structure called a hash table. Researchers need to easily 
and quickly exploit the data in the large sequence hash table. 
Slezak says, “Although there appears to be an easy way to break 
up the table and distribute the data across many compute nodes, 
communication latency makes this approach too slow to be 
practical.” Latency comes into play when a given node requests 
part of a hash table that is stored on another compute node. The 
seek-request-and-fetch operation is then at least 2 to 3 orders of 
magnitude slower than it would be if the entire hash table were in 
local memory for any compute node accessing it—a difference that 
translates into a job running in 1 day versus 100 or 1,000 days.

With persistent memory, the huge hash tables can be stored 
completely and accessed with a very low latency compared to 
going across the “grid” to another computer node. “Persistent 
memory will enable us to attempt bioinformatics computations 
that simply are not feasible with other architectures,” says Slezak. 

Among the bioinformatics problems that will benefit from 
this approach are those related to rapid and thorough analysis 
of complex (metagenomic) sequence data. These problems 
involve billions of DNA “short reads” (currently between 36 and 
110+ bases in length). “Although portions of this problem can 
be mapped to multiple compute nodes, the need to access the 
enormous data structure argues for a single multicore system,” says 
Slezak. Large persistent memory will likely outperform any other 
architecture currently feasible.” 

Persistent Memory Graphs a Winner
The viability of this novel computer architecture was proven in 

the June 2011 international Graph 500 competition. Two entries 
from Gokhale and Roger Pearce, a Lawrence Scholar working 
under her direction, ranked at 7 and 17. Graph 500 gets its name 
from graph-type problems—algorithms that are a core part of 

Work in data-intensive computing 

solutions such as persistent-memory 

technology will benefit a multitude 

of research areas from astrophysics 

to bioinformatics. For bioinformatics 

problems such as the one shown, 

access to very large, low-latency 

memory on a single node can provide 

orders of magnitude improvements 

compared with calculations that use 

distributed memory on a computing 

cluster optimized for physics codes. 


