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History

• Wanted nice functional programming example for
class (2001)

• Picked AES, translated to ML

• Had a go at verifying functional correctness in
HOL-4 (2002)

• Lessons: pretty easy ... and that’s GOOD!
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This Talk

• Review AES formalization, proofs

• Lessons of proofs

• Extension to a wide variety of datatypes
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General Perspective

•• HOL has internal FP language with all the usual
stuff (pattern matching, type inference,
polymorphism)

• Use that to formalize crypto algorithms at an
abstract level

• Similar to Cryptol

• Use logic to verify functional correctness

4



Higher Order Logic

• Simple, powerful logic (Church 1943)

• Predicate logic + typed λ-calculus

• Quantification over predicates, functions, and
sets

• Supports formalization of (near) arbitrary
mathematics

• ‘Core’ ML and HOL have similar type systems

• We’ll ignore the differences 5



Higher Order Logic

• Reasoning about hardware and software can
require fairly sophisticated mathematics

• IEEE floating point requires the real numbers
and analysis

• Correctness of randomized algorithms requires
probability

• We won’t use anywhere near this amount of
power
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Functional Specification

• Encryption followed by decryption should be the
identity

Decrypt(key,Encrypt(key, input)) = input

• Should be easy to prove, even formally!

• We have done this for 128 bit keys

• Did not prove: encryption should be effectively
impossible to invert without the key
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Specification details

• The specification is phrased in terms of the finite
field GF(28)

• This never enters into the proofs

• A block (the plaintext input) is a 16-tuple of 8-bit
bytes

• A key is the same size as a block

• A state is a 4×4 block of bytes (notionally)
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The state

• Accessed by byte, by row, and by column
• Modelled by a 16-tuple.

type state = word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8

• Sometimes written to look like a matrix

(b00, b01, b02, b03,
b10, b11, b12, b13,
b20, b21, b22, b23,
b30, b31, b32, b33)
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Moving into and out of the state

• Into (stripe)

to_state (b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15)
=

(b0,b4,b8,b12,
b1,b5,b9,b13,
b2,b6,b10,b14,
b3,b7,b11,b15)

• Back out (unstripe)

from_state (b0,b4,b8,b12,
b1,b5,b9,b13,
b2,b6,b10,b14,
b3,b7,b11,b15)

=
(b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15)
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Implementation—High Level View

• Before encryption, the key is used to produce a
key schedule [k0, . . . ,k10]. These are xor-ed with
the state in each round.

• Encryption

plaintext
k0−→ state0

k1−→ . . .

k9−→ state9
k10−→ ciphertext

• Decryption

plaintext
k0←− state0

k1←− . . .

k9←− state9
k10←− ciphertext
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What happens in a round?

• Encryption

k
−→= (xor k) ◦ MixCols ◦ ShiftRows ◦ SubBytes

• Decryption

k
←−= MixCols−1 ◦ (xor k) ◦ SubBytes−1 ◦ ShiftRows−1
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Sboxes

• The Sbox and its inverse are permutations on
bytes

• Can be thought of as a 16×16 matrix indexed by
the two halves of a byte

• Instead, modelled as a total function
word8→ word8
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Sboxes (cont’d)

• Snippet from HOL source (256 cases) :

Sbox(F,F,F,F,T,F,T,F) = (F,T,T,F,F,T,T,T) ∧

Sbox(F,F,F,F,T,F,T,T ) = (F,F,T,F,T,F,T,T ) ∧

Sbox(F,F,F,F,T,T,F,F) = (T,T,T,T,T,T,T,F) ∧

Sbox(F,F,F,F,T,T,F,T ) = (T,T,F,T,F,T,T,T) ∧

• ` InvSbox◦Sbox = I

• Proved by case analysis and evaluation (trivial)

• Found transcription bug
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SubBytes (non-linear byte substitution)

genSubBytes S (b00,b01,b02,b03,
b10,b11,b12,b13,
b20,b21,b22,b23,
b30,b31,b32,b33)

=
(S b00, S b01, S b02, S b03,
S b10, S b11, S b12, S b13,
S b20, S b21, S b22, S b23,
S b30, S b31, S b32, S b33)

SubBytes = genSubBytes Sbox
InvSubBytes = genSubBytes InvSbox

` ∀s. InvSubBytes(SubBytes s) = s
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ShiftRows

• Shift left the first row by 0, the second row by 1,
the third by 2 and the fourth by 3.

• Code:
ShiftRows (b00,b01,b02,b03,

b10,b11,b12,b13,
b20,b21,b22,b23,
b30,b31,b32,b33)

=
(b00,b01,b02,b03,
b11,b12,b13,b10,
b22,b23,b20,b21,
b33,b30,b31,b31)

` InvShiftRows(ShiftRows(s)) = s is trivial
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MixCols

• Operates on each column

• This can be reduced to matrix multiplication and
then to
MultCol(a,b,c,d) = (a′,b′,c′,d′) where

a′ = 02•a xor 03•b xor c xor d

b′ = a xor 02•b xor 03•c xor d

c′ = a xor b xor 02•c xor 03•d

d′ = 03•a xor b xor c xor 02•d
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InvMixCols

• The inverse operation does more work.
InvMultCol(a,b,c,d) = (a′,b′,c′,d′) where

a′ = 0E•a xor 0B•b xor 0D•c xor 09•d

b′ = 09•a xor 0E•b xor 0B•c xor 0D•d

c′ = 0D•a xor 09•b xor 0E•c xor 0B•d

d′ = 0B•a xor 0D•b xor 09•c xor 0E•d
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MixCols contd.

• Code (higher order)

genMixCols MC (b00,b01,b02,b03,
b10,b11,b12,b13,
b20,b21,b22,b23,
b30,b31,b32,b33)

=
let val (b00’, b10’, b20’, b30’) = MC (b00,b10,b20,b30)

val (b01’, b11’, b21’, b31’) = MC (b01,b11,b21,b31)
val (b02’, b12’, b22’, b32’) = MC (b02,b12,b22,b32)
val (b03’, b13’, b23’, b33’) = MC (b03,b13,b23,b33)

in
(b00’, b01’, b02’, b03’,
b10’, b11’, b12’, b13’,
b20’, b21’, b22’, b23’,
b30’, b31’, b32’, b33’)

end
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MixCols final.

• Instantiations
MixCols = genMixCols MultCol
InvMixCols = genMixCols InvMultCol

` ∀s : state. InvMixCols(MixCols s) = s

• Computationally hard to prove

• Interesting to see how SAT or BDDs would do
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Inversion Lemmas

• Lemmas
` ∀s. from state(to state s) = s

` ∀s. to state(from state s) = s

` ∀w. InvSbox(Sbox w) = w

` ∀s. InvSubBytes(SubBytes s) = s

` ∀s. InvShiftRows(ShiftRows s) = s

` ∀x y z. x• (y xor z) = (x• y) xor (x• z)

` ∀s : state. InvMixCols(MixCols s) = s
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Verification

Formalization

• First wrote purely functional version in SML

• Then transcribed to HOL-4 (easy)

Validation

• Have to make sure that AES properly
implemented (i.e., encryption and decryption not
just the identity function)

• By comparing with data in specification document

22



Statement of Correctness

` ∀key plaintext.

let (encrypt,decrypt) = AES key

in

decrypt(encrypt plaintext) = plaintext

AES just sets up the key schedule and gives it to the
encryptor and decryptor
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AES

AES : key→ ((block→ block)
︸ ︷︷ ︸

encrypt

×(block→ block)
︸ ︷︷ ︸

decrypt

)

AES key =

let sched = mk keysched key in

let isched = reverse sched in

((from state ◦Round 9 (tl sched)

◦ xor (hd sched)◦ to state),

(from state ◦ InvRound 9 (tl isched)

◦ xor (hd isched)◦ to state))
24



Proof

• Enumeration of states seems infeasible (at least
2128 states)

• Exhaustive testing not apparently possible

• What to do?

• Idea: symbolically execute the algorithms
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Symbolic Execution

• Evaluation with variables

• In decrypt(encrypt plaintext), plaintext is a 16-tuple
of bytes.

• Choices
decrypt(encrypt v)
decrypt(encrypt (v0, . . . ,v15))

decrypt(encrypt ((v0,0,v0,1,v0,2,v0,3,v0,4,v0,5,v0,6,v0,7), . . . ,

(v15,0,v15,1,v15,2,v15,3,v15,4,v15,5,v15,6,v15,7))
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Proof (cont’d)

• Let input plaintext be an arbitrary tuple of
variables (v0, . . . ,v15) and just let the algorithms
run. Decryption should undo the effects of
encryption.

• Not feasible either!

• Exponential-sized formulas from variables
occurring in conditions of if—then–else
expressions

• Improved Idea: controlled symbolic execution
plus rewriting with inversion lemmas
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Proof (cont’d)

• Problem: key schedule generation is complex.

• If non-trivial properties of it are needed, then
proof is no longer easy

• Fortunately, all that is necessary to know about
the keyschedule is that its length is 11.

• Easy to prove by symbolically executing
keyschedule generator

• Once this is proved, we can use a list of variables
[k0,k1,k2, . . . ,k10] as keyschedule value.
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Proof Outline

After controlled symbolic evaluation:

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .
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Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .
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Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .
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Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .
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Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .
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Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .
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Discussion

• Model of AES in theorem prover

• Can be executed by (deductive) evaluation on
ground or symbolic terms

• Can also be proved correct, in same logical
system, with same proof tools.

• Correctness proved with little difficulty
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Discussion (contd)

• Unwound 10 rounds then inversion lemmas used
to collapse from the inside

• A few lemmas needed interaction, but perhaps
most of that can be automated?

• Proof in Cryptol used to related high-level
algorithmic spec. to more concrete algorithmic
spec.

• Our approach is complementary, in that it proves
a correctness property (sanity check) of the
original high-level spec.
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Part II: Dealing with High Level Types

• AES deals with byte blocks

• But one wants to deal with elements of high-level
types

• Example: one might wish to encrypt a database
of medical patients (e.g., tree of records)

• Lots of programming needed to bridge the gap

• Boring and error-prone.

• Polytypism to the rescue!
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Types and Algorithms

• Types often tend to come before algorithms

• One defines a type, then defines algorithms over
the type

• Example: ADTs (Abstract Data Types)

• Very successful, provides a solid underpinning for
software engineering

• But not the only game in town!
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Polytypism

• Polytypic algorithms are so general that they
apply to a wide range of types

• In a sense, they come before types and get
instantiated when a new type is defined

• NB. Not the same idea as polymorphism
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Polytypism in FP

• Datatype declaration introduces a particular
shape of tree

• A polytypic algorithm operates uniformly, modulo
the shape of the data
• Equality
• Substitution
• Printing
• Mapping into bitstrings (and back out)
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Polytypism and Encryption

• Idea: Automatically map high level data to
bitstrings then use AES.

• Allows correctness of AES to be factored out and
re-used for encryption of all datatypes.

41



Types formally

• Type signature Ω holds the arities of type
operators

• Types are defined inductively:
• Countable set of type variables:

α,α1,α2, . . . ,β,β1, . . .

• If c in Ω has arity n, and each of τ1, . . . ,τn is a
type, then (τ1, . . . ,τn)c is a type

• New types are added to Ω when they are defined
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Basic Types

• Booleans: bool.
Values are true and false.

• Pairs: (α,β)prod. Written α∗β.
Values constructed with (−,−).

• Sums: (α,β)sum. Written α+β.
Values constructed with INL : α→ α+β and
INR : β→ α+β.

• Functions: (α,β)fun. Written α→ β.
Values constructed via lambda abstraction λv. M
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Datatypes

• Mechanism for introducing user-defined types

• Recursive num = 0 | Suc of num

• Polymorphic

• Partial functions : α option = None | Some of α
• Homogeneous lists : α list = [ ] | :: of α∗α list

• Example value:

[None, Some (Suc 0)] : num option list
44



More Datatypes

• Nested under existing member of Ω. The
following is a type of finitely branching trees:

α tree = Node of α∗α tree list

• Mutually recursive (and nested)

(α,β)exp = Var of α
| Cond of (α,β)bexp∗ (α,β)exp∗ (α,β)exp

| App of β∗ (α,β)exp list

(α,β)bexp = Less of (α,β)exp∗ (α,β)exp

| And of (α,β)bexp∗ (α,β)bexp

| Not of (α,β)bexp 45



Polytypism Sketch : Coding

• Given an environment Γ of encoders and
decoders for types

• Synthesize encoders/decoders for a compound
type by mimicking the structure of the type:

• Example: The type (num∗bool option)list.

• Suppose Γ is an encoder context containing at
least encoders for the types num, list, option, and
bool
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Coding example

• Synthesized encoder:

encode list (encode prod encode num

(encode option encode bool))

• Decoder (using a decoder context):

decode list (decode prod decode num

(decode option decode bool))
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Interpretation

• Our approach is based on an interpretation [[ ]]Θ,Γ
of HOL types into terms.

[[v]]Θ,Γ = Θ(v) if v a tyvar

[[ (τ1, ...,τn)c ]]Θ,Γ = Γ(c) [[τ1]]Θ,Γ · · · [[τn]]Θ,Γ otherwise

• The interpretation is parameterized by two maps:
Θ, which maps type variables; and Γ, which maps
type operators.

• Lifted to terms: IΘ,Γ(M : τ) = [[τ]]Θ,Γ(M)
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Interpretation

• Interpretations common in formal semantics:
translate syntax into informal mathematics
(models)

• Support meta-theoretic exercises (soundness,
completeness)

• In contrast, we interpret HOL types (syntax) into
HOL terms (syntax)

• Allows proof support to be automatically defined
each time a datatype is declared
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Polytypism and Proof Automation

• When a new type τ is introduced, then
automatically define new functions:

• Size : τ→ num

• Lifting : τ
︸︷︷︸

ML

→ τ
︸︷︷︸

HOL

• Coding
• Encode : τ→ bool list

• Decode : bool list→ τ

• These are used to support proof automation
50



Bringing it all together

• Given capability to synthesize encoders and
decoders for τ (see paper for details)

• Algorithms for padding bitstrings to exact
multiples of the block size (pad), and unpadding
to the original length (unpad); and

• Use mode of operation (CBC) to lift block
encryptor E and decryptor D to CBCE and CBCD,
which work on sequences of blocks.
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Correctness statement

AES key = (E,D)⊃

decodeτ ◦unpad◦CBCD
︸ ︷︷ ︸

decryption

◦CBCE ◦pad◦ encodeτ
︸ ︷︷ ︸

encryption

= I

Easy to show when we know

• D◦E = I (AES correctness)

• CBCD ◦CBCE = I (Trivial)

• unpad◦pad = I (Trivial)

• decodeτ ◦ encodeτ = I (Easy)
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Conclusions

• Sanity-checking style proofs for encryption and
decryption of high-level types are not hard

• Possibilities for full automation
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Future Work

• Code (or hardware) generation from these
high-level specs

• Ongoing work with Mike Gordon at Cambridge

• Done via equivalence preserving steps in
theorem prover

• Goal: a (longer) unbroken assurance chain
through to final artifact
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