
Reservoir Labs HCSS 2016 – 5.12.16 

Tahina Ramananandro
Paul Mountcastle, Benoît Meister, Richard Lethin

1

Formal Verification of C Programs
with Floating-Point Computations
Certified Error Bounds for Signal Processing



Reservoir Labs HCSS 2016 – 5.12.16 

• Sensor systems data processing
– Positioning, obstacle avoidance, radar imaging, etc.

• Problems
– Numerical optimizations for energy/time efficiency
– Correctness and accuracy
– Which guarantees on the actual software code?

2

Overview



Reservoir Labs HCSS 2016 – 5.12.16 

• Can we reason about sensor systems:
• With new performance optimizations for data processing
• In a very deep way, with strong correctness guarantees down to 

the actual code?

• Our contributions
• VCFloat: proof library and tactics to verify C programs with 

floating-point computations
• Example use case: a radar algorithm and its C implementation

• Use cases
• Cyber-physical systems
• Lightweight UAVs (copters), cars
• Military, transportation, medicine, etc.

3

Overview



Reservoir Labs HCSS 2016 – 5.12.16 

• Goal: energy-efficient implementations of numerical algorithms
• Naïve implementations consume time and energy
• Main ideas for performance improvement:

– compute in lower-precision floating-point
– introduce approximations

• Problem: uncertainty introduced by errors in the result
– How to compute some implementation error bound?
– How can we trust this error bound?

4

The High-Level Problem



Reservoir Labs HCSS 2016 – 5.12.16 

• VCFloat: a Coq library for handling floating-point 
computations in the verification of C programs

• Automatically compute real-number expressions with 
rounding error terms and their correctness proofs

• Use case: SAR backprojection with linear interpolation
• Introduce approximations for square root and sine
• Tune between single- and double-precision floating-points
• Compute error bounds wrt. “ideal” mathematical real-

number algorithm
• Formal proof of correctness using the Coq proof assistant
• Energy measurements: ~10-20% saved on Intel Haswell

5

Our Achievements



Reservoir Labs HCSS 2016 – 5.12.16 

• Certified error bounds for energy-efficient radar image 
processing

• Our Coq framework: VCFloat
• Demo
• Conclusions

6

This Presentation



Reservoir Labs HCSS 2016 – 5.12.16 

RADAR IMAGE PROCESSING
Certified Error Bounds for

7



Reservoir Labs HCSS 2016 – 5.12.16 8

Synthetic Aperture Radar (SAR) Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

Real-number algorithm



Reservoir Labs HCSS 2016 – 5.12.16 9

SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

Real-number algorithm



Reservoir Labs HCSS 2016 – 5.12.16 10

SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

sine

square root

Real-number algorithm



Reservoir Labs HCSS 2016 – 5.12.16 11

SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

sine

square root

floating-point computations

Implementation



Reservoir Labs HCSS 2016 – 5.12.16 

void backprojection
(int const BP_NPIX_X, int const BP_NPIX_Y,
int const N_PULSES, …,
float const **data_r, float const **data_i,
double** image_r, double** image_i, …) {
for (int y = 0; y < BP_NPIX_Y, ++y) {
…
for (int x = 0; x < BP_NPIX_X, ++x) {
…
for (int p = 0; p < N_PULSES, ++p) {
…
double … = … sqrt(…) … ;
…
double … = … sin(…) … ;
…

}
}

}
}

12

SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

sine

square root

floating-point computations

C Implementation



Reservoir Labs HCSS 2016 – 5.12.16 

void backprojection
(int const BP_NPIX_X, int const BP_NPIX_Y,
int const N_PULSES, …,
float const **data_r, float const **data_i,
double** image_r, double** image_i, …) {
for (int y = 0; y < BP_NPIX_Y, ++y) {
…
for (int x = 0; x < BP_NPIX_X, ++x) {
…
for (int p = 0; p < N_PULSES, ++p) {
…
double … = … approx_sqrt(…) … ;
…
double … = … approx_sin(…) … ;
…

}
}

}
}

13

SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

approximate
sine

approximate
square root

floating-point computations

C Implementation



Reservoir Labs HCSS 2016 – 5.12.16 

void backprojection
(int const BP_NPIX_X, int const BP_NPIX_Y,
int const N_PULSES, …,
float const **data_r, float const **data_i,
float** image_r, float** image_i, …) {
for (int y = 0; y < BP_NPIX_Y, ++y) {
…
for (int x = 0; x < BP_NPIX_X, ++x) {
…
for (int p = 0; p < N_PULSES, ++p) {
…
double … = … approx_sqrt(…) … ;
…
float … = … approx_sin(…) … ;
…

}
}

}
}

14

SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

approximate
sine

approximate
square root

floating-point computations

C Implementation
( ~ 150 lines)

Precision
tuning



Reservoir Labs HCSS 2016 – 5.12.16 

• Maximize Signal-Noise Ratio:

• Find an upper bound on the denominator
• Absolute error bound is enough

• Error sources:
• Method errors introduced by approximation
• Rounding errors introduced by floating-point computations

15

Image Error Analysis



Reservoir Labs HCSS 2016 – 5.12.16 16

Final Correctness Statement (slightly simplified)

Hypotheses

Conclusions

∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

Coq



Reservoir Labs HCSS 2016 – 5.12.16 17

Final Correctness Statement (slightly simplified)

Memory contents
and permissions

Conclusions

Hypotheses on input data∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

Coq



Reservoir Labs HCSS 2016 – 5.12.16 18

Final Correctness Statement (slightly simplified)

Hypotheses

Memory 
contents

C code runs

FP does not overflow

Total implementation error bound
(approximation + rounding)
computed at proof-building time

∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

Coq



Reservoir Labs HCSS 2016 – 5.12.16 

• Built-in hardware sine is costly in energy and time
• Replace core sine with a polynomial approximation

– Use convex optimization
– Compute coefficients with unverified numerical tools
– Do not trust the results, use Coq to prove an error bound

• Naïve argument reduction is enough for SAR
– Errors due to approximation of π and roundings
– Lower than implementation error for core computation

19

Polynomial Approximations of Sine



Reservoir Labs HCSS 2016 – 5.12.16 

• Replace square root with 2-degree Taylor polynomial 
– Taylor-Lagrange inequality bounds method error

• Valid only in a convergence disc
– Outside, use accurate hardware square root
– Adaptive algorithm: Re-center the disc as needed

20

Adaptive Approximate Square Root

20

Accurate hardware square root

Taylor approximate square root

TAU_S2



Reservoir Labs HCSS 2016 – 5.12.16 

• Input data bounds from DARPA PERFECT suite
• Error grows with image size
• No statistical reasoning about data

21

Precision Results

Norm Interpol. Sine Final sum

Double Double Double Double/Single

Double Single Double/Single Double/Single

Adaptive Double Double Double/Single

Adaptive Single Double/Single Double/Single

Double Single Approx. Double/Single

Adaptive Single Approx. Double/Single

Double Single Double/Single Single

Adaptive Single Approx. Single

-5 15 35 55 75
Overall introduced image noise (dB)

Large Medium Small



Reservoir Labs HCSS 2016 – 5.12.16 

• Intel SandyBridge: direct energy measurements
• Intel Haswell: energy model unknown, time instead

22

Performance Measurements for Optimized C Code

0

10000

20000

30000

40000

50000

Sequential Parallel

Energy (J) on SandyBridge, large

Original Optimized

0

50

100

150

200

0

20

40

60

80

100

120

Small Medium Large

Time % on Haswell, parallel

Original Optimized Original Time (s)

0

50

100

150

200

Sequential Parallel

Time (s) on SandyBridge, large

Original Optimized



Reservoir Labs HCSS 2016 – 5.12.16 

• C code size: 150 lines

• Proof size:
• Previous all-manual proof: 26k lines, no connection with C
• Thanks to VCFloat: reduced to 12k lines

– 5k lines of spec (loop invariants), 7k lines of proof
– ~2k lines of proof for real-number reasoning
– Remaining part due to C language constructs,

could be further reduced when integrating with Verifiable C 
(Appel et al. 2014)

• Proof building/checking time:
• 1 hour (4-core Intel Core i7, 2.10 GHz, 4 Gb RAM)
• Mostly due to interval computations

23

SAR proof: facts and figures



Reservoir Labs HCSS 2016 – 5.12.16 

OUR COQ FRAMEWORK: 
VCFLOAT

Formal Verification of Floating-Point Computations in C Programs

24



Reservoir Labs HCSS 2016 – 5.12.16 25

Final Correctness Statement (slightly simplified)

Hypotheses

Memory 
contents

C code runs

FP does not overflow

Total implementation error bound
(approximation + rounding)
computed at proof-building time

∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

Coq



Reservoir Labs HCSS 2016 – 5.12.16 26

Final Correctness Statement (slightly simplified)

Hypotheses

Memory 
contents

C code runs

FP does not overflow

Total implementation error bound
(approximation + rounding)
computed at proof-building timeFlocq

∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

CompCert Clight

Coq



Reservoir Labs HCSS 2016 – 5.12.16 

• Verification using the Coq proof assistant

• Correctness fully embedded in Coq using existing libraries:
• CompCert Clight (Blazy & Leroy, J. Autom. Reason. 2009)

– Formal semantics of a deterministic sequential subset of C

• Flocq (Boldo & Melquiond, ARITH 2009)
– Formalization of floating-point numbers

• Coq standard library
– Formalization of real numbers

27

Our Design Choices: Which Formal Methods?



Reservoir Labs HCSS 2016 – 5.12.16 

• We use Coq + CompCert Clight + Flocq.
Advantages for trust:

• Unified verification framework
– OK to combine proof libraries

• Formalization in the Gallina mathematical language of Coq
– Can be trusted more easily than practical implementations

(e.g. Fluctuat, Frama-C/Why3, etc.)

• Coq is the only setting where C, floating-point and real 
numbers are trustworthily mixed together

28

Our Design Choices: Which Formal Methods?



Reservoir Labs HCSS 2016 – 5.12.16 

• We use Coq + CompCert Clight + Flocq.
• What do we need to trust?

– Coq’s underlying logic is sound
– Implementation of Coq is sound wrt. Coq’s logic
– Coq standard library real numbers are consistent and faithful
– Clight is faithful wrt. the corresponding subset of ISO C99
– Flocq is faithful wrt. IEEE 754-2008 floating-point numbers

• Formalizations in the Gallina mathematical language
• Can be assessed more easily than practical implementations 

of verification tools

29

Our Approach and our Trusted Computing Base



Reservoir Labs HCSS 2016 – 5.12.16 30

Verification of C Floating-Point Expressions

C floating-point
expression

2.0f * (float) x – 3.0; 

Real-number
semantics?



Reservoir Labs HCSS 2016 – 5.12.16 

• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
• A binary operation a T b is not computed exactly
• Rounded from its ideal value

– Example rounding mode: rounding to nearest

• What is the shape of the rounding error?

31

Floating-Point Numbers



Reservoir Labs HCSS 2016 – 5.12.16 

• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e 0 ≤ m < 2prec,  emin ≤ e ≤ emax

32

Floating-Point Numbers



Reservoir Labs HCSS 2016 – 5.12.16 

• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1

33

Floating-Point Numbers



Reservoir Labs HCSS 2016 – 5.12.16 

• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1

34

Floating-Point Numbers

0 1 2 3 4 5 6 7

2-3

0   1   2   3   4   5   6   7

2-2

0       1       2      3       4       5       6       7

2-1



Reservoir Labs HCSS 2016 – 5.12.16 

• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1

35

Floating-Point Numbers

0 1 2 3 4 5 6 7

2-3

4   5   6   7

2-2

4       5       6       7

2-1

100  101  110  111



Reservoir Labs HCSS 2016 – 5.12.16 

• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1

36

Floating-Point Numbers

0 1 2 3

2-3
4 5 6 7

2-3 4   5   6   7

2-2 4       5       6       7

2-1



Reservoir Labs HCSS 2016 – 5.12.16 

• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1

37

Floating-Point Numbers

0 1 2 3

2-3
4 5 6 7

2-3 4   5   6   7

2-2 4       5       6       7

2-1

Denormal numbers
e = emin
m < 2prec-1

Normal numbers
2prec-1 ≤ m



Reservoir Labs HCSS 2016 – 5.12.16 

• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e 0 ≤ m < 2prec,  emin ≤ e ≤ emax

38

Floating-Point Numbers

Normal numbers
2prec-1 ≤ m

Denormal numbers
e = emin
m < 2prec-1



Reservoir Labs HCSS 2016 – 5.12.16 

• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
• A binary operation a T b is not computed exactly
• Rounded from its ideal value

– Rounding mode: rounding to nearest, ties to even mantissa

39

Floating-Point Numbers and Rounding Errors

Normal:
(a T b) (1 + d)
|d| ≤ 2-prec

Denormal:
(a T b) + c
|c| ≤ 2emin-1

General case: (a T b) (1 + d) + c
with c*d = 0



Reservoir Labs HCSS 2016 – 5.12.16 

• Normal numbers: (a T b) (1 + d), if |a T b| large enough and 
no overflow

• Denormal numbers: (a T b) + e, if |a T b| small enough
• Sterbenz subtraction: (a – b) if a/2 <= b <= 2a
• Multiply by power of 2 is always exact (unless overflow)
• Divide by power of 2 is exact if no gradual underflow

40

Optimized Rounding Errors



Reservoir Labs HCSS 2016 – 5.12.16 41

Flocq: correctness of floating-point arithmetic
Theorem Bplus_correct :

forall plus_nan m x y,
is_finite x = true ->
is_finite y = true ->
if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then

B2R (Bplus plus_nan m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
is_finite (Bplus plus_nan m x y) = true /\
Bsign (Bplus plus_nan m x y) =

match Rcompare (B2R x + B2R y) 0 with
| Eq => match m with mode_DN => orb (Bsign x) (Bsign y)

| _ => andb (Bsign x) (Bsign y) end
| Lt => true
| Gt => false

end
else

(B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).

Theorem relative_error_ex :
forall x,
(bpow emin <= Rabs x)%R ->
exists eps,
(Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R.

No overflow

Normal numbers



Reservoir Labs HCSS 2016 – 5.12.16 42

Flocq: correctness of floating-point arithmetic
Theorem Bplus_correct :

forall plus_nan m x y,
is_finite x = true ->
is_finite y = true ->
if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then

B2R (Bplus plus_nan m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
is_finite (Bplus plus_nan m x y) = true /\
Bsign (Bplus plus_nan m x y) =

match Rcompare (B2R x + B2R y) 0 with
| Eq => match m with mode_DN => orb (Bsign x) (Bsign y)

| _ => andb (Bsign x) (Bsign y) end
| Lt => true
| Gt => false

end
else

(B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).

Theorem relative_error_ex :
forall x,
(bpow emin <= Rabs x)%R ->
exists eps,
(Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R.

No overflow

Normal numbers

Better automate
their use



Reservoir Labs HCSS 2016 – 5.12.16 

• Optimized cases
• Normal numbers: (a T b) (1 + d), if |a T b| large enough and 

no overflow
• Denormal numbers: (a T b) + e, if |a T b| small enough
• Sterbenz subtraction: (a – b) if a/2 <= b <= 2a
• Multiply by power of 2 is always exact (unless overflow)
• Divide by power of 2 is exact if no gradual underflow

• Our VCFloat approach: 
• Automatically generate validity conditions
• Automatically check them on the fly
• Add annotations for optimized rounding

43

Rounding Error Terms



Reservoir Labs HCSS 2016 – 5.12.16 

• Use Coq-Interval (Melquiond 2015) to automatically check 
validity conditions

• Automatic certified interval arithmetic
• Reduce correlation issues:

– Bisection (branch-and-bound)
– Automatic differentiation
– Taylor models

• Used for all rounding errors
• All computations within Coq: consumes most proof 

checking time and memory in overall proof
• Stress test

44

Verification of Rounding Error Terms



Reservoir Labs HCSS 2016 – 5.12.16 45

Our Verification Framework: VCFloat
C code
to be 

verified

Clight
AST

CompCert
Clightgen

Floating-point
Core Calculus

Floating-point
Core Calculus

Real-number
Expressions

Automatic 
annotations
for rounding
optimizations

Correctness
Proofs

Correctness
Proofs

http://github.com/reservoirlabs/vcfloat
Released under GNU GPL v3

http://github.com/reservoirlabs/vcfloat


Reservoir Labs HCSS 2016 – 5.12.16 46

Verification of Rounding Error Terms

C floating-point
expression

2.0f * (float) x – 3.0; 



Reservoir Labs HCSS 2016 – 5.12.16 47

Verification of Rounding Error Terms

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 



Reservoir Labs HCSS 2016 – 5.12.16 48

Verification of Rounding Error Terms

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 

Assume x in [1, 2]



Reservoir Labs HCSS 2016 – 5.12.16 49

Verification of Rounding Error Terms

Norm Annotated floating-point
expression

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 

Assume x in [1, 2]

Because 2^-125 ≤ |x| < 2^128



Reservoir Labs HCSS 2016 – 5.12.16 50

Verification of Rounding Error Terms

Norm× Annotated floating-point
expression

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 

Assume x in [1, 2]

21

Because 2^-125 ≤ |x| < 2^128

And for all d in [-2^-24, 2^-24], |2 * (x * (1 + d))| < 2^128



Reservoir Labs HCSS 2016 – 5.12.16 51

Verification of Rounding Error Terms

Norm
Sterbenz

–× Annotated floating-point
expression

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 

Assume x in [1, 2]

Because 2^-125 ≤ |x| < 2^128

And for all d in [-2^-24, 2^-24], |2 * (x * (1 + d))| < 2^128

21

And for all d in [-2^-24, 2^-24], 3/2 ≤ 2 * (x * (1 + d))  ≤ 3*2



Reservoir Labs HCSS 2016 – 5.12.16 52

Verification of Rounding Error Terms

2.0f * (float) x – 3.0; 

Norm
Sterbenz

–×

Real-number expression
with error terms

Annotated floating-point
expression

Core floating-point
expression

C floating-point
expression

Assume x in [1, 2]

21

And for all d in [-2^-24, 2^-24], 3/2 ≤ 2 * (x * (1 + d))  ≤ 3*2

Because 2^-125 ≤ |x| < 2^128

And for all d in [-2^-24, 2^-24], |2 * (x * (1 + d))| < 2^128

For some



Reservoir Labs HCSS 2016 – 5.12.16 

DEMO
Formal Verification of Error Bounds

53



Reservoir Labs HCSS 2016 – 5.12.16 

CONCLUSIONS
Formal Verification of Error Bounds

54



Reservoir Labs HCSS 2016 – 5.12.16 

• Floating-point steps are now automated
• Overall more practical improvements ongoing:

– Integer handling
– C control flow: Integrate into Verifiable C (Princeton)
– More statistical support for hypotheses on input data to 

tighten error bounds

55

Ongoing Work



Reservoir Labs HCSS 2016 – 5.12.16 

• C programs with floating-point computations can now be 
fully verified within Coq with a TCB smaller than ever:

• Implementation of Coq, faithfulness of Clight and Flocq

• Error bounds certified with VCFloat
allow the use of energy-efficient approximate 
implementations in critical applications

• Ready for use in research and industry
• NSF DeepSpec
• End-to-end verification of cyber-physical systems

56

Conclusion and Opportunities



Reservoir Labs HCSS 2016 – 5.12.16 57

Proofs, Code and Data Rights

INRIA
Flocq

INRIA
CompCert

MSR-INRIA
Ssreflect
+ MathComp

INRIA
Coq-Interval

PNNL-GTRI
PERFECT
Data Suite

Reservoir Labs
Adaptive SAR

LGPLv3 GPLv2+ CeCILL-B CeCILL-C

Patched
version

CeCILL-C

BSD

Reservoir Labs VCFloat

Reservoir Labs
`Verified SAR
(no approx.)

Reservoir Labs
Verified
adaptive SAR

Patent Pending

GPLv3

GPLv3

GPLv3
GPLv3

BSD-like
LGPL-like
GPL-like
Non-free



Reservoir Labs HCSS 2016 – 5.12.16 

• Coq library and proofs available online:
• http://github.com/reservoirlabs/vcfloat
• Stress test for Flocq, Coq-Interval, and computations 

within Coq
• Conference paper published at ACM/SIGPLAN CPP 2016

– Ramananandro, Mountcastle, Meister, Lethin.
A Unified Coq Framework for Verifying C Programs with 
Floating-Point Computations

• For more information:
• ramananandro@reservoir.com
• http://www.reservoir.com/wp-publications/ramananandro2016

58

Thank you!

http://github.com/reservoirlabs/vcfloat
mailto:ramananandro@reservoir.com
http://www.reservoir.com/research/publications

	Formal Verification of C Programs�with Floating-Point Computations�Certified Error Bounds for Signal Processing
	Overview
	Overview
	The High-Level Problem
	Our Achievements
	This Presentation
	Radar Image Processing
	Synthetic Aperture Radar (SAR) Backprojection
	SAR Backprojection
	SAR Backprojection
	SAR Backprojection
	SAR Backprojection
	SAR Backprojection
	SAR Backprojection
	Image Error Analysis
	Final Correctness Statement (slightly simplified)
	Final Correctness Statement (slightly simplified)
	Final Correctness Statement (slightly simplified)
	Polynomial Approximations of Sine
	Adaptive Approximate Square Root
	Precision Results
	Performance Measurements for Optimized C Code
	SAR proof: facts and figures
	Our Coq Framework: VCFloat
	Final Correctness Statement (slightly simplified)
	Final Correctness Statement (slightly simplified)
	Our Design Choices: Which Formal Methods?
	Our Design Choices: Which Formal Methods?
	Our Approach and our Trusted Computing Base
	Verification of C Floating-Point Expressions
	Floating-Point Numbers
	Floating-Point Numbers
	Floating-Point Numbers
	Floating-Point Numbers
	Floating-Point Numbers
	Floating-Point Numbers
	Floating-Point Numbers
	Floating-Point Numbers
	Floating-Point Numbers and Rounding Errors
	Optimized Rounding Errors
	Flocq: correctness of floating-point arithmetic
	Flocq: correctness of floating-point arithmetic
	Rounding Error Terms
	Verification of Rounding Error Terms
	Our Verification Framework: VCFloat
	Verification of Rounding Error Terms
	Verification of Rounding Error Terms
	Verification of Rounding Error Terms
	Verification of Rounding Error Terms
	Verification of Rounding Error Terms
	Verification of Rounding Error Terms
	Verification of Rounding Error Terms
	Demo
	conclusions
	Ongoing Work
	Conclusion and Opportunities
	Proofs, Code and Data Rights
	Thank you!

