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‣ Identity is Known

- unambiguous, unique identifier

- cryptographically bound secret key


‣ Made of Good Parts

- good components and architecture

- identification of system configuration

- trusted configuration delivery mechanism


‣ Behaves as Expected

- direct or trustworthy indirect observation of good behavior

- run-time contextual evidence

- trusted measuring, storage and delivery mechanism


‣ Formally establish trust

- dynamically using remote attestation or another mechanism

- statically using formal verification and synthesis
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When should a system be trusted?

K−1

{id, |K |}CA−1

S → S′￼



‣ Relying Party requests attestation

- specifies needed information

- provides a fresh nonce


‣ Attester gathers evidence

- performs measurement

- gathers evidence

- generates evidence package for Appraiser


‣ Appraiser assesses evidence

- good application behavior

- infrastructure trustworthiness


‣ Relying Party makes trust decision

- good appraisal

- good nonce

- situational awareness
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Semantic Remote Attestation

Appraiser Attester

attestation

request

evidence

package

Relying

Party

appraisal

result



‣ Formal semantics of trust - Definition of trust sufficient for evaluating systems

‣ Verified remote attestation infrastructure - Verified components for 

assembling trusted systems

‣ Enterprise attestation and appraisal - Scaling trust to large, complex systems 

in principled ways

‣ Sufficiency and soundness of measurement - Formally defining what 

measurements reveal about a system
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Research Goals



‣ Copland Terms

- measurement

- ordering & delegation

- signing & encryption

- formally verified semantics in Coq


‣ Evidence Types

- evidence & meta-evidence

- ordering & packaging


‣ Attestation Monad

- stateful environment for Copland execution

- state monad with exceptions

- eliminates name capture issues


‣ Protocol Compilation

- Attestation VM abstract attestation instructions

- verified compiler from Copland to Attestation VM

- policy compliant & platform independent

- formally verified (coming soon)
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Attestation Protocols
@0(KIM1 -<- N ->

  @1(((getVCID -~- getSigFileHash -<- getSigFileSrc) -<+ cpy) -> SIG)    

  -> SIG)

[K01 ;; [Uv || Usig ;; Usrc ;; N]1]0

do { N <- genNonce ;

       e <- @0(KIM1 -<- N ->

                @1(((getVCID -~- getSigFileHash -<- getSigFileSrc)

                       -<+ cpy)

                      -> SIG);

       return @3(N -> ((appraise e) -<+ cpy) -> SIG)};

compile :: term -> [AVM]



‣ Negotiation

- establish a security context

- find a mutually approved attestation protocol


‣ Copland Interpeter 

- executes a Copland protocol

- verified compiler and Copland VM


‣ Communication

- establish communication among AMs

- API for executing @P commands


‣ Nonce Management

- generating new, unique nonces

- remembering nonces for appraisal


‣ Appraisal

- general purpose appraisal function

- “re-runs” attestation with golden values
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Attestation Manager

‣ Negotiation

‣ Copland Interpreters

‣ Communications

‣ Nonce Management

‣ Appraisal

do{n<-nonce();

   e1<-@P:n[…];

   m<-nonce();

   e2<-@Q:m[…];

   a1<-(app n e1);

   a2<-(app m e2);

   return a1,a2

}



‣ Three attestation managers

- UserAM - application software attestation

- PlatformAM - kernel integrity measurement

- seL4AM - hardware platform attestation


‣ seL4 implementation infrastructure

- Linux VM running application software

- CAmkES components running attestation infrastructure

- platform roots-of-trust for late launch (pending)


‣ Attestation gathers evidence

- attestation requests made top down

- critical components measured bottom-up

- evidence composed bottom up from roots-of-trust


‣ Is this a one-off attestation architecture?
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Remote Attestation Example
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‣ UserAM receives attestation request

- sends layered request to PlatformAM

- receives PlatformAM evidence

- performs application measurements

- bundles PlatformAM evidence, nonce, and local measurements


‣ PlatformAM receives attestation request

- sends layered request to seL4AM

- receives seL4AM evidence

- performs kernel integrity measurements

- bundles seL4AN evidence, nonce, and KIM measurements


‣ seL4AM receives attestation request

- retrieves boot evidence

- bundles and returns boot evidence


‣ Reusable attestation architecture

- builds evidence and trust bottom up from roots-of-trust

- principled, reusable attestation template

- captured by attestation protocol and system architecture
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Layered Attestation
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‣ Attestation architecture building blocks

- Common Attestation Manager

- Attestation Service Providers

- Copland attestation protocol language


‣ Patterns for attestation

- common attestation structures like Layered Attestation

- evidence bundling mechanisms


‣ Tools and Semantics for assessment

- when is a protocol “good”?

- when is one protocol better than another?

- what does a protocol accomplish?
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Flexible Mechanisms
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‣ Mutual & Multi-party Attestation

- simultaneous attestation

- multiple attestation managers


‣ Layered Attestation

- assessing system architectures

- aggregate attestation managers


‣ Delegated Attestation & Appraisal

- specialized appraisal and attestation capabilities

- unforgeable appraisal certificates


‣ Evidence Caching

- reuse or pre-generate attestation results

- managing evidence freshness


‣ Evidence and Crypto Management

- blockchain-based evidence sharing

- key and credential distribution

- distributed privacy certificate authority
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Enterprise Attestation and Appraisal
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‣ Attestation Protocol templates for common shapes

- Layered

- Certificate-Style

- Cached

- Background Check


‣ Implemented using communicating Attestation Manager instances

- attestation service providers for measurement and other services

- requires “plumbing” for communication, scheduling, and access control


‣ Principled composition 

- assembling attestation ecosystems

- scaling to the enterprise

- assessing impacts on adversaries


‣ Flexible mechanisms
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Attestation Patterns - Flexible Mechanisms



‣ Appraisal as a service

- attester generates evidence

- appraiser evaluates evidence

- a certificate indicates appraisal results to relying party


‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity


‣ Attester gathers evidence and meta-
evidence


- executes measurers to gather system information

- signs evidence with nonce to ensure integrity


‣ Appraiser evaluates evidence

- checks evidence values and signature

- generates a certificate with Relying Party’s nonce


‣ Certificate returned to Relying Party

- check the nonce, signature and appraisal result

- include result in trust decisions
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Certificate-Style

cert(n)
req(n)

Relying 
Party

Appraiser

Attester

evidence(n)cert(n)

*P0,n: @P1[(attest P1 sys) ->

          @P2[(appraise P2 sys) -> 

             (certificate P2 sys) ]]
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Cached Certificate-Style

cert(n)
req(n)

Relying 
Party

Appraiser

Attester

evidencecert

*P1:(attest P1 sys) -> 

    @P2[(appraise P2 sys) -> (certificate P2 sys)] ->

       (store P1 cache)

*P0,n:@P1[((retrieve P1 cache) -<+ _) -> !]

‣ Appraisal as a service (again)

- attester generates and appraiser evaluates evidence

- certificate is cached for future use


‣ Attester gathers evidence and meta-evidence

- executes measurers to gather system information

- signs evidence with nonce to ensure integrity


‣ Appraiser evaluates evidence

- checks evidence values and signature

- generates a certificate


‣ Attester caches certificate for future use

- controls when and how attestation is performed

- reuses attestation results for efficiency


‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity


‣ Certificate returned to Relying Party

- check the nonce, signature and appraisal result

- include result in trust decisions



14

Background Check

evid(n)
req(n)

Relying 
Party

Appraiser

Attester

evidence(n)

result

*P0,n: @P1[(attest P1 sys)] -> @P2[(appraise P2 sys)]

‣ Appraisal as a service (again)

- attester generates evidence

- relying party requests appraisal


‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity


‣ Attester gathers evidence and meta-
evidence


- executes measurers to gather system information

- signs evidence with nonce to ensure integrity

- returns evidence to relying party with nonce


‣ Appraiser evaluates evidence

- checks evidence values and signature

- may generate a certificate if required


‣ Result returned to Relying Party

- owns generated evidence

- often Relying Party is also Appraiser



‣ Composing Layered and Background Check

- background check style appraisal

- layered style builds evidence bottom up


‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity 


‣ Attester makes requests of separate 
attesters


- sends a request and nonce to multiple attesters

- manages ordering of attestation requests

- layered attesters gather evidence


‣ Attester assembles evidence package

- indicates evidence ordering

- composes multiple attestation results

- returns evidence to relying party


‣ Appraiser evaluates evidence

- checks evidence values and signature

- may generate a certificate if required

- result returned to Relying Party
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Layered Background Check

bundle(n)
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*P0,n: @P1[((attest P1 sys) ->

             (attest P3 att) ->

               (attest P4 att)

            +~+

           (@P3[(attest P3 sys)]

              +~+ 

            @P4[(attest P4 sys)])) ->

           @P2[(appraise P2 it) -> !]]

AttesterAttester
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‣ Multi-Party Attestation

- simultaneous attestation

- single trusted appraiser

- relying party = attester


‣ Both Relying Parties request attestation

- send requests and nonces asynchronously

- receive requests and nonces


‣ Both Attesters return evidence

- attestation occurs asynchronously

- no initial trust


‣ Both Relying Parties request Appraisal

- shared, mutually trusted appraiser

- returns appraisal result


‣ Same song, second verse

- two background check attestations combined

- could add caching or certificate generation
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Parallel Mutual Attestation
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‣ Assume a correct attestation platform

- correctly executes Copland protocols

- correctly appraises results

- verified with respect to Copland semantics


‣ What can we say about protocols?

- adversaries acting among protocol actions

- adversaries accessing protected information


‣ Model Finding (MITRE’s CHASE Tool)

- discovers adversary models consistent with attestation protocols

- allows evaluation of potential adversary behavior outside the 

attestation protocol


‣ Separation Analysis

- CAmkES specifications define allowed communication

- synthesize or analyze architectures to evaluate allowed 

interaction


‣ Adversary “in a box”

- analysis specifies what an adversary might do in the presence of 

the protocol

- “the box” constrains the adversary making them do things they 

don’t want to

- balance the level of constraint against the threat
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‣ Re-targeting Experiments

- moving attestation infrastructure from among problems

- moving attestation infrastructure among architectures

- mixing different attestation mechanisms


‣ Testbed Development

- attestation testbed deployed in fall 2021

- includes heterogeneous systems from IoT devices to 

servers

- will include heterogenous attestation systems (attestation 

monad, maat)


‣ Public Domain Infrastructure

- all tools and systems are public domain

- available on Linux, MacOS, Windows (sort of)
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