
© 2005 Carnegie Mellon University

Function Extraction (FX)
Next-Generation Software Engineering

Dr. Stacy Prowell (sprowell@cert.org)

mailto:sprowell@cert.org

© 2005 Carnegie Mellon University 2

About SSE
CERT Survivable Systems Engineering

Mission:

To identify and eliminate shortcomings in
security and survivability engineering methods.

Identifying the proper foundations
Developing sound engineering practices
Building tools which augment human ability

…to solve challenges in constructing systems.
http://www.cert.org/sse/

http://www.cert.org/sse/

© 2005 Carnegie Mellon University 3

Creating Next-Generation Systems

Need: Fast and correct development of ultra-
secure, ultra-large-scale, ultra-high-quality,
and ultra-secure systems.

Need: Fast and correct development of ultra-
secure, ultra-large-scale, ultra-high-quality,
and ultra-secure systems.

Can be done, but not with present-day
software engineering.
Complexity and cost limits of technologies
evolved over the first fifty years of software
engineering have been reached.
No amount of being careful and trying harder
will suffice.

© 2005 Carnegie Mellon University 4

Next-Generation Software
Engineering

For future system development, software
engineering must be transformed into a
computational discipline.

For future system development, software
engineering must be transformed into a
computational discipline.

This discipline will be characterized by automated
computation of

• Behavior and security attributes of software
• Correctness verification of software
• Composition of components into system architectures

Other engineering disciplines have made this
transformation to computational methods to their
everlasting benefit.

© 2005 Carnegie Mellon University 5

Software Assurance Questions
Past, present, and future:

Does this foreign-influenced software contain malicious
code?

Does this US-developed software contain code
corrupted by insiders?

Does this acquired software contain errors or
vulnerabilities?

What is this malicious code trying to do?

© 2005 Carnegie Mellon University 6

Getting Answers
With current technology:

Code reading and inspection
– expensive, fallible, overwhelmed by scale

Testing
– exercises only a minor subset of possible behavior

Model checking
– explores only properties of models of the code

Bottom line: Can get some answers.

© 2005 Carnegie Mellon University 7

Getting Answers
With next-generation technology:

Must understand everything the code is doing
– good, bad, and ugly

Requires computing the full behavior of the code
– the “all cases of behavior” view

CERT is developing Function Extraction (FX)
technology
– automated computation of full software behavior

Bottom line: Can get complete answers.

http://www.cert.org/sse/function_extraction.html

http://www.cert.org/sse/function_extraction.html

© 2005 Carnegie Mellon University 8

Software Assurance Today
public class AccountRecord {

public int acct_num;
public double balance;
public int loan_out;
public int loan_max;

} // end of AccountRecord

public class AdjustRecord
extends AccountRecord {

public bool default;
} // end of AdjustRecord

public static AdjustRecord classify_account
(AccountRecord acctRec) {

AdjustRecord adjustRec = new AdjustRecord();
adjustRec.acct_num = acctRec.acct_num;
adjustRec.balance = acctRec.balance;
adjustRec.loan_out = acctRec.loan_out;
adjustRec.loan_max = acctRec.loan_max;

while ((adjustRec.balance < 0.00) &&
(adjustRec.loan_out + 100) <= adjustRec.loan_max))

{
adjustRec.loan_out = adjustRec.loan_out + 100;
adjustRec.balance = adjustRec.balance + 100.00;

}
adjustRec.default = (adjRec.balance < 0.00);
return adjustRec;

}

What does this program
do?

Read the code to learn
behavior and properties

50-year problem: hard,
haphazard, error-prone

Human time scale
producing suspect
information

Laborious process requiring
significant specialized
knowledge

Change a line…

What does this program
do?

Read the code to learn
behavior and properties

50-year problem: hard,
haphazard, error-prone

Human time scale
producing suspect
information

Laborious process requiring
significant specialized
knowledge

Change a line…

© 2005 Carnegie Mellon University 9

Computing Software Behavior
Tomorrow

public class AccountRecord {
public int acct_num;
public double balance;
public int loan_out;
public int loan_max;

} // end of AccountRecord

public class AdjustRecord
extends AccountRecord {

public bool default;
} // end of AdjustRecord

public static AdjustRecord classify_account
(AccountRecord acctRec) {

AdjustRecord adjustRec = new AdjustRecord();
adjustRec.acct_num = acctRec.acct_num;
adjustRec.balance = acctRec.balance;
adjustRec.loan_out = acctRec.loan_out;
adjustRec.loan_max = acctRec.loan_max;

while ((adjustRec.balance < 0.00) &&
(adjustRec.loan_out + 100) <= adjustRec.loan_max))

{
adjustRec.loan_out = adjustRec.loan_out + 100;
adjustRec.balance = adjustRec.balance + 100.00;

}
adjustRec.default = (adjRec.balance < 0.00);
return adjustRec;

}

Function Extractor
Theoretical foundations of
behavior calculation

Engineering automation

Function Extractor
Theoretical foundations of
behavior calculation

Engineering automation

Function
Extractor

Behavior
Catalog

Behavior Catalog
How does the program transform
inputs to outputs in all cases?

The “as built” specification of the
software, automatically
calculated.

Behavior Catalog
How does the program transform
inputs to outputs in all cases?

The “as built” specification of the
software, automatically
calculated.

© 2005 Carnegie Mellon University 10

Function Extraction
Prototype Demonstration

© 2005 Carnegie Mellon University 11

Function Extraction Study Results
CERT study on software comprehension and verification showed
dramatic improvement with FX:

Control group: traditional reading and inspection
Experimental group: automated FX prototype
Both given same programs and questions

FX group reduced time to determine program functionality by three
orders of magnitude.

FX group 4X better at verifying programs
in 1/4 the time
All achieved with 45 minutes of FX instruction

Report: The CERT Function Extraction Experiment: Quantifying FX Impact on Software
Comprehension and Verification (CMU/SEI-2005-TN-047)

© 2005 Carnegie Mellon University 12

Back to the Questions with FX
Foreign-influenced software
– Behavior can be computed to assure malicious code is not

present

US-developed software
– Behavior can be computed to assure code has not been

corrupted by insiders

Acquired software
– Behavior can be computed for analysis to detect errors and

vulnerabilities

Malicious code
– Behavior of malicious code can be computed for

understanding and to develop countermeasures

© 2005 Carnegie Mellon University 13

STAR*Lab
Security Technology Automation Research

STAR*Lab is a new CERT laboratory to
create theory-based automated engineering
solutions to challenge problems.

STAR*Lab is a new CERT laboratory to
create theory-based automated engineering
solutions to challenge problems.

Function Extraction for Malicious Code (FX/MC) system
development underway in STAR*Lab.

Compute full functional behavior of malicious code in assembly
language
Replace fallible human analysis and timescale with precise
computer analysis and timescale
First capability completed: Transforms spaghetti-logic code into
structured form for faster human understanding

© 2005 Carnegie Mellon University 14

STAR*Lab
FX as an Enabling Technology

CERT STAR*Lab is exploring FX automation for a
variety of applications:

Code structuring
Behavior computation
Security attribute computation (CSA)
Correctness verification
Component composition

Our objective is to get these challenge problems off
the table once and for all with solid engineering
automation.

© 2005 Carnegie Mellon University

Thanks!
Contact:
Richard Linger (rlinger@sei.cmu.edu)
Frank Redner (fredner@sei.cmu.edu)
Stacy Prowell (sprowell@cert.org)

mailto:rlinger@sei.cmu.edu
mailto:fredner@sei.cmu.edu
mailto:sprowell@cert.org

	Function Extraction (FX)Next-Generation Software Engineering
	About SSECERT Survivable Systems Engineering
	Creating Next-Generation Systems
	Next-Generation Software Engineering
	Software Assurance Questions
	Getting Answers
	Getting Answers
	Software Assurance Today
	Computing Software Behavior Tomorrow
	Function ExtractionPrototype Demonstration
	Function Extraction Study Results
	Back to the Questions with FX
	STAR*LabSecurity Technology Automation Research
	STAR*LabFX as an Enabling Technology
	Thanks!Contact:Richard Linger (rlinger@sei.cmu.edu)Frank Redner (fredner@sei.cmu.edu) Stacy Prowell (sprowell@cert.org)

