
Formally Verified Encryption of High-Level
Datatypes

Konrad Slind
Joe Hurd

School of Computing, University of Utah
Computer Lab, University of Cambridge

1

History

• Wanted nice functional programming example for
class (2001)

• Picked AES, translated to ML

• Had a go at verifying functional correctness in
HOL-4 (2002)

• Lessons: pretty easy ... and that’s GOOD!

2

This Talk

• Review AES formalization, proofs

• Lessons of proofs

• Extension to a wide variety of datatypes

3

General Perspective

•• HOL has internal FP language with all the usual
stuff (pattern matching, type inference,
polymorphism)

• Use that to formalize crypto algorithms at an
abstract level

• Similar to Cryptol

• Use logic to verify functional correctness

4

Higher Order Logic

• Simple, powerful logic (Church 1943)

• Predicate logic + typed λ-calculus

• Quantification over predicates, functions, and
sets

• Supports formalization of (near) arbitrary
mathematics

• ‘Core’ ML and HOL have similar type systems

• We’ll ignore the differences 5

Higher Order Logic

• Reasoning about hardware and software can
require fairly sophisticated mathematics

• IEEE floating point requires the real numbers
and analysis

• Correctness of randomized algorithms requires
probability

• We won’t use anywhere near this amount of
power

6

Functional Specification

• Encryption followed by decryption should be the
identity

Decrypt(key,Encrypt(key, input)) = input

• Should be easy to prove, even formally!

• We have done this for 128 bit keys

• Did not prove: encryption should be effectively
impossible to invert without the key

7

Specification details

• The specification is phrased in terms of the finite
field GF(28)

• This never enters into the proofs

• A block (the plaintext input) is a 16-tuple of 8-bit
bytes

• A key is the same size as a block

• A state is a 4×4 block of bytes (notionally)

8

The state

• Accessed by byte, by row, and by column
• Modelled by a 16-tuple.

type state = word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8

• Sometimes written to look like a matrix

(b00, b01, b02, b03,
b10, b11, b12, b13,
b20, b21, b22, b23,
b30, b31, b32, b33)

9

Moving into and out of the state

• Into (stripe)

to_state (b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15)
=

(b0,b4,b8,b12,
b1,b5,b9,b13,
b2,b6,b10,b14,
b3,b7,b11,b15)

• Back out (unstripe)

from_state (b0,b4,b8,b12,
b1,b5,b9,b13,
b2,b6,b10,b14,
b3,b7,b11,b15)

=
(b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15)

10

Implementation—High Level View

• Before encryption, the key is used to produce a
key schedule [k0, . . . ,k10]. These are xor-ed with
the state in each round.

• Encryption

plaintext
k0−→ state0

k1−→ . . .

k9−→ state9
k10−→ ciphertext

• Decryption

plaintext
k0←− state0

k1←− . . .

k9←− state9
k10←− ciphertext

11

What happens in a round?

• Encryption

k
−→= (xor k) ◦ MixCols ◦ ShiftRows ◦ SubBytes

• Decryption

k
←−= MixCols−1 ◦ (xor k) ◦ SubBytes−1 ◦ ShiftRows−1

12

Sboxes

• The Sbox and its inverse are permutations on
bytes

• Can be thought of as a 16×16 matrix indexed by
the two halves of a byte

• Instead, modelled as a total function
word8→ word8

13

Sboxes (cont’d)

• Snippet from HOL source (256 cases) :

Sbox(F,F,F,F,T,F,T,F) = (F,T,T,F,F,T,T,T) ∧

Sbox(F,F,F,F,T,F,T,T) = (F,F,T,F,T,F,T,T) ∧

Sbox(F,F,F,F,T,T,F,F) = (T,T,T,T,T,T,T,F) ∧

Sbox(F,F,F,F,T,T,F,T) = (T,T,F,T,F,T,T,T) ∧

• ` InvSbox◦Sbox = I

• Proved by case analysis and evaluation (trivial)

• Found transcription bug
14

SubBytes (non-linear byte substitution)

genSubBytes S (b00,b01,b02,b03,
b10,b11,b12,b13,
b20,b21,b22,b23,
b30,b31,b32,b33)

=
(S b00, S b01, S b02, S b03,
S b10, S b11, S b12, S b13,
S b20, S b21, S b22, S b23,
S b30, S b31, S b32, S b33)

SubBytes = genSubBytes Sbox
InvSubBytes = genSubBytes InvSbox

` ∀s. InvSubBytes(SubBytes s) = s

15

ShiftRows

• Shift left the first row by 0, the second row by 1,
the third by 2 and the fourth by 3.

• Code:
ShiftRows (b00,b01,b02,b03,

b10,b11,b12,b13,
b20,b21,b22,b23,
b30,b31,b32,b33)

=
(b00,b01,b02,b03,
b11,b12,b13,b10,
b22,b23,b20,b21,
b33,b30,b31,b31)

` InvShiftRows(ShiftRows(s)) = s is trivial
16

MixCols

• Operates on each column

• This can be reduced to matrix multiplication and
then to
MultCol(a,b,c,d) = (a′,b′,c′,d′) where

a′ = 02•a xor 03•b xor c xor d

b′ = a xor 02•b xor 03•c xor d

c′ = a xor b xor 02•c xor 03•d

d′ = 03•a xor b xor c xor 02•d

17

InvMixCols

• The inverse operation does more work.
InvMultCol(a,b,c,d) = (a′,b′,c′,d′) where

a′ = 0E•a xor 0B•b xor 0D•c xor 09•d

b′ = 09•a xor 0E•b xor 0B•c xor 0D•d

c′ = 0D•a xor 09•b xor 0E•c xor 0B•d

d′ = 0B•a xor 0D•b xor 09•c xor 0E•d

18

MixCols contd.

• Code (higher order)

genMixCols MC (b00,b01,b02,b03,
b10,b11,b12,b13,
b20,b21,b22,b23,
b30,b31,b32,b33)

=
let val (b00’, b10’, b20’, b30’) = MC (b00,b10,b20,b30)

val (b01’, b11’, b21’, b31’) = MC (b01,b11,b21,b31)
val (b02’, b12’, b22’, b32’) = MC (b02,b12,b22,b32)
val (b03’, b13’, b23’, b33’) = MC (b03,b13,b23,b33)

in
(b00’, b01’, b02’, b03’,
b10’, b11’, b12’, b13’,
b20’, b21’, b22’, b23’,
b30’, b31’, b32’, b33’)

end
19

MixCols final.

• Instantiations
MixCols = genMixCols MultCol
InvMixCols = genMixCols InvMultCol

` ∀s : state. InvMixCols(MixCols s) = s

• Computationally hard to prove

• Interesting to see how SAT or BDDs would do

20

Inversion Lemmas

• Lemmas
` ∀s. from state(to state s) = s

` ∀s. to state(from state s) = s

` ∀w. InvSbox(Sbox w) = w

` ∀s. InvSubBytes(SubBytes s) = s

` ∀s. InvShiftRows(ShiftRows s) = s

` ∀x y z. x• (y xor z) = (x• y) xor (x• z)

` ∀s : state. InvMixCols(MixCols s) = s
21

Verification

Formalization

• First wrote purely functional version in SML

• Then transcribed to HOL-4 (easy)

Validation

• Have to make sure that AES properly
implemented (i.e., encryption and decryption not
just the identity function)

• By comparing with data in specification document

22

Statement of Correctness

` ∀key plaintext.

let (encrypt,decrypt) = AES key

in

decrypt(encrypt plaintext) = plaintext

AES just sets up the key schedule and gives it to the
encryptor and decryptor

23

AES

AES : key→ ((block→ block)
︸ ︷︷ ︸

encrypt

×(block→ block)
︸ ︷︷ ︸

decrypt

)

AES key =

let sched = mk keysched key in

let isched = reverse sched in

((from state ◦Round 9 (tl sched)

◦ xor (hd sched)◦ to state),

(from state ◦ InvRound 9 (tl isched)

◦ xor (hd isched)◦ to state))
24

Proof

• Enumeration of states seems infeasible (at least
2128 states)

• Exhaustive testing not apparently possible

• What to do?

• Idea: symbolically execute the algorithms

25

Symbolic Execution

• Evaluation with variables

• In decrypt(encrypt plaintext), plaintext is a 16-tuple
of bytes.

• Choices
decrypt(encrypt v)
decrypt(encrypt (v0, . . . ,v15))

decrypt(encrypt ((v0,0,v0,1,v0,2,v0,3,v0,4,v0,5,v0,6,v0,7), . . . ,

(v15,0,v15,1,v15,2,v15,3,v15,4,v15,5,v15,6,v15,7))

26

Proof (cont’d)

• Let input plaintext be an arbitrary tuple of
variables (v0, . . . ,v15) and just let the algorithms
run. Decryption should undo the effects of
encryption.

• Not feasible either!

• Exponential-sized formulas from variables
occurring in conditions of if—then–else
expressions

• Improved Idea: controlled symbolic execution
plus rewriting with inversion lemmas

27

Proof (cont’d)

• Problem: key schedule generation is complex.

• If non-trivial properties of it are needed, then
proof is no longer easy

• Fortunately, all that is necessary to know about
the keyschedule is that its length is 11.

• Easy to prove by symbolically executing
keyschedule generator

• Once this is proved, we can use a list of variables
[k0,k1,k2, . . . ,k10] as keyschedule value.

28

Proof Outline

After controlled symbolic evaluation:

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .

29

Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .

30

Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .

31

Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .

32

Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .

33

Proof Outline

. . . ◦ MixCols−1 ◦ xor(k8)◦SubBytes−1 ◦ShiftRows−1

◦ MixCols−1 ◦ xor(k9)◦SubBytes−1 ◦ShiftRows−1

◦ xor(k10)◦ to state

◦ from state

◦ xor(k10)◦ShiftRows◦SubBytes◦ xor(k9)◦MixCols

◦ ShiftRows◦SubBytes◦ xor(k8)◦MixCols . . .

34

Discussion

• Model of AES in theorem prover

• Can be executed by (deductive) evaluation on
ground or symbolic terms

• Can also be proved correct, in same logical
system, with same proof tools.

• Correctness proved with little difficulty

35

Discussion (contd)

• Unwound 10 rounds then inversion lemmas used
to collapse from the inside

• A few lemmas needed interaction, but perhaps
most of that can be automated?

• Proof in Cryptol used to related high-level
algorithmic spec. to more concrete algorithmic
spec.

• Our approach is complementary, in that it proves
a correctness property (sanity check) of the
original high-level spec.

36

Part II: Dealing with High Level Types

• AES deals with byte blocks

• But one wants to deal with elements of high-level
types

• Example: one might wish to encrypt a database
of medical patients (e.g., tree of records)

• Lots of programming needed to bridge the gap

• Boring and error-prone.

• Polytypism to the rescue!

37

Types and Algorithms

• Types often tend to come before algorithms

• One defines a type, then defines algorithms over
the type

• Example: ADTs (Abstract Data Types)

• Very successful, provides a solid underpinning for
software engineering

• But not the only game in town!

38

Polytypism

• Polytypic algorithms are so general that they
apply to a wide range of types

• In a sense, they come before types and get
instantiated when a new type is defined

• NB. Not the same idea as polymorphism

39

Polytypism in FP

• Datatype declaration introduces a particular
shape of tree

• A polytypic algorithm operates uniformly, modulo
the shape of the data
• Equality
• Substitution
• Printing
• Mapping into bitstrings (and back out)

40

Polytypism and Encryption

• Idea: Automatically map high level data to
bitstrings then use AES.

• Allows correctness of AES to be factored out and
re-used for encryption of all datatypes.

41

Types formally

• Type signature Ω holds the arities of type
operators

• Types are defined inductively:
• Countable set of type variables:

α,α1,α2, . . . ,β,β1, . . .

• If c in Ω has arity n, and each of τ1, . . . ,τn is a
type, then (τ1, . . . ,τn)c is a type

• New types are added to Ω when they are defined

42

Basic Types

• Booleans: bool.
Values are true and false.

• Pairs: (α,β)prod. Written α∗β.
Values constructed with (−,−).

• Sums: (α,β)sum. Written α+β.
Values constructed with INL : α→ α+β and
INR : β→ α+β.

• Functions: (α,β)fun. Written α→ β.
Values constructed via lambda abstraction λv. M

43

Datatypes

• Mechanism for introducing user-defined types

• Recursive num = 0 | Suc of num

• Polymorphic

• Partial functions : α option = None | Some of α
• Homogeneous lists : α list = [] | :: of α∗α list

• Example value:

[None, Some (Suc 0)] : num option list
44

More Datatypes

• Nested under existing member of Ω. The
following is a type of finitely branching trees:

α tree = Node of α∗α tree list

• Mutually recursive (and nested)

(α,β)exp = Var of α
| Cond of (α,β)bexp∗ (α,β)exp∗ (α,β)exp

| App of β∗ (α,β)exp list

(α,β)bexp = Less of (α,β)exp∗ (α,β)exp

| And of (α,β)bexp∗ (α,β)bexp

| Not of (α,β)bexp 45

Polytypism Sketch : Coding

• Given an environment Γ of encoders and
decoders for types

• Synthesize encoders/decoders for a compound
type by mimicking the structure of the type:

• Example: The type (num∗bool option)list.

• Suppose Γ is an encoder context containing at
least encoders for the types num, list, option, and
bool

46

Coding example

• Synthesized encoder:

encode list (encode prod encode num

(encode option encode bool))

• Decoder (using a decoder context):

decode list (decode prod decode num

(decode option decode bool))

47

Interpretation

• Our approach is based on an interpretation [[]]Θ,Γ
of HOL types into terms.

[[v]]Θ,Γ = Θ(v) if v a tyvar

[[(τ1, ...,τn)c]]Θ,Γ = Γ(c) [[τ1]]Θ,Γ · · · [[τn]]Θ,Γ otherwise

• The interpretation is parameterized by two maps:
Θ, which maps type variables; and Γ, which maps
type operators.

• Lifted to terms: IΘ,Γ(M : τ) = [[τ]]Θ,Γ(M)
48

Interpretation

• Interpretations common in formal semantics:
translate syntax into informal mathematics
(models)

• Support meta-theoretic exercises (soundness,
completeness)

• In contrast, we interpret HOL types (syntax) into
HOL terms (syntax)

• Allows proof support to be automatically defined
each time a datatype is declared

49

Polytypism and Proof Automation

• When a new type τ is introduced, then
automatically define new functions:

• Size : τ→ num

• Lifting : τ
︸︷︷︸

ML

→ τ
︸︷︷︸

HOL

• Coding
• Encode : τ→ bool list

• Decode : bool list→ τ

• These are used to support proof automation
50

Bringing it all together

• Given capability to synthesize encoders and
decoders for τ (see paper for details)

• Algorithms for padding bitstrings to exact
multiples of the block size (pad), and unpadding
to the original length (unpad); and

• Use mode of operation (CBC) to lift block
encryptor E and decryptor D to CBCE and CBCD,
which work on sequences of blocks.

51

Correctness statement

AES key = (E,D)⊃

decodeτ ◦unpad◦CBCD
︸ ︷︷ ︸

decryption

◦CBCE ◦pad◦ encodeτ
︸ ︷︷ ︸

encryption

= I

Easy to show when we know

• D◦E = I (AES correctness)

• CBCD ◦CBCE = I (Trivial)

• unpad◦pad = I (Trivial)

• decodeτ ◦ encodeτ = I (Easy)
52

Conclusions

• Sanity-checking style proofs for encryption and
decryption of high-level types are not hard

• Possibilities for full automation

53

Future Work

• Code (or hardware) generation from these
high-level specs

• Ongoing work with Mike Gordon at Cambridge

• Done via equivalence preserving steps in
theorem prover

• Goal: a (longer) unbroken assurance chain
through to final artifact

54

	History
	This Talk
	General Perspective
	Higher Order Logic
	Higher Order Logic
	Functional Specification
	Specification details
	The state
	Moving into and out of the state
	Implementation---High Level View
	What happens in a round?
	Sboxes
	Sboxes (cont'd)
	SubBytes (non-linear byte substitution)
	ShiftRows
	MixCols
	InvMixCols
	MixCols contd.
	MixCols final.
	Inversion Lemmas
	Verification
	Statement of Correctness
	AES
	Proof
	Symbolic Execution
	Proof (cont'd)
	Proof (cont'd)
	Proof Outline
	Proof Outline
	Proof Outline
	Proof Outline
	Proof Outline
	Proof Outline
	Discussion
	Discussion (contd)
	Part II: Dealing with High Level Types
	Types and Algorithms
	Polytypism
	Polytypism in FP
	Polytypism and Encryption
	Types formally
	Basic Types
	Datatypes
	More Datatypes
	Polytypism Sketch : Coding
	Coding example
	Interpretation
	Interpretation
	Polytypism and Proof Automation
	Bringing it all together
	Correctness statement
	Conclusions
	Future Work

