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• Sensor systems data processing
– Positioning, obstacle avoidance, radar imaging, etc.

• Problems
– Numerical optimizations for energy/time efficiency
– Correctness and accuracy
– Which guarantees on the actual software code?
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Overview
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• Can we reason about sensor systems:
• With new performance optimizations for data processing
• In a very deep way, with strong correctness guarantees down to 

the actual code?

• Our contributions
• VCFloat: proof library and tactics to verify C programs with 

floating-point computations
• Example use case: a radar algorithm and its C implementation

• Use cases
• Cyber-physical systems
• Lightweight UAVs (copters), cars
• Military, transportation, medicine, etc.
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Overview
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• Goal: energy-efficient implementations of numerical algorithms
• Naïve implementations consume time and energy
• Main ideas for performance improvement:

– compute in lower-precision floating-point
– introduce approximations

• Problem: uncertainty introduced by errors in the result
– How to compute some implementation error bound?
– How can we trust this error bound?
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The High-Level Problem
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• VCFloat: a Coq library for handling floating-point 
computations in the verification of C programs

• Automatically compute real-number expressions with 
rounding error terms and their correctness proofs

• Use case: SAR backprojection with linear interpolation
• Introduce approximations for square root and sine
• Tune between single- and double-precision floating-points
• Compute error bounds wrt. “ideal” mathematical real-

number algorithm
• Formal proof of correctness using the Coq proof assistant
• Energy measurements: ~10-20% saved on Intel Haswell
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Our Achievements
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• Certified error bounds for energy-efficient radar image 
processing

• Our Coq framework: VCFloat
• Demo
• Conclusions
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This Presentation



Reservoir Labs HCSS 2016 – 5.12.16 

RADAR IMAGE PROCESSING
Certified Error Bounds for

7
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Synthetic Aperture Radar (SAR) Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

Real-number algorithm
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SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

Real-number algorithm
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SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

sine

square root

Real-number algorithm
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SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

sine

square root

floating-point computations

Implementation
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void backprojection
(int const BP_NPIX_X, int const BP_NPIX_Y,
int const N_PULSES, …,
float const **data_r, float const **data_i,
double** image_r, double** image_i, …) {
for (int y = 0; y < BP_NPIX_Y, ++y) {
…
for (int x = 0; x < BP_NPIX_X, ++x) {
…
for (int p = 0; p < N_PULSES, ++p) {
…
double … = … sqrt(…) … ;
…
double … = … sin(…) … ;
…

}
}

}
}
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SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

sine

square root

floating-point computations

C Implementation
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void backprojection
(int const BP_NPIX_X, int const BP_NPIX_Y,
int const N_PULSES, …,
float const **data_r, float const **data_i,
double** image_r, double** image_i, …) {
for (int y = 0; y < BP_NPIX_Y, ++y) {
…
for (int x = 0; x < BP_NPIX_X, ++x) {
…
for (int p = 0; p < N_PULSES, ++p) {
…
double … = … approx_sqrt(…) … ;
…
double … = … approx_sin(…) … ;
…

}
}

}
}
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SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

approximate
sine

approximate
square root

floating-point computations

C Implementation
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void backprojection
(int const BP_NPIX_X, int const BP_NPIX_Y,
int const N_PULSES, …,
float const **data_r, float const **data_i,
float** image_r, float** image_i, …) {
for (int y = 0; y < BP_NPIX_Y, ++y) {
…
for (int x = 0; x < BP_NPIX_X, ++x) {
…
for (int p = 0; p < N_PULSES, ++p) {
…
double … = … approx_sqrt(…) … ;
…
float … = … approx_sin(…) … ;
…

}
}

}
}
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SAR Backprojection

Figure from Park et al. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors, SC 2012

approximate
sine

approximate
square root

floating-point computations

C Implementation
( ~ 150 lines)

Precision
tuning
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• Maximize Signal-Noise Ratio:

• Find an upper bound on the denominator
• Absolute error bound is enough

• Error sources:
• Method errors introduced by approximation
• Rounding errors introduced by floating-point computations

15

Image Error Analysis
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Final Correctness Statement (slightly simplified)

Hypotheses

Conclusions

∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

Coq
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Final Correctness Statement (slightly simplified)

Memory contents
and permissions

Conclusions

Hypotheses on input data∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

Coq
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Final Correctness Statement (slightly simplified)

Hypotheses

Memory 
contents

C code runs

FP does not overflow

Total implementation error bound
(approximation + rounding)
computed at proof-building time

∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

Coq



Reservoir Labs HCSS 2016 – 5.12.16 

• Built-in hardware sine is costly in energy and time
• Replace core sine with a polynomial approximation

– Use convex optimization
– Compute coefficients with unverified numerical tools
– Do not trust the results, use Coq to prove an error bound

• Naïve argument reduction is enough for SAR
– Errors due to approximation of π and roundings
– Lower than implementation error for core computation

19

Polynomial Approximations of Sine
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• Replace square root with 2-degree Taylor polynomial 
– Taylor-Lagrange inequality bounds method error

• Valid only in a convergence disc
– Outside, use accurate hardware square root
– Adaptive algorithm: Re-center the disc as needed

20

Adaptive Approximate Square Root

20

Accurate hardware square root

Taylor approximate square root

TAU_S2
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• Input data bounds from DARPA PERFECT suite
• Error grows with image size
• No statistical reasoning about data

21

Precision Results

Norm Interpol. Sine Final sum

Double Double Double Double/Single

Double Single Double/Single Double/Single

Adaptive Double Double Double/Single

Adaptive Single Double/Single Double/Single

Double Single Approx. Double/Single

Adaptive Single Approx. Double/Single

Double Single Double/Single Single

Adaptive Single Approx. Single

-5 15 35 55 75
Overall introduced image noise (dB)

Large Medium Small
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• Intel SandyBridge: direct energy measurements
• Intel Haswell: energy model unknown, time instead

22

Performance Measurements for Optimized C Code
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• C code size: 150 lines

• Proof size:
• Previous all-manual proof: 26k lines, no connection with C
• Thanks to VCFloat: reduced to 12k lines

– 5k lines of spec (loop invariants), 7k lines of proof
– ~2k lines of proof for real-number reasoning
– Remaining part due to C language constructs,

could be further reduced when integrating with Verifiable C 
(Appel et al. 2014)

• Proof building/checking time:
• 1 hour (4-core Intel Core i7, 2.10 GHz, 4 Gb RAM)
• Mostly due to interval computations

23

SAR proof: facts and figures
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OUR COQ FRAMEWORK: 
VCFLOAT

Formal Verification of Floating-Point Computations in C Programs

24
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Final Correctness Statement (slightly simplified)

Hypotheses

Memory 
contents

C code runs

FP does not overflow

Total implementation error bound
(approximation + rounding)
computed at proof-building time

∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

Coq
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Final Correctness Statement (slightly simplified)

Hypotheses

Memory 
contents

C code runs

FP does not overflow

Total implementation error bound
(approximation + rounding)
computed at proof-building timeFlocq

∀ P `(HYPS: SARHypotheses P)  m
(Hm: holds m (P ++

Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),

∃ m’ , star Clight.step2
(Callstate fn_sar_backprojection …) (Returnstate Vundef Kstop m‘) ∧

∃ image_r image_i,
holds m (P ++

Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧

∀ y, (y < BP_NPIX_Y)%nat → ∀ x, (x < BP_NPIX_X)%nat →
let ir := image_r (y × BP_NPIX_X + x))   in
let ii := image_i (y × BP_NPIX_X + x))   in
is_finite _ _ ir = true ∧ is_finite _ _ ii = true ∧
let (tr, ti) := SARBackProj.sar_backprojection y x     in
Rabs (B2R _ _ ir - tr) ≤ pixel_bound ∧
Rabs (B2R _ _ ii - ti) ≤ pixel_bound.

CompCert Clight

Coq
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• Verification using the Coq proof assistant

• Correctness fully embedded in Coq using existing libraries:
• CompCert Clight (Blazy & Leroy, J. Autom. Reason. 2009)

– Formal semantics of a deterministic sequential subset of C

• Flocq (Boldo & Melquiond, ARITH 2009)
– Formalization of floating-point numbers

• Coq standard library
– Formalization of real numbers

27

Our Design Choices: Which Formal Methods?
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• We use Coq + CompCert Clight + Flocq.
Advantages for trust:

• Unified verification framework
– OK to combine proof libraries

• Formalization in the Gallina mathematical language of Coq
– Can be trusted more easily than practical implementations

(e.g. Fluctuat, Frama-C/Why3, etc.)

• Coq is the only setting where C, floating-point and real 
numbers are trustworthily mixed together

28

Our Design Choices: Which Formal Methods?
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• We use Coq + CompCert Clight + Flocq.
• What do we need to trust?

– Coq’s underlying logic is sound
– Implementation of Coq is sound wrt. Coq’s logic
– Coq standard library real numbers are consistent and faithful
– Clight is faithful wrt. the corresponding subset of ISO C99
– Flocq is faithful wrt. IEEE 754-2008 floating-point numbers

• Formalizations in the Gallina mathematical language
• Can be assessed more easily than practical implementations 

of verification tools

29

Our Approach and our Trusted Computing Base
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Verification of C Floating-Point Expressions

C floating-point
expression

2.0f * (float) x – 3.0; 

Real-number
semantics?
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• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
• A binary operation a T b is not computed exactly
• Rounded from its ideal value

– Example rounding mode: rounding to nearest

• What is the shape of the rounding error?

31

Floating-Point Numbers
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• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e 0 ≤ m < 2prec,  emin ≤ e ≤ emax

32

Floating-Point Numbers
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• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1

33

Floating-Point Numbers
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• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1

34

Floating-Point Numbers

0 1 2 3 4 5 6 7

2-3

0   1   2   3   4   5   6   7

2-2

0       1       2      3       4       5       6       7

2-1
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• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1
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Floating-Point Numbers

0 1 2 3 4 5 6 7

2-3
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• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1
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Floating-Point Numbers
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• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e | 0 ≤ m < 23 = 8; -3 ≤ e ≤ -1

Example: prec = 3, emin = -3, emax = -1
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Floating-Point Numbers
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Denormal numbers
e = emin
m < 2prec-1

Normal numbers
2prec-1 ≤ m
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• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
±m · 2e 0 ≤ m < 2prec,  emin ≤ e ≤ emax

38

Floating-Point Numbers

Normal numbers
2prec-1 ≤ m

Denormal numbers
e = emin
m < 2prec-1
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• IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)
• A binary operation a T b is not computed exactly
• Rounded from its ideal value

– Rounding mode: rounding to nearest, ties to even mantissa

39

Floating-Point Numbers and Rounding Errors

Normal:
(a T b) (1 + d)
|d| ≤ 2-prec

Denormal:
(a T b) + c
|c| ≤ 2emin-1

General case: (a T b) (1 + d) + c
with c*d = 0
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• Normal numbers: (a T b) (1 + d), if |a T b| large enough and 
no overflow

• Denormal numbers: (a T b) + e, if |a T b| small enough
• Sterbenz subtraction: (a – b) if a/2 <= b <= 2a
• Multiply by power of 2 is always exact (unless overflow)
• Divide by power of 2 is exact if no gradual underflow

40

Optimized Rounding Errors
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Flocq: correctness of floating-point arithmetic
Theorem Bplus_correct :

forall plus_nan m x y,
is_finite x = true ->
is_finite y = true ->
if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then

B2R (Bplus plus_nan m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
is_finite (Bplus plus_nan m x y) = true /\
Bsign (Bplus plus_nan m x y) =

match Rcompare (B2R x + B2R y) 0 with
| Eq => match m with mode_DN => orb (Bsign x) (Bsign y)

| _ => andb (Bsign x) (Bsign y) end
| Lt => true
| Gt => false

end
else

(B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).

Theorem relative_error_ex :
forall x,
(bpow emin <= Rabs x)%R ->
exists eps,
(Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R.

No overflow

Normal numbers
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Flocq: correctness of floating-point arithmetic
Theorem Bplus_correct :

forall plus_nan m x y,
is_finite x = true ->
is_finite y = true ->
if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then

B2R (Bplus plus_nan m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
is_finite (Bplus plus_nan m x y) = true /\
Bsign (Bplus plus_nan m x y) =

match Rcompare (B2R x + B2R y) 0 with
| Eq => match m with mode_DN => orb (Bsign x) (Bsign y)

| _ => andb (Bsign x) (Bsign y) end
| Lt => true
| Gt => false

end
else

(B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).

Theorem relative_error_ex :
forall x,
(bpow emin <= Rabs x)%R ->
exists eps,
(Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R.

No overflow

Normal numbers

Better automate
their use
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• Optimized cases
• Normal numbers: (a T b) (1 + d), if |a T b| large enough and 

no overflow
• Denormal numbers: (a T b) + e, if |a T b| small enough
• Sterbenz subtraction: (a – b) if a/2 <= b <= 2a
• Multiply by power of 2 is always exact (unless overflow)
• Divide by power of 2 is exact if no gradual underflow

• Our VCFloat approach: 
• Automatically generate validity conditions
• Automatically check them on the fly
• Add annotations for optimized rounding

43

Rounding Error Terms
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• Use Coq-Interval (Melquiond 2015) to automatically check 
validity conditions

• Automatic certified interval arithmetic
• Reduce correlation issues:

– Bisection (branch-and-bound)
– Automatic differentiation
– Taylor models

• Used for all rounding errors
• All computations within Coq: consumes most proof 

checking time and memory in overall proof
• Stress test

44

Verification of Rounding Error Terms
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Our Verification Framework: VCFloat
C code
to be 

verified

Clight
AST

CompCert
Clightgen

Floating-point
Core Calculus

Floating-point
Core Calculus

Real-number
Expressions

Automatic 
annotations
for rounding
optimizations

Correctness
Proofs

Correctness
Proofs

http://github.com/reservoirlabs/vcfloat
Released under GNU GPL v3

http://github.com/reservoirlabs/vcfloat
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Verification of Rounding Error Terms

C floating-point
expression

2.0f * (float) x – 3.0; 
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Verification of Rounding Error Terms

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 
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Verification of Rounding Error Terms

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 

Assume x in [1, 2]
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Verification of Rounding Error Terms

Norm Annotated floating-point
expression

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 

Assume x in [1, 2]

Because 2^-125 ≤ |x| < 2^128
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Verification of Rounding Error Terms

Norm× Annotated floating-point
expression

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 

Assume x in [1, 2]

21

Because 2^-125 ≤ |x| < 2^128

And for all d in [-2^-24, 2^-24], |2 * (x * (1 + d))| < 2^128
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Verification of Rounding Error Terms

Norm
Sterbenz

–× Annotated floating-point
expression

Core floating-point
expression

C floating-point
expression

2.0f * (float) x – 3.0; 

Assume x in [1, 2]

Because 2^-125 ≤ |x| < 2^128

And for all d in [-2^-24, 2^-24], |2 * (x * (1 + d))| < 2^128
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And for all d in [-2^-24, 2^-24], 3/2 ≤ 2 * (x * (1 + d))  ≤ 3*2
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Verification of Rounding Error Terms

2.0f * (float) x – 3.0; 

Norm
Sterbenz

–×

Real-number expression
with error terms

Annotated floating-point
expression

Core floating-point
expression

C floating-point
expression

Assume x in [1, 2]

21

And for all d in [-2^-24, 2^-24], 3/2 ≤ 2 * (x * (1 + d))  ≤ 3*2

Because 2^-125 ≤ |x| < 2^128

And for all d in [-2^-24, 2^-24], |2 * (x * (1 + d))| < 2^128

For some
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DEMO
Formal Verification of Error Bounds
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CONCLUSIONS
Formal Verification of Error Bounds
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• Floating-point steps are now automated
• Overall more practical improvements ongoing:

– Integer handling
– C control flow: Integrate into Verifiable C (Princeton)
– More statistical support for hypotheses on input data to 

tighten error bounds
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Ongoing Work
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• C programs with floating-point computations can now be 
fully verified within Coq with a TCB smaller than ever:

• Implementation of Coq, faithfulness of Clight and Flocq

• Error bounds certified with VCFloat
allow the use of energy-efficient approximate 
implementations in critical applications

• Ready for use in research and industry
• NSF DeepSpec
• End-to-end verification of cyber-physical systems
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Conclusion and Opportunities
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Proofs, Code and Data Rights
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• Coq library and proofs available online:
• http://github.com/reservoirlabs/vcfloat
• Stress test for Flocq, Coq-Interval, and computations 

within Coq
• Conference paper published at ACM/SIGPLAN CPP 2016

– Ramananandro, Mountcastle, Meister, Lethin.
A Unified Coq Framework for Verifying C Programs with 
Floating-Point Computations

• For more information:
• ramananandro@reservoir.com
• http://www.reservoir.com/wp-publications/ramananandro2016
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Thank you!

http://github.com/reservoirlabs/vcfloat
mailto:ramananandro@reservoir.com
http://www.reservoir.com/research/publications
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