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Contributions

Protocol derivation
Build security protocols by combining parts 
from standard sub-protocols.

Proof of correctness
Prove protocols correct using logic that 
follows steps of derivation.



Outline 
Derivation System [CSFW03]

Motivating examples
Main concepts
Benefits

Compositional Logic [CSFW01,CSFW03]

Formalizing Composition [MFPS03]

Formalizing Refinements [CSFW04]

Conclusions and Future Work



Example

Construct protocol with properties:
Shared secret 
Authenticated
Identity Protection
DoS Protection

Design requirements for IKE, JFK, 
IKEv2 (IPSec key exchange protocol)



Component 1

Shared secret (with someone)
A deduces: 

Knows(Y, gab) ⊃ (Y = A) ٧ Knows(Y,b)
Authenticated
Identity Protection
DoS Protection

A  → B: ga

B  → A: gb

Diffie Hellman



Component 2

Shared secret
Authenticated

A deduces: Received (B, msg1) Λ Sent (B, 
msg2)

Identity Protection
DoS Protection

A  → B:  m, A
B  → A:  n, sigB {m, n, A}
A  → B: sigA {m, n, B}

Challenge-Response



Composition 

Shared secret: gab

Authenticated
Identity Protection
DoS Protection

m := ga

n  := gb

A → B: ga, A
B → A: gb, sigB {ga, gb, A}
A → B: sigA {ga, gb, B}

ISO-9798-3



Refinement

Shared secret: gab

Authenticated
Identity Protection
DoS Protection

A → B: ga, A
B → A: gb, EK {sigB {ga, gb, A}}
A → B:  EK {sigA {ga, gb, B}}

Encrypt Signatures



Transformation

Shared secret: gab

Authenticated
Identity Protection
DoS Protection

A → B: ga, A
B → A: gb, hashKB {gb, ga}
A → B: ga, gb, EK {sigA {ga, gb, B}}, hashKB {gb, ga} 
B → A: gb, EK {sigB {ga, gb, A}}

Use cookie: JFK core protocol



Derivation Framework
Protocols are constructed from:

components
by applying a series of:

composition, refinement and transformation
operations.

Properties accumulate as a derivation 
proceeds. 
Examples: 

STS, ISO-9798-3, JFKi, JFKr, IKE, GDOI, Kerberos, 
Needham-Schroeder,…



Benefits and Directions 

Modular analysis of protocols.
Organization of protocols into 
taxonomies.
Underpin protocol design principles and
patterns.
Protocol synthesis.
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Alice’s information
Protocol
Private data
Sends and receives

Honest Principals,
Attacker

Send

Rece
ive

Protocol

Private 
Data

Protocol Logic: Main idea



A B

Alice reasons: if Bob is honest, then:
only Bob can generate his signature. [protocol independent]
if Bob generates a signature of the form sigB {m, n, A}, 

he sends it as part of msg 2 of the protocol and 
he must have received msg1 from Alice. [protocol specific]

Alice deduces: Received (B, msg1) Λ Sent (B, msg2)

m, A

n, sigB {m, n, A}

sigA {m, n, B}

Example: Challenge-Response



Protocol
“Program” for each protocol role

Initial configuration
Set of principals and key
Assignment of ≥1 role to each principal

Run
new x send{x}B

recv{x}B

send{z}B

A

B

C

Position in run

Execution Model

new z

recv{z}B



Action formulas
a ::= Send(P,m) | Receive (P,m) | New(P,t)       

|   Decrypt (P,t) | Verify (P,t)

Formulas
ϕ ::= a | Has(P,t) | Fresh(P,t) | Honest(N) 

|   Contains(t1, t2) | ¬ϕ | ϕ1∧ ϕ2 | ∃x ϕ
|    οϕ | ◊ϕ

Example
After(a,b)  = ◊(b ∧ ο◊a)

Formulas true at a position in run



Modal Formulas
After actions, postcondition

[ actions ] P ϕ where P = 〈princ, role id〉

If P does ‘actions’, starting from initial state, then ϕ holds in 
resulting state

Before/after assertions
ϕ [ actions ] P ψ

If ϕ holds in some state, and P does ‘actions’, then ψ holds 
in resulting state



Diffie-Hellman: Property

Formula
[ new a ] A Fresh(A, ga)

Explanation
Modal form: [ actions ] P ϕ
Actions: [ new a ] A
Postcondition: Fresh(A, ga)



Challenge Response: Property
Modal form:  ϕ [ actions ]P ψ

precondition: Fresh(A,m)
actions: [ Initiator role actions ]A 

postcondition: 
Honest(B) ⊃ ActionsInOrder(

send(A, {A,B,m}), 
receive(B, {A,B,m}), 
send(B, {B,A,{n, sigB {m, n, A}}}), 
receive(A, {B,A,{n, sigB {m, n, A}}})  
)



Proof System
Sample Axioms:

Reasoning about knowledge:
[receive m ]A Has(A,m)
Has(A, {m,n}) ⊃ Has(A, m) ∧ Has(A, n)

Reasoning about crypto primitives:
Honest(X) ∧ Decrypt(Y, encX{m}) ⊃ X=Y
Honest(X) ∧ Verify(Y, sigX{m}) ⊃

∃ m’ ( Send(X, m’) ∧ Contains(m’, sigX{m})
Soundness Theorem:
Every provable formula is valid
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Central Issues 

Additive Combination:
Accumulate security properties of 
combined parts, assuming they do not 
interfere

In logic: before-after assertions

Non-destructive Combination:
Ensure combined parts do not interfere

In logic: invariance assertions



Proof steps (Intuition)
Protocol independent reasoning

Has(A, {m,n}) ⊃ Has(A, m) ∧ Has(A, n)
Still good: unaffected by composition

Protocol specific reasoning
“if honest Bob generates a signature of the form 
sigB {m, n, A}, 

he sends it as part of msg 2 of the protocol and 
he must have received msg1 from Alice”

Could break: Bob’s signature from one protocol could be 
used to attack another

Protocol-specific proof steps use invariants



Invariants

Reasoning about honest principals
Invariance rule, called “honesty rule”

Preservation of invariants under 
composition

If we prove Honest(X) ⊃ ϕ for protocol 1 and 
compose with protocol 2, is formula still true?



Honesty Rule
Definition

A basic sequence of actions begins with 
receive, ends before next receive

Rule
[ ]X ϕ For all B ∈ BasicSeq(Q). ϕ [B]X ϕ

Q Honest(X) ⊃ ϕ

Example
CR Honest(X) ⊃

(Sent(X, m2) ⊃ Recd(X, m1))



Composing protocols

DH Honest(X) ⊃ …

Γ Γ’

Γ |- Secrecy Γ’ |- Authentication

Γ∪Γ’ |- Secrecy Γ∪Γ’ |- Authentication

Γ∪Γ’ |- Secrecy ∧ Authentication  [additive]

DH • CR Γ∪Γ’ [nondestructive]

ISO Secrecy ∧ Authentication

=



Composition Rules
Invariant weakening rule

Γ |- ϕ […]P ψ
Γ ∪ Γ’ |- ϕ […]P ψ

Sequential Composition
Γ |- ϕ [ S ] P ψ Γ |- ψ [ T ] P θ

Γ |- ϕ [ ST ] P θ
Prove invariants from protocol

Q Γ Q’ Γ
Q • Q’ Γ



Outline

Derivation System
Compositional Logic
Formalizing Composition
Formalizing Refinements [CSFW04]

Conclusions and Future Work



Protocol Templates
Protocols with function variables instead 
of specific cryptographic operations
(Higher-order extension of protocol logic)
Idea: One template can be instantiated 
to many protocols 
Advantages:

proof reuse
design principles/patterns



Example

A  → B:  m
B  → A:  n, F(B,A,n,m)
A  → B:  G(A,B,n,m)

A  → B:  m
B  → A:  n,EKAB(n,m,B)
A  → B: EKAB(n,m)

A  → B:  m
B  → A: n,HKAB(n,m,B) 
A  → B: HKAB(n,m,A) 

A  → B:  m
B  → A:  n, sigB(n,m,A)
A  → B:  sigA(n,m,B)

Challenge-Response Template

ISO-9798-2 ISO-9798-3SKID3



Abstraction-Instantiation Method(1)

Characterizing protocol concepts
Step 1: Under hypotheses about function 
variables and invariants, prove security 
property of template 
Step 2: Instantiate function variables to 
cryptographic operations and prove 
hypotheses.

Benefit:
Proof reuse



Example
Challenge-Response Template

A  → B:  m
B  → A:  n, F(B,A,n,m)
A  → B:  G(A,B,n,m)

•Step 1:

•Hypothesis: Function F(B,A,n,m) can be computed only by B

•Property: Mutual authentication

•Step 2:

•Instantiate F() to signature, keyed hash, encryption (ISO-
9798-2,3, SKID3)

•Satisfies hypothesis => Guarantees mutual authentication



Abstraction-Instantiation Method(2)

Combining protocol templates
If protocol P is a hypotheses-respecting 
instance of two different templates, then it 
has the properties of both.

Benefits:
Modular proofs of properties
Formalization of protocol refinements



Refinement Example Revisited

Two templates:
Template 1: authentication + shared secret

(Preserves existing properties; proof reused)

Template 2: identity protection (encryption)
(Adds new property)

A → B: ga, A
B → A: gb, EK {sigB {ga, gb, A}}
A → B:  EK {sigA {ga, gb, B}}

Encrypt Signatures



More examples…

Authenticated Key Exchange:
Template for JFKi, ISO-9798-3.
Template for JFKr, STS, IKE, IKEv2

Key Computation:
Template for Diffie-Hellman, UM, MTI/A, 
MQV

Combining these templates



Synthesis: STS-MQV

MQVCPH

protect 
identities

symmetric
hashSTSPH

cookie
STSP

MQVCP

authenticateDH RFKSTS

MQV MQVC

key
conf.UM

MQVRFK

MTI/A MTIC

UMC

MTICP

UMCP

MTICPH

UMCPH

MTIRFK

UMRFK
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Conclusions
Protocol Derivation System:

Systematizes the practice of building protocols 
from standard sub-protocols. Useful for:

Modular protocol analysis
Underpinning protocol design principles and patterns
Organizing related protocols in taxonomies
Protocol synthesis

Protocol Logic:
Correctness proofs follow derivation steps.
Rigorous treatment of composition, refinement. 



Work in Progress

Derivation System:
Development of taxonomies
Tool support based on especs

Protocol Logic:
Formalization of transformations
Automation of proofs 



Publications
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