Formalizing and Evaluating
Checked C

Michael Hicks

joint work with
Liyi Li, Yiyun Liu, Deena Postol,
David Van Horn, and Leonidas
Lampropoulos

University of Maryland -

in consultation with the Checked C team at o
Microsoft Microsoft

C/C++: Dangerous

« Memory safety violations, like HeartBleed [1], are the leading (and
growing) cause of computer security vulnerabilities in software

o 2019 Microsoft BlueHat report [2]: 70% of patches for memory safety bugs

e 2019 MITRE report on CWE trends [3]: Buffer bounds errors the #1 most
dangerous vulnerability, almost twice as dangerous as #2; the #5 error is
buffer overreads

« The cause? Critical (inevitable) defects in C/C++-based software

[1] https://heartbleed.com

[2] https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019 02 BlueHatlL/2019 01%20-%20BlueHat|L%20-
%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

[3] https://cwe.mitre.org/top25/archive/2020/2020 cwe top25.html

https://heartbleed.com
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends,%20challenge,%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends,%20challenge,%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

DN EDITION

C/C++: Not Going Away cc

PROGRAMMING
LANGUAGL

« C/C++ software represents a huge, and growing footprint

XNNGANLRITCHE

e 6.6 billion lines of C code as open source software [1]; another 1.7B of C++
« 15% of monthly average users on Github are writing in C/C++, stable over past 5 years [2]

« Customers increasingly want to put their legacy C/C++ systems code into networked
environments (e.g., for Amazon and the FreeRTOS operating system)

 Porting legacy C/C++ code to a new language is expensive and risky
e For new projects, using a new language makes sense
e Rewriting existing code in a safe language would be time consuming and error prone
« Languages like Rust, Haskell, Erlang, or Go are very different than C/C++
« Rewriting very unlikely to be easy and fast

[1] https://www.openhub.net/languages/c

[2] https://www.benfrederickson.com/ranking-programming-languages-by-github-users/

https://www.openhub.net/languages/c
https://www.benfrederickson.com/ranking-programming-languages-by-github-users/

Checked C: Spatially Safe C, Incrementally

e Extends C with three new checked pointer types
 Singleton pointers Ptr<T> — NULL or pointtoone T

e Array pointers Array_ptr<T>:count(n) —NULL or point to an n-element
buffer of T values (other ways to express bounds, too)

e Null-terminated array pointers NT array ptr<T>:count(n) —NULL or
point to at least n values of type T

« Backward binary- and source- compatible with legacy C

« Aims to achieve spatial safety: (1) use only checked pointers; (2) place
in checked regions, which limit unsafe idioms. Pay as you go.

https://github.com/Microsoft/checkedc https://github.com/Microsoft/checkedc-clang

Strength of Safety Guarantee?

e Questions to consider:

e Is the Checked C design sound? If programs adhere to its
specification, are they indeed spatially safe?

« What is the impact on spatial safety of the presence of legacy code?

« Even if Checked C’s design is sound, there may be bugs in the
compiler—how can these be avoided?

« Our approach to answering these questions:
« Develop a formal model; prove properties about it

« Use the formal model as the basis for compiler validation

Initial Work

e Formal model presented at POST 2019
e Proved type safety and blame

« All safety violations can (in a formal sense)
blame mixed-in legacy code

« Mechanized proofs in the Coq proof
assistant

e But the model was limited (“core”), lacking
many important features

e No direct connection to the compiler

Achieving Safety Incrementally with Checked C

Ave mew Boe™ . Toonidas lsmnprapoad o' 7 Lus Swee ' Dawidd Toniti® und
Michae! Hcks

¥ Univercity of Mary and
{auruar e, llaapro seslocs und . Mo
¢ Uiversity of Peansy van s
' Mhrrosc® Resosech

deardiribelcrcecls con

Abstost, Theckud C b a pow effor, workey vovzad o menury-sale C
o design o distiguished frem thet of pror clioets by traly boisg
eriewenen 1ol € Ervey O prigres Soboa Checked C poogonan T oas e
mer moke incccmontal calety Improscoenss 10 cocthing cedoboses wihiic
retaieday suekoware] compadbdliny. Thin peger maon (v coatri stions
et e wdp developom convvret exdeting O eode 10 use 30 eallod chechod
(Lo, saf) palntrs ww b Saviopad & posd mineey antoenaiad porting
towl, Notobdy this toal tekee ocdvextege of the el of Chesked Ce
dsigr: The 100l need ot perfoctly dassify wary poinier, & reqenx
of palor aloe-octhing «fHoate, Tather, 1 230 mase & beat oflcnt 20 ccne
Wt mnoee poances srearately, witkont letting inace ases iah Mt cxn.
pilstion Howewer, such partial conveméoa rases (he quostion: | safcty
vioktlans ran ol corvr, adar wet of sdantags does iing (heclord
L opeenads? We dran iopiretiss from roscarch on migratory typing
make car wvond coetrbat v s Aa peove o Maos pacqerty Eant renders
soved ol chedken romwe aackse of ey 1uw i fakee. YWe el
this propesty kor & cooe calcm s uncd mecasanes the proct n Uoq

1 Iniroduction

Valnerabalitics that soanpromes® mamory safefy oee ot the heart o wany ot
tcky Spetiaf safety, o smpect of wewory sufety, & ersumpd when any pointer
vesdrmne s alvapn aithio the mem g abkxated to ot poster. Dl awee
rons volte spotial sedety, and sl conatitute n somunn o of ook dity,
Dauriag 2002-2008, bulfor omrrans wore b couros of 9.7% 1c 18.4% of UVEs
roported ie the NIST volncrab bty databise 7S coostiinting the leacing aaghe
cause of CVEs

The s woe of memory wesalay sasls with L arguage delingdcns of O aund
C+ 4. whikk recder cus~of-bounds poister dersfereaces *wndefined.” Tracitional
compidors assume they over bopocr, Moxy efforts over the eet UL yeore have
alrnod for greater pssurance by proving taat acoosses sye 1 bounds, and/ar peo-
venting Cuteodoundy wiraes foun sgppeding da et drnamic Jhoecks [21,
6,3 A 15,0, 2,4 7,58 10 125,16,22,15). I'ais pap:r kousen cy Cherhen O a

This Work | l)

« Expanded the POST’19 model to address many shortcomings
« Mechanized in the Coq proof assistant
e Implemented in PLT Redex '\
e Developed randomized testing framework ‘
« Based on the Redex model, and leverages its testing support

« Used to compare code samples against the model and the actual
compiler

Expanded Models

o PLT Redex and Coq models with many more features
« dependent functions and function calls
« dynamic (rather than static) array bounds
« bounds expressions (to support pointer arithmetic)
« null-terminated arrays, with bounds widening
« dynamic bounds casts
e« Theorems
o type safety (basically, same as POST’19) — proved in Cog model

« formal semantics does not require “fat pointers” to implement — stated and
validated in PLT Redex

New Feature: Dynamically Sized Bounds

e Dependent types for dynamically-sized bounds

void foo(int c) {
_Array_ptr<int> p: count(c) = malloc(c*sizeof (int));

}

e« Type Array ptr<int> count (c) depends on c, a run-time value

e Prior model could express static sizes; _Array_ptr<int> count (5)

New Feature: Bounds Expressions

« Bounds expressions support pointer arithmetic

void foo(int c) {
_Array_ptr<int> p: count(c) = malloc(c*sizeof (int));
_Array_ptr<int> q: bounds (p,pt+c) = p;
qt+;;
*qg = 1; // checks that p £ g < p+c
}

e Prior model could support pointer arithmetic; only dynamic indexes
(e.g.,p[1] = 1,notp++;*p = 1)

New Feature: Null-terminated Arrays

e Null-terminated Arrays expand their bounds on non-null checks

void foo(Nt array ptr<int> p) { // bounds (p,p)
if (*p) { // expands to bounds (p,p+1)
p[0] = ‘a’; // checks that p £ p < p+l

}
// bounds returned to bounds (p,p)

}

 Prior model had no support for null-terminated arrays and bounds
widening

Proved Theorems

« Type safety: A program with only checked features (no legacy pointers)
will not fail

e By accessing undefined memory
e By accessing an object contrary to its type
e No fat pointers: All Checked C pointers are single machine words

« The formal semantics annotates pointers with their bounds; a direct
translation would treat these annotations as “fat” metadata

e Instead, we prove that a type-driven transformation can be run
with a semantics without annotations, and is bisimilar to the original

Randomized, Model-based Testing

« A model is great. How to connect to the compiler? Randomized testing!

PLT Redex
Generator

AN

Model

» language |—

program

PLT Redex /
Checker \

Checked C
Translator >

program
X Goal:

—_—

Checked C
compiler

/'X
"\

e Confirm that accept/not accept match

eRun-time behavior, too

Challenge:

eProducing diverse, interesting programs

Program Generation

e An arbitrary random program is unlikely to type check
« Many more ill-formed abstract syntax trees than well formed ones

« Solution: Generate a typing derivation; derive program from it
« Easier to generate well-formed derivations by construction

e Then: Produce an unsafe program by mutating P

Conclusions

e Checked Cis a promising approach to securing legacy, and low-level code
e But we want to ensure its design, implementation are solid

e Our work is toward this goal

e Current status
« Redex model is almost complete but requires some minor tweaks

« Coq model has further to go, with some technical issues with
dependent types and bounds widening still to solve

« Key activity is automated test generation

