
Flexible Mechanisms for Remote Attestation
Sarah Helble

Johns Hopkins University Applied Physics Laboratory

Ian Kretz, John Ramsdell, Paul Rowe

The MITRE Corporation

Peter Loscocco

National Security Agency

Perry Alexander

Institute for Information Sciences, The University of Kansas

‣ Identity is Known

- unambiguous, unique identifier

- cryptographically bound secret key

‣ Made of Good Parts

- good components and architecture

- identification of system configuration

- trusted configuration delivery mechanism

‣ Behaves as Expected

- direct or trustworthy indirect observation of good behavior

- run-time contextual evidence

- trusted measuring, storage and delivery mechanism

‣ Formally establish trust

- dynamically using remote attestation or another mechanism

- statically using formal verification and synthesis

2

When should a system be trusted?

K−1

{id, |K |}CA−1

S → S′￼

‣ Relying Party requests attestation

- specifies needed information

- provides a fresh nonce

‣ Attester gathers evidence

- performs measurement

- gathers evidence

- generates evidence package for Appraiser

‣ Appraiser assesses evidence

- good application behavior

- infrastructure trustworthiness

‣ Relying Party makes trust decision

- good appraisal

- good nonce

- situational awareness

3

Semantic Remote Attestation

Appraiser Attester

attestation

request

evidence

package

Relying

Party

appraisal

result

‣ Formal semantics of trust - Definition of trust sufficient for evaluating systems

‣ Verified remote attestation infrastructure - Verified components for

assembling trusted systems

‣ Enterprise attestation and appraisal - Scaling trust to large, complex systems

in principled ways

‣ Sufficiency and soundness of measurement - Formally defining what

measurements reveal about a system

4

Research Goals

‣ Copland Terms

- measurement

- ordering & delegation

- signing & encryption

- formally verified semantics in Coq

‣ Evidence Types

- evidence & meta-evidence

- ordering & packaging

‣ Attestation Monad

- stateful environment for Copland execution

- state monad with exceptions

- eliminates name capture issues

‣ Protocol Compilation

- Attestation VM abstract attestation instructions

- verified compiler from Copland to Attestation VM

- policy compliant & platform independent

- formally verified (coming soon)

5

Attestation Protocols
@0(KIM1 -<- N ->

 @1(((getVCID -~- getSigFileHash -<- getSigFileSrc) -<+ cpy) -> SIG)

 -> SIG)

[K01 ;; [Uv || Usig ;; Usrc ;; N]1]0

do { N <- genNonce ;

 e <- @0(KIM1 -<- N ->

 @1(((getVCID -~- getSigFileHash -<- getSigFileSrc)

 -<+ cpy)

 -> SIG);

 return @3(N -> ((appraise e) -<+ cpy) -> SIG)};

compile :: term -> [AVM]

‣ Negotiation

- establish a security context

- find a mutually approved attestation protocol

‣ Copland Interpeter

- executes a Copland protocol

- verified compiler and Copland VM

‣ Communication

- establish communication among AMs

- API for executing @P commands

‣ Nonce Management

- generating new, unique nonces

- remembering nonces for appraisal

‣ Appraisal

- general purpose appraisal function

- “re-runs” attestation with golden values

6

Attestation Manager

‣ Negotiation

‣ Copland Interpreters

‣ Communications

‣ Nonce Management

‣ Appraisal

do{n<-nonce();

 e1<-@P:n[…];

 m<-nonce();

 e2<-@Q:m[…];

 a1<-(app n e1);

 a2<-(app m e2);

 return a1,a2

}

‣ Three attestation managers

- UserAM - application software attestation

- PlatformAM - kernel integrity measurement

- seL4AM - hardware platform attestation

‣ seL4 implementation infrastructure

- Linux VM running application software

- CAmkES components running attestation infrastructure

- platform roots-of-trust for late launch (pending)

‣ Attestation gathers evidence

- attestation requests made top down

- critical components measured bottom-up

- evidence composed bottom up from roots-of-trust

‣ Is this a one-off attestation architecture?

7

Remote Attestation Example

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ UserAM receives attestation request

- sends layered request to PlatformAM

- receives PlatformAM evidence

- performs application measurements

- bundles PlatformAM evidence, nonce, and local measurements

‣ PlatformAM receives attestation request

- sends layered request to seL4AM

- receives seL4AM evidence

- performs kernel integrity measurements

- bundles seL4AN evidence, nonce, and KIM measurements

‣ seL4AM receives attestation request

- retrieves boot evidence

- bundles and returns boot evidence

‣ Reusable attestation architecture

- builds evidence and trust bottom up from roots-of-trust

- principled, reusable attestation template

- captured by attestation protocol and system architecture

8

Layered Attestation

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ Attestation architecture building blocks

- Common Attestation Manager

- Attestation Service Providers

- Copland attestation protocol language

‣ Patterns for attestation

- common attestation structures like Layered Attestation

- evidence bundling mechanisms

‣ Tools and Semantics for assessment

- when is a protocol “good”?

- when is one protocol better than another?

- what does a protocol accomplish?

9

Flexible Mechanisms

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ Mutual & Multi-party Attestation

- simultaneous attestation

- multiple attestation managers

‣ Layered Attestation

- assessing system architectures

- aggregate attestation managers

‣ Delegated Attestation & Appraisal

- specialized appraisal and attestation capabilities

- unforgeable appraisal certificates

‣ Evidence Caching

- reuse or pre-generate attestation results

- managing evidence freshness

‣ Evidence and Crypto Management

- blockchain-based evidence sharing

- key and credential distribution

- distributed privacy certificate authority

10

Enterprise Attestation and Appraisal

AM

Attestation

Manager

Attestation

Manager

evidence

request
evidence

request

AM

AM

AM

‣ Attestation Protocol templates for common shapes

- Layered

- Certificate-Style

- Cached

- Background Check

‣ Implemented using communicating Attestation Manager instances

- attestation service providers for measurement and other services

- requires “plumbing” for communication, scheduling, and access control

‣ Principled composition

- assembling attestation ecosystems

- scaling to the enterprise

- assessing impacts on adversaries

‣ Flexible mechanisms

11

Attestation Patterns - Flexible Mechanisms

‣ Appraisal as a service

- attester generates evidence

- appraiser evaluates evidence

- a certificate indicates appraisal results to relying party

‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity

‣ Attester gathers evidence and meta-
evidence

- executes measurers to gather system information

- signs evidence with nonce to ensure integrity

‣ Appraiser evaluates evidence

- checks evidence values and signature

- generates a certificate with Relying Party’s nonce

‣ Certificate returned to Relying Party

- check the nonce, signature and appraisal result

- include result in trust decisions

12

Certificate-Style

cert(n)
req(n)

Relying
Party

Appraiser

Attester

evidence(n)cert(n)

*P0,n: @P1[(attest P1 sys) ->

 @P2[(appraise P2 sys) ->

 (certificate P2 sys)]]

13

Cached Certificate-Style

cert(n)
req(n)

Relying
Party

Appraiser

Attester

evidencecert

*P1:(attest P1 sys) ->

 @P2[(appraise P2 sys) -> (certificate P2 sys)] ->

 (store P1 cache)

*P0,n:@P1[((retrieve P1 cache) -<+ _) -> !]

‣ Appraisal as a service (again)

- attester generates and appraiser evaluates evidence

- certificate is cached for future use

‣ Attester gathers evidence and meta-evidence

- executes measurers to gather system information

- signs evidence with nonce to ensure integrity

‣ Appraiser evaluates evidence

- checks evidence values and signature

- generates a certificate

‣ Attester caches certificate for future use

- controls when and how attestation is performed

- reuses attestation results for efficiency

‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity

‣ Certificate returned to Relying Party

- check the nonce, signature and appraisal result

- include result in trust decisions

14

Background Check

evid(n)
req(n)

Relying
Party

Appraiser

Attester

evidence(n)

result

*P0,n: @P1[(attest P1 sys)] -> @P2[(appraise P2 sys)]

‣ Appraisal as a service (again)

- attester generates evidence

- relying party requests appraisal

‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity

‣ Attester gathers evidence and meta-
evidence

- executes measurers to gather system information

- signs evidence with nonce to ensure integrity

- returns evidence to relying party with nonce

‣ Appraiser evaluates evidence

- checks evidence values and signature

- may generate a certificate if required

‣ Result returned to Relying Party

- owns generated evidence

- often Relying Party is also Appraiser

‣ Composing Layered and Background Check

- background check style appraisal

- layered style builds evidence bottom up

‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity

‣ Attester makes requests of separate
attesters

- sends a request and nonce to multiple attesters

- manages ordering of attestation requests

- layered attesters gather evidence

‣ Attester assembles evidence package

- indicates evidence ordering

- composes multiple attestation results

- returns evidence to relying party

‣ Appraiser evaluates evidence

- checks evidence values and signature

- may generate a certificate if required

- result returned to Relying Party

15

Layered Background Check

bundle(n)
req(n)

Relying
Party

Appraiser

Attester

bundle(n)

result

*P0,n: @P1[((attest P1 sys) ->

 (attest P3 att) ->

 (attest P4 att)

 +~+

 (@P3[(attest P3 sys)]

 +~+

 @P4[(attest P4 sys)])) ->

 @P2[(appraise P2 it) -> !]]

AttesterAttester

ev
id(n)req

(n) evid(n)
req(n)

‣ Multi-Party Attestation

- simultaneous attestation

- single trusted appraiser

- relying party = attester

‣ Both Relying Parties request attestation

- send requests and nonces asynchronously

- receive requests and nonces

‣ Both Attesters return evidence

- attestation occurs asynchronously

- no initial trust

‣ Both Relying Parties request Appraisal

- shared, mutually trusted appraiser

- returns appraisal result

‣ Same song, second verse

- two background check attestations combined

- could add caching or certificate generation

16

Parallel Mutual Attestation

evidence(n)
request(n)

Relying
Party

Appraiser

Relying
Party

evidence

result

*P0,n 0 : @P1[(attest 01 P1 sys)] ->

 @P2[(appraise 01 P2 sys)]

*P1,m 1 : @p0[(attest 10 p0 sys)] ->

 @P2[(appraise 10 P2 sys)]

evidence

result

evidence(m)
request(m)

Attester Attester

‣ Assume a correct attestation platform

- correctly executes Copland protocols

- correctly appraises results

- verified with respect to Copland semantics

‣ What can we say about protocols?

- adversaries acting among protocol actions

- adversaries accessing protected information

‣ Model Finding (MITRE’s CHASE Tool)

- discovers adversary models consistent with attestation protocols

- allows evaluation of potential adversary behavior outside the

attestation protocol

‣ Separation Analysis

- CAmkES specifications define allowed communication

- synthesize or analyze architectures to evaluate allowed

interaction

‣ Adversary “in a box”

- analysis specifies what an adversary might do in the presence of

the protocol

- “the box” constrains the adversary making them do things they

don’t want to

- balance the level of constraint against the threat

17

Protocol Analysis

evidence

Adversary

“in a box”

do{n<-nonce();

 e1<-@P:n[…];

 …}

CVM

Appraisal

request
M1 M2

a1 a2

…

…

event trace

config/policyexecution

architecture

semantics

model

finding

event
system

separation

logic

constraints constraints

‣ Re-targeting Experiments

- moving attestation infrastructure from among problems

- moving attestation infrastructure among architectures

- mixing different attestation mechanisms

‣ Testbed Development

- attestation testbed deployed in fall 2021

- includes heterogeneous systems from IoT devices to

servers

- will include heterogenous attestation systems (attestation

monad, maat)

‣ Public Domain Infrastructure

- all tools and systems are public domain

- available on Linux, MacOS, Windows (sort of)

18

Validation

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ Colleagues

- Peter Loscocco (NSA)

- John Ramsdell (MITRE)

- Paul Rowe (MITRE)

- Ian Kretz (MITRE)

- Sarah Helble (JHUAPL)

- David Hardin (Collins Aerospace)

- Konrad Slind (Collins Aerospace)

‣ Staff

- Edward Komp

19

Thank You!

‣ Students

- Adam Petz

- TJ Barclay

- Grant Jurgensen

- Drew Cousino

- Anna Fritz

- Sarah Scott

- Anna Seib

