
Formalizing and Evaluating
 Checked C

Michael Hicks
joint work with

Liyi Li, Yiyun Liu, Deena Postol,
David Van Horn, and Leonidas

Lampropoulos
University of Maryland

in consultation with the Checked C team at
Microsoft

C/C++: Dangerous

• Memory safety violations, like HeartBleed [1], are the leading (and
growing) cause of computer security vulnerabilities in software
• 2019 Microsoft BlueHat report [2]: 70% of patches for memory safety bugs
• 2019 MITRE report on CWE trends [3]: Buffer bounds errors the #1 most

dangerous vulnerability, almost twice as dangerous as #2; the #5 error is
buffer overreads

• The cause? Critical (inevitable) defects in C/C++-based software
[1] https://heartbleed.com

[2] https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-
%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

[3] https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

https://heartbleed.com
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends,%20challenge,%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends,%20challenge,%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

C/C++: Not Going Away

• C/C++ software represents a huge, and growing footprint
• 6.6 billion lines of C code as open source software [1]; another 1.7B of C++
• 15% of monthly average users on Github are writing in C/C++, stable over past 5 years [2]
• Customers increasingly want to put their legacy C/C++ systems code into networked

environments (e.g., for Amazon and the FreeRTOS operating system)

• Porting legacy C/C++ code to a new language is expensive and risky
• For new projects, using a new language makes sense
• Rewriting existing code in a safe language would be time consuming and error prone

• Languages like Rust, Haskell, Erlang, or Go are very different than C/C++
• Rewriting very unlikely to be easy and fast

[1] https://www.openhub.net/languages/c
[2] https://www.benfrederickson.com/ranking-programming-languages-by-github-users/

https://www.openhub.net/languages/c
https://www.benfrederickson.com/ranking-programming-languages-by-github-users/

Checked C: Spatially Safe C, Incrementally

• Extends C with three new checked pointer types
• Singleton pointers _Ptr<T> — NULL or point to one T

• Array pointers _Array_ptr<T> : count(n) — NULL or point to an n-element
buffer of T values (other ways to express bounds, too)

• Null-terminated array pointers _NT_array_ptr<T> : count(n) — NULL or
point to at least n values of type T

• Backward binary- and source- compatible with legacy C
• Aims to achieve spatial safety: (1) use only checked pointers; (2) place

in checked regions, which limit unsafe idioms. Pay as you go.

https://github.com/Microsoft/checkedc https://github.com/Microsoft/checkedc-clang

Strength of Safety Guarantee?

• Questions to consider:

• Is the Checked C design sound? If programs adhere to its
specification, are they indeed spatially safe?

• What is the impact on spatial safety of the presence of legacy code?

• Even if Checked C’s design is sound, there may be bugs in the
compiler—how can these be avoided?

• Our approach to answering these questions:

• Develop a formal model; prove properties about it

• Use the formal model as the basis for compiler validation

Initial Work

• Formal model presented at POST 2019
• Proved type safety and blame
• All safety violations can (in a formal sense)

blame mixed-in legacy code
• Mechanized proofs in the Coq proof

assistant
• But the model was limited (“core”), lacking

many important features
• No direct connection to the compiler

This Work

• Expanded the POST’19 model to address many shortcomings
• Mechanized in the Coq proof assistant
• Implemented in PLT Redex

• Developed randomized testing framework
• Based on the Redex model, and leverages its testing support
• Used to compare code samples against the model and the actual

compiler

Expanded Models

• PLT Redex and Coq models with many more features
• dependent functions and function calls
• dynamic (rather than static) array bounds
• bounds expressions (to support pointer arithmetic)
• null-terminated arrays, with bounds widening
• dynamic bounds casts

• Theorems
• type safety (basically, same as POST’19) — proved in Coq model
• formal semantics does not require “fat pointers” to implement — stated and

validated in PLT Redex

New Feature: Dynamically Sized Bounds

• Dependent types for dynamically-sized bounds
 void foo(int c) {
 _Array_ptr<int> p: count(c) = malloc(c*sizeof(int));
 }

• Type _Array_ptr<int> count(c) depends on c, a run-time value

• Prior model could express static sizes; _Array_ptr<int> count(5)

New Feature: Bounds Expressions

• Bounds expressions support pointer arithmetic
 void foo(int c) {
 _Array_ptr<int> p: count(c) = malloc(c*sizeof(int));
 _Array_ptr<int> q: bounds(p,p+c) = p;
 q++;;
 *q = 1; // checks that p ≤ q < p+c
 }

• Prior model could support pointer arithmetic; only dynamic indexes
(e.g., p[1] = 1, not p++;*p = 1)

New Feature: Null-terminated Arrays

• Null-terminated Arrays expand their bounds on non-null checks
 void foo(_Nt_array_ptr<int> p) { // bounds(p,p)
 if (*p) { // expands to bounds(p,p+1)
 p[0] = ‘a’; // checks that p ≤ p < p+1
 }
 // bounds returned to bounds(p,p)
 }

• Prior model had no support for null-terminated arrays and bounds
widening

Proved Theorems

• Type safety: A program with only checked features (no legacy pointers)
will not fail
• By accessing undefined memory
• By accessing an object contrary to its type

• No fat pointers: All Checked C pointers are single machine words
• The formal semantics annotates pointers with their bounds; a direct

translation would treat these annotations as “fat” metadata
• Instead, we prove that a type-driven transformation can be run

with a semantics without annotations, and is bisimilar to the original

Randomized, Model-based Testing

• A model is great. How to connect to the compiler? Randomized testing!

PLT Redex
Generator

Model
language
program

Checked C
program

Checked C
compilerTranslator

PLT Redex
Checker

✔

𐄂

✔

𐄂

Goal:
•Confirm that accept/not accept match
•Run-time behavior, too
Challenge:
•Producing diverse, interesting programs

Program Generation

• An arbitrary random program is unlikely to type check
• Many more ill-formed abstract syntax trees than well formed ones

• Solution: Generate a typing derivation; derive program from it
• Easier to generate well-formed derivations by construction

• Then: Produce an unsafe program by mutating P

Conclusions

• Checked C is a promising approach to securing legacy, and low-level code

• But we want to ensure its design, implementation are solid

• Our work is toward this goal

• Current status

• Redex model is almost complete but requires some minor tweaks

• Coq model has further to go, with some technical issues with
dependent types and bounds widening still to solve

• Key activity is automated test generation

