
1

Software Engineering Institute
Pittsburgh, PA 15213-3890

Function Extraction for
Malicious Code:

The FX/MC Project

David A. Mundie
Network System Survivability
Software Engineering Institute

(dmundie@cert.org)
Sponsored by the U.S. Department of Defense
© 2004 by Carnegie Mellon University

2

Background

3

Dave Mundie’s View of CERT

• Long-term: survivability research
• Medium-term: process improvement
• Short-term: operations

– Incidents
– Vulnerabilities
– Artifacts

4

The Problem

• Malware authors write really terrible code
– And it’s getting worse

• Reverse engineering is hard
• Burneye

– Almost a year
• Has to be redone over and over
• The IETF RFC - “evil bit”
• Wouldn’t it be nice if they wrote in Haskell!

5

National Software Dependencies

Software controls the nation’s infrastructures
Embedded security

Malicious code can have catastrophic effects
Risks to government, defense, and economy
Offshore development increases uncertainty

6

Malicious Code

Easy to insert
Easy to hide
Hard to analyze

The guy next door
You want to do this?

Little technology to help

7

State of Practice in Software Analysis

Unlike other engineering disciplines, software
engineering has no practical means to fully
evaluate the expressions it produces

No programmer can say for sure what a complex
program does in all uses

Programmed but unknown functionality is the
Achilles heel of software

Malicious code is unknown functionality

8

Malicious Code Analysis

Automation is essential
− Only path to scale up and speed up

Full behavior must be analyzed
− All functionality must be known

Continual analysis is required
− Code inserted a year ago or yesterday

9

FX/MC System I

Understanding malicious code today
− labor intensive
− error-prone human process
− human time scale

Understanding malicious code with FX/MC
– machine intensive
− precise computational process
− CPU time scale

FX/MC Strategy
– compute the functional behavior of malicious code
– basis is function-theoretic foundations of software

10

FX/MC System II

FX/MC will provide these capabilities on the desktop for
analyzing malicious code in Intel Assembler Language:

Control Flow Deobfuscation
− calculate the true structured control flow despite obfuscation
− eliminate complexities of code structure and sequencing

Function Extraction
– calculate the functional behavior of code
– determine what the code does – its net effect

Function Comparison
− compare two code blocks for functional equivalence
− determine if new code is a disguised version of old code

11

Foundations of Function
Extraction Technology

12

The FX Idea – Reclaim Semantic Knowledge

Start with a language
(for specification, design,
programming, etc.)

Write a specification,
(design, program, etc.)
using the language

Capture the functional
semantics of the language
structures and rules of
combination

Develop a Function
Extractor for the language
semantics

Function
Extractor

Behavior
Catalog

13

Function Extraction Technology

Programs and their control structures implement
mathematical functions or relations

Control structure functions can be extracted in a
stepwise process with mathematical precision

FX secret weapons
- Structure Theorem defines structuring process
- Function Theorem defines extraction process
- termination assured by finite number of structures
- behavior language need not be executable

14

Sequence Program Function

Sequence example: Program function:

do set a to abs(b) and set d to
a := abs(b) max of c and abs(b), or
d := max(c, a) a, d := abs(b), max(c, abs(b))

enddo

Sequence semantics (Function Theorem):

f = do g; h enddo

(x, y) ∈ f y = h(g(x)) (x: inputs, y: outputs)

15

Alternation Program Function

Ifthenelse Example: Program function:

if a > b set b to max of a and b, or
then (a > b c := a | a <= b c := b)

c := a
else

c := b
endif

Ifthenelse semantics (Function Theorem):

f = if p then g else h endif

(x, y) ∈ f (p(x) ∧ y = g(x) | ~p(x) ∧ y = h(x))

16

Iteration Program Function

Whiledo example: Extracted program function:

while set odd b to 1 or set even b to 0, or
b > 1 (b odd x := 1 | b even x := 0)

do
b := b - 2

enddo

Whiledo semantics (Function Theorem):

f = while p do g enddo

(x, y) ∈ f termination ∧
(p(x) ∧ y = f(g(x))) | (~p(x) ∧ y = x))

17

A Function Extractor at Work

PROC (Q)
odds, evens: queue of integer,

initial empty
x: integer
WHILE Q <> empty
DO

x := end(Q)

IF odd(x)
THEN

end(odds) := x
ELSE

end(evens) := x
ENDIF

ENDDO

WHILE odds <> empty
DO

x := end(odds)
end(Q) := x

ENDDO

WHILE evens <> empty
DO

x := end(evens)
end(Q) := x

ENDDO
ENDPROC

Move from fallible process in
human time scale to precise
process in CPU time scale

Based on algebra of functions

Extract behavior of each control
structure in turn

Express final values of data in terms
of initial values

Behavior given in procedure-free
conditional concurrent assignments

Extracted behavior reveals any
malicious properties

18

Extracting Behavior of Low-Level Structures

PROC (Q)

WHILE Q <> empty
DO

x := end(Q)

IF odd(x)
THEN

end(odds) := x
ELSE

end(evens) := x
ENDIF

ENDDO

WHILE odds <> empty
DO

x := end(odds)
end(Q) := x

ENDDO

WHILE evens <> empty
DO

x := end(evens)
end(Q) := x

ENDDO

ENDPROC

PROC (Q)

WHILE Q <> empty
DO

x := end(Q)
[x is odd -> odds := odds || x
OR x is even -> evens := evens || x]

ENDDO

WHILE odds <> empty
DO

[end(Q) := end(odds)]
ENDDO

WHILE evens <> empty
DO

[end(Q) := end(evens)]
ENDDO

ENDPROC

19

Extracting Behavior of Next-Level Structures

PROC (Q)

WHILE Q <> empty
DO

x := end(Q)
[x is odd -> odds := odds || x
OR x is even -> evens := evens || x]

ENDDO

WHILE odds <> empty
DO

[end(Q) := end(odds)]
ENDDO

WHILE evens <> empty
DO

[end(Q) := end(evens)]
ENDDO

ENDPROC

PROC (Q)

[Q, odds, evens := empty, odds ||
odd_numbers(Q), evens ||
even_numbers(Q)]

[Q, odds := Q || odds, empty]

[Q, evens := Q || evens, empty]

ENDPROC

20

Extracting Behavior of Highest-Level Structure

PROC (Q)

[Q, odds, evens := empty, odds ||
odd_numbers(Q), evens ||
even_numbers(Q)]

[Q, odds := Q || odds, empty]

[Q, evens := Q || evens, empty]

ENDPROC

PROC (Q)

[Q := odd_numbers(Q) ||
even_numbers(Q)]

ENDPROC

Extracted behavior is the precise as-built specification

Number of control structures is finite for stepwise abstraction

Intermediate structures and data drop out to simplify scale-up

Behavior is recorded at all levels of abstraction

21

Examples

22

Does This Program Contain Malicious Code?
public class AccountRecord {

public int acct_num;
public double balance;
public int loan_out;
public int loan_max;

} // end of AccountRecord

public class AdjustRecord
extends AccountRecord {

public boolean in_default;
public static AdjustRecord spec;

} // end of AdjustRecord

public static AdjustRecord classify_account
(AccountRecord acctRec) {

AdjustRecord adjustRec = new AdjustRecord();
adjustRec.acct_num = acctRec.acct_num;
adjustRec.balance = acctRec.balance;
adjustRec.loan_out = acctRec.loan_out;
adjustRec.loan_max = acctRec.loan_max;
while ((adjustRec.balance < 0.00) &&

((adjustRec.loan_out + 100) <= adjustRec.loan_max)) {
adjustRec.loan_out += 100;
adjustRec.balance += 100.00;

}
adjustRec.in_default = (adjustRec.balance < 0.00);
if (adjustRec.balance < 0.00) {

adjustRec.balance -= 0.01;
AdjustRecord.spec.balance += 0.01;

}
return adjustRec;

}

Function
Extractor Behavior

Catalog

23

if (acctRec.balance >= 0.00)

then
adjustRec.acct_num = acctRec.acct_num
adjustRec.balance = acctRec.balance
adjustRec.loan_out = acctRec.loan_out
adjustRec.loan_max = acctRec.loan_max
adjustRec.in_default = false

CASE 1

EXIT

OR

1. AccountRecord acctRec
Object is unchanged

2. AdjustRecord adjustRec
A new object adjustRec is created and
returned, the contents of which are
described in cases 1 through 4

3. AdjustRecord.spec
Object is updated in cases 2 and 4

ENTER

SUMMARY
CASE 2

if (acctRec.balance < 0.00) and
(acctRec.loan_out + 100 > acctRec.loan_max)

then
adjustRec.acct_num = acctRec.acct_num
adjustRec.balance = acctRec.balance - 0.01
adjustRec.loan_out = acctRec.loan_out
adjustRec.loan_max = acctRec.loan_max
adjustRec.in_default = true
AdjustRecord.spec.balance = AdjustRecord.spec.balance + 0.01

OR

EXIT

The Behavior
Catalog

Analyst can validate that behavior conforms to
the business rules of the bank

If (acctRec.balance < 0.00) and (acctRec.loan_out + 100 <=
acctRec.loan_max) and (term1 > term2)

then
adjustRec.acct_num = acctRec.acct_num
adjustRec.balance = acctRec.balance + (100.00 * term2) - 0.01
adjustRec.loan_out = acctRec.loan_out + (100 * term2)
adjustRec.loan_max = acctRec.loan_max
adjustRec.in_default = true
AdjustRecord.spec.balance = AdjustRecord.spec.balance + 0.01

CASE 3
if (acctRec.balance < 0.00) and (acctRec.loan_out + 100 <=

acctRec.loan_max) and (term1 <= term2)

then
adjustRec.acct_num = acctRec.acct_num
adjustRec.balance = acctRec.balance + (100.00 * term1)
adjustRec.loan_out = acctRec.loan_out + (100 * term1)
adjustRec.loan_max = acctRec.loan_max
adjustRec.in_default = false

OR

CASE 4

EXIT

Behavior signature of malicious code
in Cases 2 and 4 skims a penny from
accounts

EXIT

term1 = required times 100.00 must be added
to acctRec.balance to make it
non-negative

term2 = maximum times 100.00 can be added
to acctRec.loan_out without
exceeding acctRec.loan_max

DEFINITIONS OR

24

Other Uses of Function Extractors

Development
Software engineer submits a program being written to an extractor
to determine if its behavior is the function intended.

Errors
Software engineer submits a program to an extractor to see if it
exhibits behavior that is correct with respect to requirements.

Vulnerabilities
Software engineer submits a program to an extractor to determine if
it exhibits behavior that can be exploited by an intruder.

Legacy and vendor code
Systems engineer submits a program to an extractor to generate its
behavior catalog for use in new system integration.

Composition
Systems engineer submits a composition of components to an
extractor to determine if their combined behavior is correct.

25

Control Deobfuscation Example

Question: What is
the control flow?

Answer: Control
Deobfuscation

…

understandable
structured code
embedded in an
ifthen

…
while

do

enddo
if

then

endif

(condition)

(condition)

understandable
structured code
embedded in a
whiledo

complex,
obfuscated
code that
computes
jump target

…

complex,
obfuscated
code that
computes
jump target

Jump ?

Jump ?
…

Structured
equivalent
version of
malicious

code

Structure
Theorem

Malicious
code

26

Control Flow Deobfuscation

• Dead-point analysis
• Star-point analysis
• Instruction misdirection analysis

27

Function Extraction Example

Function
Theorem

Program:
do

x := x + y
y := x - y
x : =x - y

enddo

Question: What does
this program do?

Program behavior:
x, y := y, x

Answer: Function
Extraction

Function extraction:

assignment x y

1 x := x + y x1 = x0 + y0 y1 = y0
2 y := x - y x2 = x1 y2 = x1 - y1
3 x := x - y x3 = x2 - y2 y3 = y2

derivations:
x3 = x2 - y2 y3 = y2

= x1 - (x1 - y1) = x1 - y1
= y1 = x0 + y0 - y0
= y0 = x0

28

Function Comparison Example

Question: Have we
seen this code before?

Answer: Function
Comparison

block of
Assembler
code

…

…

Function
Theorem

Function
extraction
on code

Malicious
code

Function
and code 1

Function
and code 2

Function
and code n

Function
and code
n - 1

…

Function
and code
n - 1

Function
comparison

MATCH

Searchable
FX/MC

behavior
repository

29

Conclusion

30

FX Life Cycle Impacts – Where to Next?

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Component
Reuse

8

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

System
Maintenance

7

Component
Composition
Generator

Behavior Catalog
Analyzer

Component
Composition
Generator

Behavior Catalog
Analyzer

Component
Composition
Generator

Behavior Catalog
Analyzer

Component
Composition
Generator

Behavior Catalog
Analyzer

Component
Composition
Generator

Behavior Catalog
Analyzer

System
Integration

6

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

Behavior Catalog
Analyzer

System Testing5

Correctness
Verifier

Correctness
Verifier

Correctness
Verifier

Correctness
Verifier

Correctness
Verifier

Correctness
Verification

4

Structure
Transformer

Function
Extractor

Behavior Catalog
Analyzer

Structure
Transformer

Function
Extractor

Behavior Catalog
Analyzer

Structure
Transformer

Function
Extractor

Behavior Catalog
Analyzer

Structure
Transformer

Function
Extractor

Behavior Catalog
Analyzer

Structure
Transformer

Function
Extractor

Behavior Catalog
Analyzer

Component
Development

(Design &
Implementation)

and Evaluation (of
vendor software)

3

Architecture
Behavior Extractor
Behavior Catalog

Analyzer

Architecture
Development

2

Specification
Behavior Extractor
Behavior Catalog

Analyzer

Specification
Development

1

Other Lang.
Automation

Java
automation

C++
Automation

C
Automation

Assembler
Automation

Architecture
Automation

Specification
Automation

Life Cycle Activity

31

Status

Hard problem!

FX/MC project is underway, additional participation is welcome

SEI is conducting a study to determine the best course of
evolution for FX technology

Future FX targets can include C, C++, Java, or other languages

FX extensions can include correctness verification and
composition of components, as well as function extraction from
specifications, architectures, and designs

Contact Rick Linger (rlinger@sei.cmu.edu)

	Dave Mundie’s View of CERT
	The Problem
	State of Practice in Software Analysis
	FX/MC System I
	FX/MC System II
	The BehaviorCatalog
	Control Flow Deobfuscation
	Function Extraction Example
	Status

