Formal Verification of C Programs with Floating-Point Computations

Certified Error Bounds for Signal Processing

Tahina Ramananandro

Paul Mountcastle, Benoît Meister, Richard Lethin

Overview

- Sensor systems data processing
 - Positioning, obstacle avoidance, radar imaging, etc.
- Problems
 - Numerical optimizations for energy/time efficiency
 - Correctness and accuracy
 - Which guarantees on the actual software code?

Overview

Can we reason about sensor systems:

- With new performance optimizations for data processing
- In a very deep way, with strong correctness guarantees down to the actual code?

Our contributions

- VCFloat: proof library and tactics to verify C programs with floating-point computations
- Example use case: a radar algorithm and its C implementation

Use cases

- Cyber-physical systems
- Lightweight UAVs (copters), cars
- Military, transportation, medicine, etc.

The High-Level Problem

Goal: energy-efficient implementations of numerical algorithms

- Naïve implementations consume time and energy
- Main ideas for performance improvement:
 - compute in lower-precision floating-point
 - introduce approximations
- Problem: uncertainty introduced by errors in the result
 - How to compute some implementation error bound?
 - How can we **trust** this error bound?

Our Achievements

VCFloat: a Coq library for handling floating-point computations in the verification of C programs

• Automatically compute real-number expressions with rounding error terms and their correctness proofs

Use case: SAR backprojection with linear interpolation

- Introduce approximations for square root and sine
- Tune between single- and double-precision floating-points
- Compute error bounds wrt. "ideal" mathematical realnumber algorithm
- Formal proof of correctness using the Coq proof assistant
- Energy measurements: ~10–20% saved on Intel Haswell

This Presentation

- Certified error bounds for energy-efficient radar image processing
- Our Coq framework: VCFloat
- Demo
- Conclusions

Certified Error Bounds for

RADAR IMAGE PROCESSING

Reservoir Labs HCSS 2016 – 5.12.16

Synthetic Aperture Radar (SAR) Backprojection

Real-number algorithm

for
$$y := 0$$
 to BP_NPIX_Y - 1 do
 $py := (y + \frac{1 - BP_NPIX_Y}{2}) \times dxdy$
for $x := 0$ to BP_NPIX_X - 1 do
 $px := (x + \frac{1 - BP_NPIX_X}{2}) \times dxdy$
 $image[y][x] := 0 \in \mathbb{C}$
for $p := 0$ to N_PULSES - 1 do
 $r := \| \overline{platpos}[p] - (px, py, z[p][y][x]) \|$
 $bin := (r - r_0)/dr$
 $\underline{sample} := binSample(N_RANGE_UPSAMPLED, \underline{data}[p], bin)$
 $\underline{matchedFilter} := exp(2i \times ku \times r)$
 $\underline{image}[y][x] := \underline{image}[y][x] + \underline{sample} \times \underline{matchedFilter}$
end for
end for
end for
return $image$

Real-number algorithm

Real-number algorithm

Image Error Analysis

Maximize Signal-Noise Ratio:

 $SNR := \frac{\|\underline{image_0}\|^2}{\|\underline{image} - \underline{image_0}\|^2}$

Find an upper bound on the denominator

• Absolute error bound is enough

Error sources:

- Method errors introduced by approximation
- Rounding errors introduced by floating-point computations

∀ P `(HYPS: SARHypotheses P) m (Hm: holds m (P ++	Hypotheses
Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++ Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y))	i i j po cheses
Ξ m', star Clight.step2	
(Callstate fn_sar_backprojection) (Returnstate Vundef Kstop m') \wedge	
∃ image_r image_i,	
holds m (P ++	
Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++	
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧	Conclusions
Coq \forall y, (y < BP_NPIX_Y)%nat \rightarrow \forall x, (x < BP_NPIX_X)%nat \rightarrow	
let ir := image_r (y \times BP_NPIX_X + x)) in	
let ii := image_i (y \times BP_NPIX_X + x)) in	
is_finite ir = true Λ is_finite ii = true Λ	
let (tr, ti) := SARBackProj.sar_backprojection y x in	
Rabs (B2R ir - tr) \leq pixel_bound Λ	
Rabs (B2R ii - ti) ≤ pixel_bound.	

\forall P `(HYPS: SARHypotheses P) m	1		
(Hm: holds m (P ++	Lynathacac		
Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++	hypotheses		
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),			
∃ m' , star Clight.step2	A		
(Callstate fn_sar_backprojection) (Returnstate Vundef Kstop m') \wedge	C code runs		
∃ image_r image_i,			
holds m (P ++ Memo	ory		
Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++ conte	nts		
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧			
Coq \forall y, (y < BP_NPIX_Y)%nat \rightarrow \forall x, (x < BP_NPIX_X)%nat \rightarrow			
let ir := image_r (y × $BP_NPIX_X + x$) in			
let ii := image_i (y × BP_NPIX_X + x)) in			
is_finite ir = true ∧ is_finite ii = true ∧ FP does not overf	low		
let (tr, ti) := SARBackProj.sar_backprojection y x in			
Rabs (B2R ir - tr) \leq pixel_bound \land Total implementation error bound			
Rabs (B2R ii - ti) \leq pixel_bound. (approximation + rounding)			
computed at proof-build	lina time		

Polynomial Approximations of Sine

Built-in hardware sine is costly in energy and time

- Replace core sine with a polynomial approximation
 - Use convex optimization
 - Compute coefficients with **unverified** numerical tools
 - Do not trust the results, use Coq to prove an error bound
- Naïve argument reduction is enough for SAR
 - Errors due to approximation of π and roundings
 - Lower than implementation error for core computation

Adaptive Approximate Square Root

- Replace square root with 2-degree Taylor polynomial
 - Taylor-Lagrange inequality bounds method error
- Valid only in a convergence disc
 - Outside, use accurate hardware square root
 - Adaptive algorithm: Re-center the disc as needed

Precision Results

- Input data bounds from DARPA PERFECT suite
- Error grows with image size
- No statistical reasoning about data

Norm	Interpol.	Sine	Final sum -5		15	3	5 Lintroduced	55	n o i
Double	Double	Double	Double/Single	-		Overal	i introduced	image	nois
Double	Single	Double/Single	Double/Single	_					
Adaptive	Double	Double	Double/Single			-			
Adaptive	Single	Double/Single	Double/Single						
Double	Single	Approx.	Double/Single						
Adaptive	Single	Approx.	Double/Single						
Double	Single	Double/Single	Single						
Adaptive	Single	Approx.	Single					•	
					La	arge 🔳 M	edium ∎Sm	all	

Performance Measurements for Optimized C Code

- Intel SandyBridge: direct energy measurements
- Intel Haswell: energy model unknown, time instead

Energy (J) on SandyBridge, large

SAR proof: facts and figures

C code size: 150 lines

Proof size:

- Previous all-manual proof: 26k lines, no connection with C
- Thanks to VCFloat: reduced to 12k lines
 - 5k lines of spec (loop invariants), 7k lines of proof
 - ~2k lines of proof for real-number reasoning
 - Remaining part due to C language constructs, could be further reduced when integrating with Verifiable C (Appel et al. 2014)

Proof building/checking time:

- 1 hour (4-core Intel Core i7, 2.10 GHz, 4 Gb RAM)
- Mostly due to interval computations

Formal Verification of Floating-Point Computations in C Programs

OUR COQ FRAMEWORK: VCFLOAT

\forall P `(HYPS: SARHypotheses P) m			
(Hm: holds m (P ++	Uunothococ		
Pperm_int bir oir (BP_NPIX_X × BP_NPIX_Y) ++	nypotneses		
Pperm_int bii oii (BP_NPIX_X × BP_NPIX_Y)),			
∃ m', star Clight.step2			
(Callstate fn_sar_backprojection) (Returnstate Vundef Kstop m') \wedge C C	code runs		
∃ image_r image_i,			
holds m (P ++ Memory	T		
Parray_int image_r bir oir (BP_NPIX_X × BP_NPIX_Y) ++ contents	5		
Parray_int image_i bii oii (BP_NPIX_X × BP_NPIX_Y)) ∧			
$\forall y, (y < BP_NPIX_Y)$ %nat $\rightarrow \forall x, (x < BP_NPIX_X)$ %nat \rightarrow			
let ir := image_r (y × $BP_NPIX_X + x$)) in			
let ii := image_i (y \times BP_NPIX_X + x)) in			
is_finite ir = true ∧ is_finite ii = true ∧ FP does not overflow	N		
let (tr, ti) := SARBackProj.sar_backprojection y x in			
Rabs (B2R ir - tr) \leq pixel_bound \land Total implementation error bound			
Rabs (B2R ii - ti) \leq pixel_bound. (approximation + rounding)			
computed at proof-building	a time		

Our Design Choices: Which Formal Methods?

Verification using the Coq proof assistant

Correctness fully embedded in Coq using existing libraries:

- CompCert Clight (Blazy & Leroy, J. Autom. Reason. 2009)
 - Formal semantics of a deterministic sequential subset of C
- Flocq (Boldo & Melquiond, ARITH 2009)
 - Formalization of floating-point numbers
- Coq standard library
 - Formalization of real numbers

Our Design Choices: Which Formal Methods?

We use Coq + CompCert Clight + Flocq. Advantages for trust:

- Unified verification framework
 - OK to combine proof libraries
- Formalization in the Gallina mathematical language of Coq
 - Can be trusted more easily than practical implementations (e.g. Fluctuat, Frama-C/Why3, etc.)
- Coq is the only setting where C, floating-point and real numbers are trustworthily mixed together

Our Approach and our Trusted Computing Base

We use Coq + CompCert Clight + Flocq.

- What do we need to trust?
 - Coq's underlying logic is sound
 - Implementation of Coq is sound wrt. Coq's logic
 - Coq standard library real numbers are consistent and faithful
 - Clight is faithful wrt. the corresponding subset of ISO C99
 - Flocq is faithful wrt. IEEE 754-2008 floating-point numbers
- Formalizations in the Gallina mathematical language
- Can be assessed more easily than practical implementations of verification tools

Verification of C Floating-Point Expressions

C floating-point 2.0f * (float) x - 3.0; expression **Real-number** semantics

IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)

- A binary operation a T b is not computed exactly
- Rounded from its ideal value
 - Example rounding mode: rounding to nearest
- What is the shape of the rounding error?

IEEE 754–2008 modelled by Flocq (Boldo et al. 2009)

 $\pm m \cdot 2^{e} \qquad \qquad 0 \leq m < 2^{prec}, \ e_{min} \leq e \leq e_{max}$

IEEE 754–2008 modelled by Flocq (Boldo et al. 2009) $\pm m \cdot 2^e \mid 0 \le m < 2^3 = 8; -3 \le e \le -1$

Example: prec = 3, emin = -3, emax = -1

IEEE 754–2008 modelled by Flocq (Boldo et al. 2009) $\pm m \cdot 2^e \mid 0 \leq m < 2^3 = 8; -3 \leq e \leq -1$

Example: prec = 3, emin = -3, emax = -10 1 2 3 4 5 6 7 **L** 2⁻³ 01 $\mathbf{2}$ 3 4 0 1 $\mathbf{2}$ 3 4 2-2 0 1 $\mathbf{2}$ 4 2^{-1}

IEEE 754–2008 modelled by Flocq (Boldo et al. 2009) $\pm m \cdot 2^e \mid 0 \le m < 2^3 = 8; -3 \le e \le -1$

Example: prec = 3, emin = -3, emax = -10 1 2 3 4 5 6 7 **L** 2⁻³ 0 1 $\mathbf{2}$ 3 4 0 1 $\mathbf{2}$ 3 4 2⁻² 100 101 110 111 0 1 $\mathbf{2}$ 4 2^{-1}

IEEE 754–2008 modelled by Flocq (Boldo et al. 2009) $\pm m \cdot 2^e \mid 0 \leq m < 2^3 = 8; -3 \leq e \leq -1$

Example: prec = 3, emin = -3, emax = -1

IEEE 754–2008 modelled by Flocq (Boldo et al. 2009) $\pm m \cdot 2^e | 0 \le m < 2^3 = 8; -3 \le e \le -1$

Example: prec = 3, emin = -3, emax = -1

Floating-Point Numbers and Rounding Errors

IEEE 754-2008 modelled by Flocq (Boldo et al. 2009)

- A binary operation a T b is not computed exactly
- Rounded from its ideal value
 - Rounding mode: rounding to nearest, ties to even mantissa

General case: (a T b) (1 + d) + cwith $c^*d = 0$

Optimized Rounding Errors

- Normal numbers: (a T b) (1 + d), if |a T b| large enough and no overflow
- Denormal numbers: (a T b) + e, if |a T b| small enough
- Sterbenz subtraction: (a b) if a/2 <= b <= 2a
- Multiply by power of 2 is always exact (unless overflow)
- Divide by power of 2 is exact if no gradual underflow

Flocq: correctness of floating-point arithmetic

```
Theorem Bplus_correct :
 forall plus_nan m x y,
 is_finite x = true ->
                                                                                                        No overflow
 is finite y = true \rightarrow
 if RIt bool (Rabs (round radix2 fexp (round mode m) (B2R x + B2R y))) (bpow radix2 emax) then
  B2R (Bplus plus_nan m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) //
  is_finite (Bplus plus_nan m x y) = true /
  Bsign (Bplus plus_nan m x y) =
    match Rcompare (B2R x + B2R y) 0 with
     | Eq => match m with mode_DN => orb (Bsign x) (Bsign y)
                     | => andb (Bsign x) (Bsign y) end
     |Lt => true
     | Gt => false
    end
 else
  (B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) / Bsign x = Bsign y).
```

```
Theorem relative_error_ex :
forall x,
(bpow emin <= Rabs x)%R\stackrel{\frown}{=} exists eps,
(Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R.
```

Flocq: correctness of floating-point arithmetic

Theorem Bplus_correct :	
forall plus_nan m x y,	
is_finite x = true ->	No overflow
is_finite $y = true ->$	
if RIt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then	
B2R (Bplus plus nan m x y) = round radix2 fexp (round mode m) (B2R x + B2R y) /	
Better automate	e
Lt	-
Gt	
end alle	
Theorem relative error ex:	
forall x. Normal numbers	
$(bpow emin <= Rabs x) \% R^{->}$	
exists eps,	
(Rabs eps < bpow (-p + 1))%R /\ round beta fexp rnd x = (x * (1 + eps))%R.	

Rounding Error Terms

Optimized cases

- Normal numbers: (a T b) (1 + d), if |a T b| large enough and no overflow
- Denormal numbers: (a T b) + e, if a T b small enough
- Sterbenz subtraction: (a b) if a/2 <= b <= 2a
- Multiply by power of 2 is always exact (unless overflow)
- Divide by power of 2 is exact if no gradual underflow

Our VCFloat approach:

- Automatically generate validity conditions
- Automatically check them on the fly
- Add annotations for optimized rounding

Use Coq-Interval (Melquiond 2015) to automatically check validity conditions

- Automatic certified interval arithmetic
- Reduce correlation issues:
 - Bisection (branch-and-bound)
 - Automatic differentiation
 - Taylor models
- Used for all rounding errors
- All computations within Coq: consumes most proof checking time and memory in overall proof
- Stress test

Our Verification Framework: VCFloat

2.0f * (float) x - 3.0;

C floating-point expression

2.0f * (float) x - 3.0;

C floating-point expression

 $(2_{(24,128)} \otimes [x]_{(24,128)}) \ominus 3_{(53,1024)}$

Core floating-point expression

2.0f * (float) x - 3.0;

C floating-point expression

$$(2_{(24,128)} \otimes [x]_{(24,128)}) \ominus 3_{(53,1024)}$$

Assume x in [1, 2]

Core floating-point expression

2.0f * (float) x - 3.0;

$$(2_{(24,128)} \otimes [x]_{(24,128)}) \ominus 3_{(53,1024)}$$

Assume x in [1, 2]

$$(2_{(24,128)} \otimes [x]_{(24,128)}^{\mathsf{Norm}}) \ominus 3_{(53,1024)}$$

Because $2^{-125} \le |x| < 2^{128}$

C floating-point expression

Core floating-point expression

Annotated floating-point expression

2.0f * (float)
$$x - 3.0;$$

$$(2_{(24,128)} \otimes [x]_{(24,128)}) \ominus 3_{(53,1024)}$$

Assume x in [1, 2]

$$(2^{1} \times [x]_{(24,128)}^{\text{Norm}}) \ominus 3_{(53,1024)}$$

Because $2^{-125} \le |x| < 2^{128}$ And for all d in [-2^-24, 2^-24], $|2^*(x^*(1 + d))| < 2^{128}$ C floating-point expression

Core floating-point expression

Annotated floating-point expression

2.0f * (float)
$$x - 3.0;$$

C floating-point expression

$$(2_{(24,128)}\otimes [x]_{(24,128)})\ominus 3_{(53,1024)}$$

Assume x in [1, 2]

(21 $X [x]_{(24,128)}^{\text{Sterbenz}} \oplus 3_{(53,1024)}$

Because $2^{-125} \le |x| < 2^{128}$ And for all d in [-2^-24, 2^-24], $|2 * (x * (1 + d))| < 2^{128}$ And for all d in [-2^-24, 2^-24], $3/2 \le 2 * (x * (1 + d)) \le 3^{27}$ Core floating-point expression

Annotated floating-point expression

$$2.0f * (float) x - 3.0;$$

$$(2_{(24,128)} \otimes [x]_{(24,128)}) \ominus 3_{(53,1024)}$$

Assume x in [1, 2]

(21 $X [x]_{(24,128)}^{\text{Norm}} \rightarrow 3_{(53,1024)}$

Because $2^{-125} \le |x| < 2^{128}$ And for all d in $[-2^{-24}, 2^{-24}]$, $|2 * (x * (1 + d))| < 2^{128}$ And for all d in $[-2^{-24}, 2^{-24}]$, $3/2 \le 2 * (x * (1 + d)) \le 3^{22}$

$$\begin{array}{c} 2 \times (x \times (1+\delta)) - 3 \\ \text{ For some } \delta \text{ in } [-2^{-24}, 2^{-24}] \end{array}$$

C floating-point expression

Core floating-point expression

Annotated floating-point expression

Real-number expression with error terms

Formal Verification of Error Bounds

DEMO

Formal Verification of Error Bounds

CONCLUSIONS

Ongoing Work

- Floating-point steps are now automated
- Overall more practical improvements ongoing:
 - Integer handling
 - C control flow: Integrate into Verifiable C (Princeton)
 - More statistical support for hypotheses on input data to tighten error bounds

Conclusion and Opportunities

C programs with floating-point computations can now be fully verified within Coq with a TCB smaller than ever:

Implementation of Coq, faithfulness of Clight and Flocq

Error bounds certified with VCFloat allow the use of energy-efficient approximate implementations in critical applications

Ready for use in research and industry

- NSF DeepSpec
- End-to-end verification of cyber-physical systems

Proofs, Code and Data Rights

Thank you!

Coq library and proofs available online:

- <u>http://github.com/reservoirlabs/vcfloat</u>
- Stress test for Flocq, Coq-Interval, and computations within Coq
- Conference paper published at ACM/SIGPLAN CPP 2016
 - Ramananandro, Mountcastle, Meister, Lethin. A Unified Coq Framework for Verifying C Programs with Floating-Point Computations

For more information:

- <u>ramananandro@reservoir.com</u>
- http://www.reservoir.com/wp-publications/ramananandro2016