
Formal Synthesis of Efficient
Verified Emulators

Magnus Myreen1

in collaboration with Anthony Fox and Mike Gordon

University of Cambridge

1 funded by Defence Science & Technology Laboratory (DSTL), UK

trustworthy
old software

Problem of new hardware

old hardware

trustworthy
old software

new hardware

trustworthy
old software

Problem of new hardware

old hardware

trustworthy
old software

new hardware

trustworthy
old software

Problem of new hardware

old hardware

trustworthy
old software

new hardware

trustworthy
old software

Problem of new hardware

old hardware

trustworthy
old software

new hardware

emulation layer

trustworthy
old software

Problem of new hardware

• Re-verification/validation is expensive

• This talk: how to build trustworthy emulators

old hardware

trustworthy
old software

new hardware

emulation layer

Emulators
Purpose: recreating an original computer
environment

Goals: recreate hardware or hardware+OS

Emulators
Purpose: recreating an original computer
environment

Goals: recreate hardware or hardware+OS

• emphasis: correctness and efficiency

• focus: self-contained, user-mode programs

This talk: emulating ARM programs on 64-bit x86

Emulator alternatives

• fetch-decode-exec-cycle interpretation

• just-in-time compilation

• one-off binary translation

Emulators implement

fetch-decode-exec-cycle of foreign architecture

Implementation alternatives:

Trustworthy?

Writing an emulator
involves implementing:

in the language of:

... an error-prone task.

This Talk

1. Construction of trustworthy emulators:

• direct interpretation

• just-in-time compilation

• one-off binary translation

2. Comparison & performance numbers

Direct Interpretation

Specification
• Instruction set architectures, foreign and native:

• We use Fox [ITP’10] and Sarkar et al. [POPL’09]

Formal specification

• Formal models defined as interpreters, e.g.

arm_next(state) =
 let ast = decode(fetch(state),state) in
 exec(ast,state)

in the logic of a theorem prover.

Formal specification

• Formal models defined as interpreters, e.g.

arm_next(state) =
 let ast = decode(fetch(state),state) in
 exec(ast,state)

in the logic of a theorem prover.

• ... so let’s synthesise verified x86 from the
definition arm_next.

Synthesis of interpreter

• Drawing on experience of proof-producing
synthesis [CC’09, TPHOLs’09, ITP’11]

• ARM model difficult to directly synthesise
to efficient x86 code: definition uses

• heterogenous datatypes (AST)

• higher-order functions

Synthesis of interpreter

• Drawing on experience of proof-producing
synthesis [CC’09, TPHOLs’09, ITP’11]

• ARM model difficult to directly synthesise
to efficient x86 code: definition uses

• heterogenous datatypes (AST)

• higher-order functions

• Solution: reformulate arm_next.

Reformulation

• Instead of: decode-then-execute, i.e.

decode : word32 → AST

execute : AST x state → state

• Use: interpretation via bytecode

translate : word32 → bytecode list

interpret : (bytecode list) x state → state

i.e. arm_next(s) = interpret(translate(...),s)

Reformulation

• Instead of: decode-then-execute, i.e.

decode : word32 → AST

execute : AST x state → state

• Use: interpretation via bytecode

translate : word32 → bytecode list

interpret : (bytecode list) x state → state

i.e. arm_next(s) = interpret(translate(...),s)

Bytecode
Bytecode state:

- four new registers: A, B, C, D
- ARM processor state

Bytecode
Bytecode state:

- four new registers: A, B, C, D
- ARM processor state

Bytecode instructions:

- basic operations between A-D registers
 (add A,A,B or sub A,A,B or mov A,D etc.)
- operations for reading and updating ARM
 state (e.g. mov A,r0 or mov r0,A)
- one operation for skipping instructions

Synthesis

translate : word32 → bytecode list

interpret : (bytecode list) x state → state

We write definition of:

in a language which we can easily be compiled by
proof-producing synthesis [CC’09] (explained later)

(Implementing a full translate function is work in progress...)

Example emulation
• Fib for even numbers in C and ARM

m = 0;
n = 1;
repeat {
 m += n;
 n += m;
 k -= 2;
} (k == 0);

 mov r0,#0
 mov r1,#1
L:
 add r0,r1
 add r1,r0
 subs r2,#2
 bne L

• Emulates fib(200,000,000) in 48 seconds

• x86-complied C runs in 0.1 seconds (500x faster)

Just-in-time compilation

Just-in-time compilation

• try to perform fetch-and-decode only once

• QEMU design principle (animation next slide...)

Idea: partial evaluation

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compiler

 call COMPILER(40)

Foreign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compiler

 call COMPILER(40)

Foreign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 call COMPILER(48)
L: call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 call COMPILER(48)
L: call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 call COMPILER(48)
L: call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 call COMPILER(48)
L: call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 call COMPILER(48)
L: call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 call COMPILER(48)
L: call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 jmp G
L: call COMPILER(64)
G: add r8,r9
 add r9,r8
 sub r10,2
 jne G
 call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 jmp G
L: call COMPILER(64)
G: add r8,r9
 add r9,r8
 sub r10,2
 jne G
 call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 jmp G
L: call COMPILER(64)
G: add r8,r9
 add r9,r8
 sub r10,2
 jne G
 call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 jmp G
L: call COMPILER(64)
G: add r8,r9
 add r9,r8
 sub r10,2
 jne G
 call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 jmp G
L: call COMPILER(64)
G: add r8,r9
 add r9,r8
 sub r10,2
 jne G
 call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 jmp G
L: call COMPILER(64)
G: add r8,r9
 add r9,r8
 sub r10,2
 jne G
 call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

 mov r8,1
 mov r9,2
 sub r10,2
 je L
 jmp G
L: call COMPILER(64)
G: add r8,r9
 add r9,r8
 sub r10,2
 jne G
 call COMPILER(64)

JIT animation

40: mov r0,#0
44: mov r1,#1
48: add r0,r1
52: add r1,r0
56: subs r2,#2
60: bne 48

JIT compilerForeign code: Native code:

• blocks of foreign code is translated into native code
• eventually only native code is run

Block translation

L:
 add r0,r1
 add r1,r0
 subs r2,#2
 bne L

block in
foreign code

equivalent
bytecode

optimised
bytecode

implementation
in 64-bit x86

Block translation

L:
 add r0,r1
 add r1,r0
 subs r2,#2
 bne L

block in
foreign code

equivalent
bytecode

optimised
bytecode

implementation
in 64-bit x86

 mov A,r0
 mov B,r1
 add A,B
 mov r0,A
 inc pc,4
 mov A,r1
 mov B,r0
 add A,B
 mov r0,A
 inc pc,4
 ...
 skip 4
 ...
 inc pc,4

Block translation

L:
 add r0,r1
 add r1,r0
 subs r2,#2
 bne L

block in
foreign code

equivalent
bytecode

optimised
bytecode

implementation
in 64-bit x86

 mov A,r0
 mov B,r1
 add A,B
 mov r0,A
 inc pc,4
 mov A,r1
 mov B,r0
 add A,B
 mov r0,A
 inc pc,4
 ...
 skip 4
 ...
 inc pc,4

 mov A,r0
 mov B,r1
 add A,B
 mov r0,A
 mov A,r1
 mov B,r0
 add A,B
 mov r0,A
 ...
 skip 3
 ...
 inc pc,16

Block translation

L:
 add r0,r1
 add r1,r0
 subs r2,#2
 bne L

block in
foreign code

equivalent
bytecode

optimised
bytecode

implementation
in 64-bit x86

 mov A,r0
 mov B,r1
 add A,B
 mov r0,A
 inc pc,4
 mov A,r1
 mov B,r0
 add A,B
 mov r0,A
 inc pc,4
 ...
 skip 4
 ...
 inc pc,4

 mov A,r0
 mov B,r1
 add A,B
 mov r0,A
 mov A,r1
 mov B,r0
 add A,B
 mov r0,A
 ...
 skip 3
 ...
 inc pc,16

block correct,
but step-by-step

instruction
equivalence lost

Block translation

L:
 add r0,r1
 add r1,r0
 subs r2,#2
 bne L

block in
foreign code

equivalent
bytecode

optimised
bytecode

implementation
in 64-bit x86

 mov A,r0
 mov B,r1
 add A,B
 mov r0,A
 inc pc,4
 mov A,r1
 mov B,r0
 add A,B
 mov r0,A
 inc pc,4
 ...
 skip 4
 ...
 inc pc,4

 mov A,r0
 mov B,r1
 add A,B
 mov r0,A
 mov A,r1
 mov B,r0
 add A,B
 mov r0,A
 ...
 skip 3
 ...
 inc pc,16

 mov eax,r8
 mov ebx,r9
 add eax,ebx
 mov r8,eax
 ...

block correct,
but step-by-step

instruction
equivalence lost

New translations

list_translate : word32 list → bytecode list

optimize : bytecode list → bytecode list

compile : (bytecode list) x env → x86 instructions

New translations to synthesise:

where env is information of where previously
compiled code is located.

Produce JIT compiler following Myreen [POPL’10]

Problem

• executing the generate x86 code has the effect
of emulating some steps of the ARM code.

• precise invariant relates ARM code (in
memory) with generated x86 code.

• ... what about self-modification?

Invariant:

Problem

• executing the generate x86 code has the effect
of emulating some steps of the ARM code.

• precise invariant relates ARM code (in
memory) with generated x86 code.

• ... what about self-modification?

Invariant:

memcpy

40: ldr r8,[r9],#4
44: str r8,[r10],#4
48: subs r11
52: bne 40

L: mov r8,[r9]
 add r9,4
 mov [r10],r8
 add r10,4
 dec r11
 jne L

Memory of
emulated code:

Incorrect
generated code:

memcpy

40: ldr r8,[r9],#4
44: str r8,[r10],#4
48: subs r11
52: bne 40

L: mov r8,[r9]
 add r9,4
 mov [r10],r8
 add r10,4
 dec r11
 jne L

Memory of
emulated code:

Incorrect
generated code:

store instruction
modifies memory of

emulated code

memcpy

40: ldr r8,[r9],#4
44: str r8,[r10],#4
48: subs r11
52: bne 40

L: mov r8,[r9]
 add r9,4
 mov [r10],r8
 add r10,4
 dec r11
 jne L

Memory of
emulated code:

Incorrect
generated code:

store instruction
modifies memory of

emulated code
emulated code may
change as a result

memcpy

40: ldr r8,[r9],#4
44: str r8,[r10],#4
48: subs r11
52: bne 40

L: mov r8,[r9]
 add r9,4
 mov [r10],r8
 add r10,4
 dec r11
 jne L

Memory of
emulated code:

Incorrect
generated code:

store instruction
modifies memory of

emulated code
emulated code may
change as a result

generated code can
become out-of-date

memcpy

40: ldr r8,[r9],#4
44: str r8,[r10],#4
48: subs r11
52: bne 40

L: mov r8,[r9]
 add r9,4
 mov [r10],r8
 add r10,4
 dec r11
 jne L

Memory of
emulated code:

Incorrect
generated code:

store instruction
modifies memory of

emulated code
emulated code may
change as a result

generated code can
become out-of-date

need different inv
or runtime checks

Timings and trade-offs

• assume no self-modification (fast code)

• insert checks, erase out-of-date code (slower)

Invariant options:

Fib example:

fib(200,000,000) using JIT runs in 0.7 seconds

(directly x86-complied C runs only 7x faster)

Binary translation

One-off translation

Why not whole-program translation
instead of per-block translation?

Can be done ahead of time (once only)

One-off translation

Why not whole-program translation
instead of per-block translation?

Can be done ahead of time (once only)

Difficulties:

• what to do about self-modification?

• what is code, what is data?

• where do pointer jumps go?

Obvious route

program in
foreign code

equivalent
bytecode

optimised
bytecode

implementation
in 64-bit x86

Requires a more expressive bytecode, and
more complicated verified compiler...

Obvious route

program in
foreign code

equivalent
bytecode

optimised
bytecode

implementation
in 64-bit x86

Requires a more expressive bytecode, and
more complicated verified compiler...

Better approach: translation validation can
produce better code and is easier to implement.

Producing good code

• Ideal translation:

• Translation validation can prove these equiv.

 mov r0,#0
 mov r1,#1
L: add r0,r1
 add r1,r0
 subs r2,#2
 bne L

 mov eax,0
 mov ebx,1
L: add eax,ebx
 add ebx,eax
 sub ecx,2
 jne L

ARM x86

Translation validation

Part 1: decompilation

 mov r0,#0
 mov r1,#1
L: add r0,r1
 add r1,r0
 subs r2,#2
 bne L

f(r2) = g(0,1,r2)

g(r0,r1,r2) =
 let r0 = r0 + r1 in
 let r1 = r1 + r0 in
 let r2 = r2 - 2 in
 if r2 = 0 then (r0,r1,r2)
 else g(r0,r1,r2)

Function:

Theorem relating f with code
{ R0 r0 * R1 r1 * R2 r2 * PC p }
 p: arm_code
{ let (r0,r1,r2) = f(r2) in
 R0 r0 * R1 r1 * R2 r2 * PC (p+24) }

Translation validation

Part 2: proof-producing synthesis

To synthesise (x86) code for f:

1. generate code for f (without proof)
2. decompile generate code into f ’
3. automatically prove f = f ’

Result: certificate thm

{ R0 r0 * R1 r1 * R2 r2 * PC p }
 p: arm_code
{ let (r0,r1,r2) = f(r2) in
 R0 r0 * R1 r1 * R2 r2 * PC (p+24) }

Theorem: behaviour of ARM is f:

{ EAX a * EBX b * ECX c * EIP p }
 p: x86_code
{ let (a,b,c) = f(c) in
 EAX a * EBX b * ECX c * EIP (p+20) }

Theorem: behaviour of x86 is f:

Fib example

fib(200,000,000) runs in 0.1 seconds

(matches speed of directly x86-complied C)

Translation validation:

Caveat: translation validation not always applicable

Concluding remarks

Comparison
Different approaches:

direct interpretation: simple invariant

JIT compilation: complicated invariant

one-off binary translation: simple if applicable

‣ fib(200,000,000) in 48 seconds

‣ fib(200,000,000) in 0.7 seconds

‣ fib(200,000,000) in 0.1 seconds

Summary

This project is still work in progress.

Aim: construct different verified emulators
for ARMv4 running on 64-bit x86.

