Future of Cyber Security Enabled by Al

Dr. William Streilein

Cyber Analytics and Decision Systems

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work. © 2018 Massachusetts Institute of Technology.

- Definition of Area
- Al History Highlights
- Lay-of-the-Land
- Al for Cyber Security
- Summary

National Challenges and Role of Al

Intelligent Systems and Autonomy Information Superiority Technological dominance in support of national security

National Challenges

Role of AI in Augmenting Humans

Derive actionable intelligence by effective human-machine teaming

Massive amounts of structured and unstructured data

Leverage rapid advances in data conditioning, algorithms, and computing

Trust in intelligent machines (Robust AI)

Ascertain robustness

"We had better be quite sure that the purpose put into the machine is the purpose which we really desire" Norbert Wiener, 1960

Narrow AI:

The theory and development of computer systems that perform tasks that augment human intelligence such as perceiving, learning, classifying, abstracting, reasoning, and/or acting

We will address: Narrow Al not General Al

^{*} Definition adapted from Oxford dictionary and inputs from Prof. Patrick Winston (MIT) during his visit to MIT LL May 2017

AI Domain of Impact

Select History of Artificial Intelligence

Div Al Study - 6 DRM 9/19/2018

AI "Winters"

1974–1980	The first "Al winter"
1970s	Knowledge-based approaches
1980–88	Expert systems boom
1988–93	Expert systems bust; the second "Al winter"
1986	Neural networks return to popularity
1988	Pearl's Probabilistic Reasoning in Intelligent Systems
1990	Backlash against symbolic systems; Brooks' "nouvelle Al"
1995–present	Increasing specialization of the field Agent-based systems
	Machine learning everywhere
	Tackling general intelligence again?

The first AI winter 1974–1980

In the 70s, AI was subject to critiques and financial setbacks. AI researchers had failed to appreciate the difficulty of the problems they faced. Their tremendous optimism had raised expectations impossibly high, and when the promised results failed to materialize, funding for AI disappeared. At the same time, the field of connectionism (or neural nets) was shut down almost completely for 10 years by Marvin Minsky's devastating criticism of perceptron. Despite the difficulties with public perception of AI in the late 70s, new ideas were explored in logic programming, commonsense reasoning and many other areas.

Bust: the second AI winter 1987–1993

The business community's fascination with AI rose and fell in the 80s in the classic pattern of an economic bubble. The collapse was in the perception of AI by government agencies and investors – the field continued to make advances despite the criticism. Rodney Brooks and Hans Moravec, researchers from the related field of robotics, argued for an entirely new approach to artificial intelligence.

Source: Wikipedia, History of artificial intelligence

Top 15 Publishing Universities/Organization in the US (2011–Present)

Div Al Study - 8 DRM 9/19/2018

Top 14 Patent Holders in Al Per Country of Publication (2011–2016) Top 15 Patent Holders in Al Per Patent Assignee (2011–2016)

Terms searched in the title and/or abstract of the patent record: artificial intelligence, cognitive computing, machine learning, deep learning, neural network, pattern recognition, fuzzy logic, support vector machine

Div Al Study - 9 DRM 9/19/2018 WIPO = World Intellectual Property Organization Source: Derwent World Patents Index EPO = European Patent Organization ETRI = South Korea Elec. Tech. Research Institute

China is Putting a Major Investment into AI

The Economist (July 2017)

In **2012–16 Chinese AI firms received \$2.6B in funding**, according to the Wuzhen Institute, a think-tank

China Next Generation Al Development Plan (July 2017)¹

By 2020 China will have established initial Al technology standards, service systems, and industrial ecological system chains with the scale of Al's core industry exceeding \$22.6B, and exceeding \$150B as driven by the scale of related industries

MIT Technology Review (November 2017)

China's goal is "to have major breakthroughs in AI by 2025, and to be the envy of the world by 2030"²

DoD R&D spending is a fraction of nation states – we are losing ground on patents and publications

Div Al Study - 10 DRM 9/19/2018 ¹ https://www.newamerica.org/cybersecurity-initiative/blog/chinas-plan-lead-ai-purpose-prospects-and-problems/
 ² The Artificial Intelligence Issue, China's AI Awakening, MIT Technology Review, Nov-Dec 2017

Background

Lay-of-the-Land

- Al Canonical Architecture
- Summary of Study Outreach
- Al for Cyber Security
- Summary

Al Canonical Architecture

Div Al Study - 12 DRM 9/19/2018 GPU = Graph Processing Unit CoA = Courses of Action TPU = Tensor Processing Unit

Four Components of Machine Learning Solutions

Image Adapted From: "Deep Learning" I. Goodfellow, et.al., 2016 MIT Press

1. Define a Problem

3. Create Full Train/Test Solution Pipelines

2. Gather Data

4. Provide Computation that Makes the Solution Feasible

National Security Specific Concerns Compared To Commercial Sector

Commercial Sector	National Security
High dimensionality	High dimensionality
Large volume	Large volume
Known truth / continual development	Unknown truth / not tolerant to errors
Mild consequences of decisions	Large consequences of decisions
Past is representative of future	Past does not always represent future
Competitive environment	Adversarial environment
Mostly consumer users	Today requires sophisticated users
Explainability is not the largest issue	Trust / explainability is core
Quantifiable success (\$\$)	Harder to measure success

Al will be a technological enabler (i.e., data and algorithm warfare) against: radical extremists, terrorists, and peer nations to defend our homeland and abroad

Spectrum of Commercial Organizations in the Machine Intelligence Field

CUSTOMER SUPPORT Digital Genius Kasisto LELOQUENT Wiseio ACTIONIO Carabelloce	SALES collective[i] Ösense fuse machines AVISO salesforce INSIDE Clari SALES COM	ENTERPRISE FUNCT MARKETING MINTIGO Lattice RADIU Liftigniter AIRPR A MOTIN brightfund Omsgol Oretentin [PERSADO] COGNICOR	S S S CYLANCE OPARKTR CYLANCE OPARKTR ZIMPERIUM depinston Sentinel DEMIST graphistry SignalSense AppZe	ACE t t t t t t t t t t t t t	AGENTS PERSONAL amazon alexa O Cortana Allo facebook A Siri () () Repliko	AGENT ENABLERS POGO SKIPFLAG X.ai Slack Coom Sudo Sudo Coom Sudo Coom S	PKITT-AL OMAT apidminer ASDI bigm
AGRICULTURE BLUEØRIVER MAVIZ tule TRACE Prot TRACE Prot Territuion AGRI-DATA Descartes Will Octoor	EDUCATION KNEWTON Volley a gradescope CTI courserce UDACITY all school	INVESTMENT Bloomberg sentie iSENTIUM KENSH alphasense Dotomin Cerebeellum Quand	INDUSTRIES LEGAL blue J @ BEAGL VEVerlaw RAVE Seal ROSS LEGAL ROBOT	E L DE PRETECKT Routific MARBLE PITSTOP	MATERIALS zymergen Citrine Eigen Innovations SIGHT MACHINE GINKERXS Manaotronics CALCULARIO	FINANCE Image: Comparison of the second	text relevant sai Hooi Printiticence bonsai YTICS MINOSO ikeyLearn
GROUND NAV drive.ai zoox ouber @ G Onutenomy	AUTONOM AERIAL AdasWorks Mogile TresLn Auro Robotics	DUS SYSTEMS INDUSTRIA JAYBRIDG JAYBRIDG CLEARP KINDSE KINDSE KINDSE KINDSE	AL E OSARO ATH fetch E D rethink T robotics Atom	HEA IMAGE CareSkore HYR Watson Watson Watson Watson Watson Watson Watson Watson Watson Watson Watson Compared	LTHCARE S Scan Y S Scan	RAIL SION te HOLE HOLE Keras Chainer CNTK TENSOFFIO	okite odot al import@ k enigma @ parsehub
	VISUAL Orbital Insight Planet clarif Carif Carif DEEPVISION Cartica Carif DEEPVISION Carif SPACE_KNOW Copincity netra deepomatic	AUDIO Gridspace TolkiQ nexidia(*) @ twillo CAPIO Expect Labs Clover Mobivoi Qurious.Al popup archive	NTERPRISE INTELLIG SENSOR PREDIX Color MAANA Sentenai @ PLANET OS UPTAKE WINDET PRATECTAL MURIT PRATECTAL	ENCE INTERNAL DATA PRIMER TO INWATSON Of Group Q Palantir ARIMO Alation Osapho Outlier Digital Reasoning	MARKET Markermark Quid DataFox PREMISE Bottlenose CBINSIGHTS enigma OTracxn predata	H2O DEEPLEARNING4J theano DSSTNE Scikit-learn AzureML MXNet DMTK Soork PaddlePadd HARDWARE KNUPATH TENSTORRENT KNUPATH TENSTORRENT KNUPATH TENSTORRENT Cerebras Isosemi RESEARCH DpenRI MORECTOR ELEMENT	Ctorch neon Ie WEKA ICirrascale Juidius & Juidius & Juidius & Vicarious Cogital

- Background
- Lay-of-the-Land
 - Al Canonical Architecture
 - Summary of Study Outreach
- Al for Cyber Security
- Summary

Defense Contractors, Commercial, Peers, and Al Centers Study Outreach

Academia and MIT Study Outreach

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Background
- Lay-of-the-Land

- Al for Cyber Security
- Background
- Findings and Recommendations
- Summary

Cyber Security: Critical Threat Surfaces

Global Trend: Sophisticated Attacks More Easily Accomplished with Automation

NOTEWORTHY FACTS

- 250K new malware programs are registered each day
- There were 357M new email malware variants in 2016 - 36% more new variants than in 2014.
- There were 463M new variants of ransomware in 2016 - 36% more new variants than in 2015.
- 99 days to detect compromise adversary gains access in 3
- Internet of Things and Cloud are hot targets (e.g. Mirai botnet) – 2 min to compromise
- Projected cyber attack costs in 2019: \$2.1T

Div Al Study - 22 Sources: https://www.symantec.com/security-center/threat-report DRM 9/19/2018 http://expandedramblings.com/index.php/cybersecurity-statistics/

https://www.fireeye.com/blog/threat-research/2017/03/m-trends-2017.htm https://www.ag-test.org/en/statistics/malware

http://www.nato.int/docu/Review/2016/Also-in-2016/cyber-defense-nato-security-

The Cyber Battleground

Major Challenges to Cyber Security

- "Outside the Closed World: On Using Machine learning for Network Intrusion Detection", (Sommer, Paxson, 2010)
- Described significant challenges with applying machine learning (e.g. Al) to cyber attack intrusion detection
- Caused 'AI for Cyber Winter' that forced people to abandon AI-based approaches in cyber security altogether
- Paxson later acknowledged impact was not as intended (AICS16, 2016)
 - Only applied to intrusion detection
 - Other cyber security aspects are amenable to AI

Outside the Closed World: On Using Machine Learning For Network Intrusion Detection				
Robin Sommer International Computer Science Institute, and Lawrence Berkeley National Laboratory	Vern Paxson International Computer Science Institute, and University of California, Berkeley			
Abiract—In network intrusion detection research, one pop- ular strategy for finding attacks is monitoring a network's activity for anomalies: deviations from profiles of normality previously karend from benign traffic, typically identified using tools borrowed from the machine karning community straining strately employed in operational "real world" setting approximate the strategy of the strategy of the strategy detection problem and other areas where machine karning regularly finds much more success. Our main claim is that the task of industry attacks in the industriant is that the stak of industry attacks in the industriant is that the stak of industry attacks in the industriant is that the stak of industry attacks in the industriant is hard detection. Desport this claim to identifying induktors of guidelines meant to strengthen future research on anomaly detections. Leyvords-normaly detection; machine karning; intrusion detection; problem is the strategy of the strategy of the strategy attacks in the strate is the strategy of more strategy of the strategy of the strategy of the strategy of strategy of the strategy of the strategy of the strategy of strategy of the strategy of	deployments in the commercial world. Examples from other domains include product recommendations systems such as used by Amazon [3] and Netfhix [4]: optical character recognition systems (e.g., [5], [6]); natural language trans- lation [7]; and also spam detection, as an example closer to home [8]. In this paper we set out to examine the differences between the intrusion detection domain and other areas where machine learning is used with more success. Our main claim is that the task of finding attacks is fundamentally harder for the intrusion detection community to employ machine learning effectively. We believe that a significantly nark of the problem already originates in the premise, found in virtually any relevant extbook, that anomally detection is suitable for finding <i>novel</i> attacks; we argue that this premise does not hold with the generality commonly implied. Rather, the strength of machine-learning tools is finding activity that is similar to something periously seen, without the need however to precisely describe that activity up front (as misus detection must).			
Traditionally, network intrusion detection systems (NIDS) are broady classified based on the style of detection they are using: systems relying on <i>misuse-detection</i> monitor activity with precise descriptions of known malicions behavior, while anomaly-detection systems have a notion of normal activity and flag deviations from that profile. ¹ Both approaches have been extensively studied by the research community for many years. However, in terms of actual deployments, we observe a striking imbalance: in operational settings, of these two main classes we find almost exclusively only misuse detectors in uses—most commonly in the form of signature systems that scan network traffic for characteristic byte sequences. This situation is somewhat striking when considering the basis for anomaly-detection—wescis in many other areas of computer science, where it often results in large-scale ¹ Other splus include specification-based [1] and behaviord detec- fies [2]. These approach focus meteody on defining allowed types	misuse detection musit). In addition, we identify further characteristics that our do- main exhibits that are not well aligned with the requirements of machine-learning. These include: (i) a very high cost of errors; (ii) lack of training data; (iii) a semantic gap between results and their operational interpretation; (iv) enormous variability in input data; and (v) fundamental difficulties for conducting sound evaluation. While these challenge may not be surprising for those who have been working in the domain for some time, they can be easily lost on newcomers. To address them, we deem it crucial for any effective deployment to acquire deep, semantic <i>insight</i> into a system's capabilities and limitations, rather learning the system as a black box as unfortunately often seen. We stress that we do <i>nat</i> consider machine-kearning an inappropriate tool for intrusion detection. Its use requires care, however: the more crisply one can define the context in which it operates, the better promise the results may hold Likewise, the better we understand the semantics of the detection process, the more operationally relearned the system			

Sommer, Paxson paper shifted cyber security research focus from AI to secure methods

Cyber AI Start-up Landscape

However, the market is now flush with companies leveraging AI for cyber

- Background
- Lay-of-the-Land
- Al for Cyber Security
 - Background
 - Findings and Recommendations
- Summary

Al Canonical Architecture

Div Al Study - 28 DRM 9/19/2018 GPU = Graph Processing Unit CoA = Courses of Act TPU = Tensor Processing Unit

Data Conditioning/Storage Technologies - Data to Information -

				Тес	hnologies		Capabilities Provided
	Structured	Data Types		Infrastructure/	Databases	•	Indexing/Organization/Structure Domain Specific Languages
Speech	Sensors	Network	Metadata			•	High Performance Data Access Declarative Interfaces
		Logs		Machine Learning (Unsupervised)		•	Limited machine learning
	Unstructure	d Data Types		X X Y		•	Dimensionality Reduction
f		PDF			x.	•	Outlier Detection
Social	Human	Reports	Side	Data Labeling		•	Initial data exploration
Media	Behavior	•	Channel			•	Highlight missing or incomplete data
				¹ ¹ 0 0		•	Look for errors/biases in collection

Important needs are in labeling data and automating data conditioning

Data Conditioning: The Open-Source Intelligence Opportunity Big Data Boom

- 2.8B Internet users
- 2B smartphone users
- Commercial satellites and imagery coming online
- Data are rich with information about systems, users, • organizations, relationships, events
- Data can be used to enrich information from classified • sources

Finding #1: Cyber data is voluminous and is both structured and unstructured

- Continued need for commercial and government Enterprises to share data from incidents
- Some databases exist but are not easy to use or widely accessible
- Very little cyber data is truth-marked
- Much academic research still leverages antiquated datasets

Cybersecurity Information Sharing Act of 2015

May 2016 Volume 11, Issue 5

From the Desk of Thomas F. Duffy, Chair

We've all heard talk of the Cybersecurity Information Sharing Act, but what does it really mean? We hope that this newsletter is a quick cheat sheet that highlights the key takeaways, as well as provide resources for additional information if you'd like to conduct a deeper dive into the topic.

Data cource	Dataset name	Abbreviation
Data source	Datasethane	Appreviation
Network Traffic	DARPA 1998 TCPDump Files	DARPA98
	DARPA 1999 TCPDump Files	DARPA99
	KDD99 Dataset	KDD99
	10% KDD99 Dataset	KDD99-10
	Internet Exploration Shootout Dataset	IES
User behavior	Unix User Dataset	UNIXDS
System call sequences	DARPA 1998 BSM Files	BSM 98
	DARPA 1998 BSM Files	BSM 99
	University of New Mexico Dataset	UNM

Finding #2: Lack of ground truth for cyber inhibits algorithm application to DoD problems

Machine Learning Applied to Classifiers

Div Al Study - 32 DRM 9/19/2018

Learning", Pedro Domingos

CNN = convolution neural network RNN = recurrent neural network

Source of outdoor market graphic: nature.com, Deep Learning (May 2015)

AI Algorithms for Cyber

Finding #3: Many algorithms exist which can be applied to cyber security

Artificial Intelligence Can Help

Div Al Study - 34 DRM 9/19/2018 COA – Course of Action

NLP – Natural Language Processing

- Open source toolkits allow users to leverage machine learning easily
- Commercial companies build business on AI tool kits that can be applied easily
- A Knowledge Base of Shared Knowledge and Solutions

TensorFlow

Finding #4: Academia, commercial sectors are advancing algorithms and Al capabilities Finding #5: Peer organizations are benefiting from open source communities

Microsofi Azure

Study Finds Cyberthreat Data Overwhelming to Security Workers

A recent Ponemon report shows that organizations neglect to share essential cyberthreat data with board members and C-level executives.

Finding #6: Cyber security data overwhelms overworked analysts Finding #7: The US / DoD faces serious workforce shortages in cyber security expertise

Human Machine Teaming: Automated Cyber Decision Making

- CASCADE Cyber Adversarial SCenario modeling and Automated Decision Engine
 - Dynamically quantifies risk in the face of an adaptive adversary
 - Considers mission context to selection optimal course of action (COA)
 - Prototype applied to configuration of network segmentation defense

Confidence Level vs. Consequence of Actions

 By gaining access to an AI system, can an adversary learn, and then introduce, imperceptible perturbations to inputs that render the system un-usable?

- Cyber examples are appearing in literature demonstrating capabilities
 - Malware evades detection
 - Nefarious connections hidden by noise
 - Etc ..

Finding #8: Adversarial attacks can limit effectiveness of cyber AI solutions

Finding #9: Vulnerable Cyber Al detection, classification algorithms can lead to incorrect behavior

Robust AI: Evaluating Classifier Performance using Human Expert Judgment

- Al and ML currently applied mostly to simple, low consequence problems
 - We want to transition use to hard, high consequence problems
- Methods are needed to evaluate AI classifiers that leverage expert judgement
 - Must be robust to inter-rater dependence and variability

MLE: Maximum Likelihood Estimation AGR: Agreement MV: Majority Vote

			What It Provides to Al	Selected Resu
		CPU	 Most popular computing platform General purpose compute 	Alexnet comparison: Forward-Ba
22		GPU	 Used by most for training algorithms (good for NN backpropagation) 	Time (seconds)
ng cia		TPU	 Speeds up inference time (domain specific architecture) 	2 0 128 256 512 Batch Size
Indul	Brain	Neuromorphic	Still a research area	SpGEMM Performance using Graph Processor (Projected) 10 ¹⁴
3		Custom •	 Ability to speed up specific computations of interest (e.g. graphs) 	Cray XT4 Franklin (Measured)
		Quantum	 Benefits unproven until now Recent results on HHL (linear system of equations) 	10^9 10^9 10^8 10^7 10^7 10^1 10^2 10^3 10^4 10^5 10^6 Watts

Ilts

ackward Pass

rocessor (G102)

- Background
- Lay-of-the-Land
- Al for Cyber Security
 - Background

Summary

Summary of Study Findings & Recommendations

	1.	Cyber data is voluminous and is multi-domain, structured and unstructured	✓	Lead the way in Cyber Big Data conditioning by leveraging expertise in Big Data collection,	
Data	2.	 Lack of ground truth for cyber inhibits algorithm application to DoD problems 		creation and curation to support AI for Cyber	
	3.	Many algorithms exist which can be applied to cyber	✓	Engage with academic community to maintain	
Algorithms	4.	 Academia, commercial sectors are advancing algorithms and AI capabilities Peer organizations are benefiting from open source communities 		leverage open-source toolkits and libraries to jumpstart DoD mission capabilities	
	5.				
Human Machine	6. Declining human resource environment create opportunity to help		✓	Automate and augment cyber tasks of data triage,	
Teaming	7.	Recommender systems at core of much commercial Al success		Al solutions, capitalize on analyst cyber expertise	
Robust Al	8.	Adversarial attacks can limit effectiveness of cyber AI solutions, leading to incorrect behavior		Lead the way in robust AI for cyber for DoD	
	9.	Promising work in 'proving' Al behavior is appearing in academia		in academia	

LL Cyber Al-related Workshops and Symposiums

Artificial Intelligence for Cyber Security Workshop

Forum for AI researchers and practitioners to share research and experiences in applying AI to Cyber Security

Graph Exploitation Symposium

Brings together leading experts from universities, industry, and government to explore the state of the art and define a future roadmap in network science

Bill Streilein

Dave Martinez

Neal Wagner

Div Al Study - 44

DRM 9/19/2018

New Orleans, Louisiana • February 2, 2018

Theme: Applications of AI to Internet of Things

Keynotes

Sal Stolfo **Professor of Computer Science Dept. of Computer Science, Columbia University**

Trung Tran Laboratory of Physical Sciences, University of Maryland, **Baltimore County**

Dedham, Massachusetts • April 23-25, 2018

Sanjeev Mohindra

Ben Miller

POC: Ben Miller. bamiller@ll.mit.edu

Chairs

- U.S. needs to regain AI leadership by strategically partnering with small and large commercial companies plus academia
- Potential for major impact remains for DoD applications
 - Although there is a lot of activity in community, only pockets of cyber success exist
- Transfer of algorithms to DoD mission is challenging
- Demonstrated achievements in applying AI to cyber
 - Fluent in Big Data architectures and databases
 - Cyber discussion detection, traffic characterization, counterfeit detection
- Focus should be on unique areas of expertise, connection to mission
 - Mission process and data requirements
 - Adapting latest algorithms to mission needs
 - Developing robust Al solutions

Al Bibliography List (few selected set)

Office of Management and Budget

TASK FORCE ON CYBER DETERRENCE February, 2017

FY 2018

Homeland Security

Budget in Brief