
Formal Derivation of Security 
Protocols

Anupam Datta Ante Derek
John C. Mitchell     Dusko Pavlovic

Stanford University  Kestrel Institute 
HCSS April 15, 2004



Contributions

Protocol derivation
Build security protocols by combining parts 
from standard sub-protocols.

Proof of correctness
Prove protocols correct using logic that 
follows steps of derivation.



Outline 
Derivation System [CSFW03]

Motivating examples
Main concepts
Benefits

Compositional Logic [CSFW01,CSFW03]

Formalizing Composition [MFPS03]

Formalizing Refinements [CSFW04]

Conclusions and Future Work



Example

Construct protocol with properties:
Shared secret 
Authenticated
Identity Protection
DoS Protection

Design requirements for IKE, JFK, 
IKEv2 (IPSec key exchange protocol)



Component 1

Shared secret (with someone)
A deduces: 

Knows(Y, gab) ⊃ (Y = A) ٧ Knows(Y,b)
Authenticated
Identity Protection
DoS Protection

A  → B: ga

B  → A: gb

Diffie Hellman



Component 2

Shared secret
Authenticated

A deduces: Received (B, msg1) Λ Sent (B, 
msg2)

Identity Protection
DoS Protection

A  → B:  m, A
B  → A:  n, sigB {m, n, A}
A  → B: sigA {m, n, B}

Challenge-Response



Composition 

Shared secret: gab

Authenticated
Identity Protection
DoS Protection

m := ga

n  := gb

A → B: ga, A
B → A: gb, sigB {ga, gb, A}
A → B: sigA {ga, gb, B}

ISO-9798-3



Refinement

Shared secret: gab

Authenticated
Identity Protection
DoS Protection

A → B: ga, A
B → A: gb, EK {sigB {ga, gb, A}}
A → B:  EK {sigA {ga, gb, B}}

Encrypt Signatures



Transformation

Shared secret: gab

Authenticated
Identity Protection
DoS Protection

A → B: ga, A
B → A: gb, hashKB {gb, ga}
A → B: ga, gb, EK {sigA {ga, gb, B}}, hashKB {gb, ga} 
B → A: gb, EK {sigB {ga, gb, A}}

Use cookie: JFK core protocol



Derivation Framework
Protocols are constructed from:

components
by applying a series of:

composition, refinement and transformation
operations.

Properties accumulate as a derivation 
proceeds. 
Examples: 

STS, ISO-9798-3, JFKi, JFKr, IKE, GDOI, Kerberos, 
Needham-Schroeder,…



Benefits and Directions 

Modular analysis of protocols.
Organization of protocols into 
taxonomies.
Underpin protocol design principles and
patterns.
Protocol synthesis.



Outline

Derivation System
Compositional Logic [CSFW01,CSFW03]

Main idea
Syntax, semantics and proof system

Formalizing Composition
Formalizing Refinements
Conclusions and Future Work



Alice’s information
Protocol
Private data
Sends and receives

Honest Principals,
Attacker

Send

Rece
ive

Protocol

Private 
Data

Protocol Logic: Main idea



A B

Alice reasons: if Bob is honest, then:
only Bob can generate his signature. [protocol independent]
if Bob generates a signature of the form sigB {m, n, A}, 

he sends it as part of msg 2 of the protocol and 
he must have received msg1 from Alice. [protocol specific]

Alice deduces: Received (B, msg1) Λ Sent (B, msg2)

m, A

n, sigB {m, n, A}

sigA {m, n, B}

Example: Challenge-Response



Protocol
“Program” for each protocol role

Initial configuration
Set of principals and key
Assignment of ≥1 role to each principal

Run
new x send{x}B

recv{x}B

send{z}B

A

B

C

Position in run

Execution Model

new z

recv{z}B



Action formulas
a ::= Send(P,m) | Receive (P,m) | New(P,t)       

|   Decrypt (P,t) | Verify (P,t)

Formulas
ϕ ::= a | Has(P,t) | Fresh(P,t) | Honest(N) 

|   Contains(t1, t2) | ¬ϕ | ϕ1∧ ϕ2 | ∃x ϕ
|    οϕ | ◊ϕ

Example
After(a,b)  = ◊(b ∧ ο◊a)

Formulas true at a position in run



Modal Formulas
After actions, postcondition

[ actions ] P ϕ where P = 〈princ, role id〉

If P does ‘actions’, starting from initial state, then ϕ holds in 
resulting state

Before/after assertions
ϕ [ actions ] P ψ

If ϕ holds in some state, and P does ‘actions’, then ψ holds 
in resulting state



Diffie-Hellman: Property

Formula
[ new a ] A Fresh(A, ga)

Explanation
Modal form: [ actions ] P ϕ
Actions: [ new a ] A
Postcondition: Fresh(A, ga)



Challenge Response: Property
Modal form:  ϕ [ actions ]P ψ

precondition: Fresh(A,m)
actions: [ Initiator role actions ]A 

postcondition: 
Honest(B) ⊃ ActionsInOrder(

send(A, {A,B,m}), 
receive(B, {A,B,m}), 
send(B, {B,A,{n, sigB {m, n, A}}}), 
receive(A, {B,A,{n, sigB {m, n, A}}})  
)



Proof System
Sample Axioms:

Reasoning about knowledge:
[receive m ]A Has(A,m)
Has(A, {m,n}) ⊃ Has(A, m) ∧ Has(A, n)

Reasoning about crypto primitives:
Honest(X) ∧ Decrypt(Y, encX{m}) ⊃ X=Y
Honest(X) ∧ Verify(Y, sigX{m}) ⊃

∃ m’ ( Send(X, m’) ∧ Contains(m’, sigX{m})
Soundness Theorem:
Every provable formula is valid



Outline

Derivation System
Compositional Logic
Formalizing Composition [MFPS03]

Formalizing Refinements
Conclusions and Future Work



Central Issues 

Additive Combination:
Accumulate security properties of 
combined parts, assuming they do not 
interfere

In logic: before-after assertions

Non-destructive Combination:
Ensure combined parts do not interfere

In logic: invariance assertions



Proof steps (Intuition)
Protocol independent reasoning

Has(A, {m,n}) ⊃ Has(A, m) ∧ Has(A, n)
Still good: unaffected by composition

Protocol specific reasoning
“if honest Bob generates a signature of the form 
sigB {m, n, A}, 

he sends it as part of msg 2 of the protocol and 
he must have received msg1 from Alice”

Could break: Bob’s signature from one protocol could be 
used to attack another

Protocol-specific proof steps use invariants



Invariants

Reasoning about honest principals
Invariance rule, called “honesty rule”

Preservation of invariants under 
composition

If we prove Honest(X) ⊃ ϕ for protocol 1 and 
compose with protocol 2, is formula still true?



Honesty Rule
Definition

A basic sequence of actions begins with 
receive, ends before next receive

Rule
[ ]X ϕ For all B ∈ BasicSeq(Q). ϕ [B]X ϕ

Q Honest(X) ⊃ ϕ

Example
CR Honest(X) ⊃

(Sent(X, m2) ⊃ Recd(X, m1))



Composing protocols

DH Honest(X) ⊃ …

Γ Γ’

Γ |- Secrecy Γ’ |- Authentication

Γ∪Γ’ |- Secrecy Γ∪Γ’ |- Authentication

Γ∪Γ’ |- Secrecy ∧ Authentication  [additive]

DH • CR Γ∪Γ’ [nondestructive]

ISO Secrecy ∧ Authentication

=



Composition Rules
Invariant weakening rule

Γ |- ϕ […]P ψ
Γ ∪ Γ’ |- ϕ […]P ψ

Sequential Composition
Γ |- ϕ [ S ] P ψ Γ |- ψ [ T ] P θ

Γ |- ϕ [ ST ] P θ
Prove invariants from protocol

Q Γ Q’ Γ
Q • Q’ Γ



Outline

Derivation System
Compositional Logic
Formalizing Composition
Formalizing Refinements [CSFW04]

Conclusions and Future Work



Protocol Templates
Protocols with function variables instead 
of specific cryptographic operations
(Higher-order extension of protocol logic)
Idea: One template can be instantiated 
to many protocols 
Advantages:

proof reuse
design principles/patterns



Example

A  → B:  m
B  → A:  n, F(B,A,n,m)
A  → B:  G(A,B,n,m)

A  → B:  m
B  → A:  n,EKAB(n,m,B)
A  → B: EKAB(n,m)

A  → B:  m
B  → A: n,HKAB(n,m,B) 
A  → B: HKAB(n,m,A) 

A  → B:  m
B  → A:  n, sigB(n,m,A)
A  → B:  sigA(n,m,B)

Challenge-Response Template

ISO-9798-2 ISO-9798-3SKID3



Abstraction-Instantiation Method(1)

Characterizing protocol concepts
Step 1: Under hypotheses about function 
variables and invariants, prove security 
property of template 
Step 2: Instantiate function variables to 
cryptographic operations and prove 
hypotheses.

Benefit:
Proof reuse



Example
Challenge-Response Template

A  → B:  m
B  → A:  n, F(B,A,n,m)
A  → B:  G(A,B,n,m)

•Step 1:

•Hypothesis: Function F(B,A,n,m) can be computed only by B

•Property: Mutual authentication

•Step 2:

•Instantiate F() to signature, keyed hash, encryption (ISO-
9798-2,3, SKID3)

•Satisfies hypothesis => Guarantees mutual authentication



Abstraction-Instantiation Method(2)

Combining protocol templates
If protocol P is a hypotheses-respecting 
instance of two different templates, then it 
has the properties of both.

Benefits:
Modular proofs of properties
Formalization of protocol refinements



Refinement Example Revisited

Two templates:
Template 1: authentication + shared secret

(Preserves existing properties; proof reused)

Template 2: identity protection (encryption)
(Adds new property)

A → B: ga, A
B → A: gb, EK {sigB {ga, gb, A}}
A → B:  EK {sigA {ga, gb, B}}

Encrypt Signatures



More examples…

Authenticated Key Exchange:
Template for JFKi, ISO-9798-3.
Template for JFKr, STS, IKE, IKEv2

Key Computation:
Template for Diffie-Hellman, UM, MTI/A, 
MQV

Combining these templates



Synthesis: STS-MQV

MQVCPH

protect 
identities

symmetric
hashSTSPH

cookie
STSP

MQVCP

authenticateDH RFKSTS

MQV MQVC

key
conf.UM

MQVRFK

MTI/A MTIC

UMC

MTICP

UMCP

MTICPH

UMCPH

MTIRFK

UMRFK



Outline

Derivation System
Compositional Logic
Formalizing Composition
Formalizing Refinements
Conclusions and Future Work



Conclusions
Protocol Derivation System:

Systematizes the practice of building protocols 
from standard sub-protocols. Useful for:

Modular protocol analysis
Underpinning protocol design principles and patterns
Organizing related protocols in taxonomies
Protocol synthesis

Protocol Logic:
Correctness proofs follow derivation steps.
Rigorous treatment of composition, refinement. 



Work in Progress

Derivation System:
Development of taxonomies
Tool support based on especs

Protocol Logic:
Formalization of transformations
Automation of proofs 



Publications
A. Datta, A. Derek, J. C. Mitchell, D. Pavlovic.

Abstraction and Refinement in Protocol Derivation [CSFW04]
Secure Protocol Composition [MFPS03]
A Derivation System for Security Protocols and its Logical 
Formalization [CSFW03]

N. Durgin, J. C. Mitchell, D. Pavlovic.
A Compositional Logic for proving Security Properties of 
Protocols [CSFW01,JCS03]

C. Meadows, D. Pavlovic.
Deriving, Attacking and Defending the GDOI Protocol 

Web page: 
http://www.stanford.edu/~danupam/logic-derivation.html


	Formal Derivation of Security Protocols
	Contributions
	Outline
	Example
	Component 1
	Component 2
	Composition
	Refinement
	Transformation
	Derivation Framework
	Benefits and Directions
	Outline
	Protocol Logic: Main idea
	Example: Challenge-Response
	Execution Model
	Formulas true at a position in run
	Modal Formulas
	Diffie-Hellman: Property
	Challenge Response: Property
	Proof System
	Outline
	Central Issues
	Proof steps (Intuition)
	Invariants
	Honesty Rule
	Composing protocols
	Composition Rules
	Outline
	Protocol Templates
	Example
	Abstraction-Instantiation Method(1)
	Example
	Abstraction-Instantiation Method(2)
	Refinement Example Revisited
	More examples…
	Synthesis: STS-MQV
	Outline
	Conclusions
	Work in Progress
	Publications

