
Canada-China Clean Energy Initiative & Annual WorkshopJens Weber
University of Victoria, Canada  

Engineering	  

Computer	  
Science

	  	  Fuzz	  Tes4ng	  for	  Crea4ng	  Evidence	    
in	  Security	  Assurance	  Cases

imbioses 



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Security Assurance Cases

2



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

2 General Types of Security Claims

3

(1) claims about the requirements-based security properties 
of a system and 

(2) claims about the absence of vulnerabilities in the design 
or implementation that could be exploited to break the 
system’s security model



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Claims about Requirements-based 
Security Properties

4



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

2 General Types of Security Claims

5

(1) claims about the requirements-based security properties 
of a system and 

(2) claims about the absence of vulnerabilities in the design 
or implementation that could be exploited to break the 
system’s security model

“Indiana Jones Attack”
Weinstock, C. B., & Lipson, H. F. (2013).



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Claims about Absence of Security 
Vulnerabilities

6

• Penetration testing

• Random negative testing (Fuzz Testing)

Testing efforts attempt to produce defeaters/rebuttals



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Fuzz Testing

7

Fuzzer
System 

under Test

random
input

unexpected
behaviour

normal
behaviour

Fuzzing is a black-box testing technique that exposes the SUT 
to randomized input while observing its behaviour.



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Evidence Template: Testing [Lipson & Weinstock]

8

Weinstock, C. B., & Lipson, H. F. (2013). Evidence of Assurance: Laying the Foundation for a Credible Security Case. 
SEI - CMU Report.



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Evidence Template: Testing [Lipson & Weinstock]

9

Weinstock, C. B., & Lipson, H. F. (2013). Evidence of Assurance: Laying the Foundation for a Credible Security Case. 
SEI - CMU Report.

Fuzz Testing does 
not generate 

specific evidence

Fuzz Testing does 
not generate 

specific evidence



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Evidence Template: Testing [Lipson & Weinstock]

10

Weinstock, C. B., & Lipson, H. F. (2013). Evidence of Assurance: Laying the Foundation for a Credible Security Case. 
SEI - CMU Report.

Random Testing 
results in shallow, 

poor code coverage



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Benefits and Limitations of Fuzzing

11

Fuzzing has been proven effective in finding security
vulnerabilities (defeaters for security claims).

However, what evidence arises from  
unsuccessful fuzz testing?



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Smart Fuzzing

12

Traditional Fuzzing is akin  
to firing a scatter gun

“Smart Fuzzing” uses some 
utility function to optimize
the random data generation
with respect to a predefined

“vulnerability pattern”

Bekrar, S., Bekrar, C., Groz, R., & Mounier, L. (2011, March). Finding software vulnerabilities by smart fuzzing. In 
Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth Intl Conf. on (pp. 427-430). IEEE.



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

• How to find vulnerability patterns (targets)?

• How to guide the Fuzzer to target this code?

Two main issues

13



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

static code analysis and complexity metrics can be 
used to detect potential vulnerabilities,  
e.g., Buffer Overflows, Integer over/underruns

How to find vulnerable patterns

14



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

How to guide the 
Fuzzer to target 
vulnerabilities?

15

Bekrar, Sofia, et al. "A taint based 
approach for smart fuzzing." 
Software Testing, Verification and 
Validation (ICST), 2012 IEEE 5th 
Intl Conf. on., 2012.

Taint Analysis



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Precision

• Static taint analysis over approximates (many false 
positive dependencies)

• Dynamic taint miss (indirect) dependencies (control flow)

Tooling

• Taint analysis requires language-aware tooling

• Best suited for programs with several discrete inputs (as 
opposed to programs reading complex files / protocols)

Problems with Taint Analysis

16



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

An alternative way to guide the Fuzzer

17

Evolutionary Fuzzing

Dissect	  input	  
protocol/file	  
into	  regions	  

Select	  and	  
mate	  best	  
individuals

Generate	  
popula8ons	  
of	  Tests	  

Fuzz	  
SUT	  for	  each	  

protocol

Analyze	  
Coverage



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Example: Fuzzing Web Browser

18

HTML Documents has many logical feature blocks

Infinitely many possible HTML documents, generated from protocol



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Protocol “Block” for Anchor Nodes

19



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Example:

• Anchors,

• Images,

• Divs,

• IFrames,

• Objects,

• JavaScript, and

• Applets

Definition of Fuzzed Feature Blocks 
Evolutionary Algorithm

20

(1, 0, 1, 1, 0, 0, 1)



21



22



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Experiment: Extend Sulley Framework 
with Evolutionary Protocol Generation

23



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Genetic Algorithm Configuration

24

Target application: Crawler4J  
https://github.com/yasserg/crawler4j

https://github.com/yasserg/crawler4j


Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Experiment

25

Use static code analysis to target most severe defects 
(as per FindBugs Bugrank metric)

Speed-up between 24 and 48%

Shortt, Caleb James. Hermes: A Targeted Fuzz Testing Framework. MSc Thesis. University of Victoria, 2015.



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

A Similar Approach using Path 
Coverage: GA Fuzzer

26

Guang-Hong, Liu, et al. "Vulnerability analysis for x86 executables using genetic algorithm and fuzzing." Convergence 
and Hybrid Information Technology, 2008. ICCIT'08. 3rd Intl. Conf. on. Vol. 2. IEEE, 2008.



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

Benefits

• Can use existing Fuzzing frameworks / protocol 
definitions

• Solution not language-dependent

Limitation

• Complex / deep vulnerabilities may still not be 
triggered

Discussion of the Evolutionary 
Approach

27

Schwartz, et al. "All you ever wanted to know about dynamic taint analysis and forward symbolic 
execution (but might have been afraid to ask)." Security and Privacy, 2010 IEEE Symposium on



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

• Combines Symbolic Execution with Concrete 
test case randomization

• Start with concrete test cases, trace execution 
conditions and systematically negate them. Use 
constraint solver to find data that satisfies 
alternate paths

• -> Concolic Execution 

Approach: Concolic Execution

28

Haller, Istvan, et al. "Dowsing for Overflows: A Guided Fuzzer to Find Buffer 
Boundary Violations." Usenix Security. 2013.



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

• Scalability issues with symbolic execution

• Heuristics geared to specific vulnerability 
patterns

• Geared towards specific languages  
(heavy weight)

Limitations of Concolic Execution

29



Jens Weber
Fuzz Testing for Creating Evidence in Security  

Assurance Cases, SCC-15, May 3-4, 2015 imbioses 

• Fuzzing (Random negative testing) is an important tool for 
detecting security vulnerabilities

• Has successfully been used for generating defeaters in AC

• Unsuccessful undirected fuzz testing provides weak (no) 
evidence in assurance cases

• Directed approaches utilize vulnerability pattern detection, 
taint analysis, evolutionary fuzzing, concolic execution, or a 
combination of these.

• How to quantify the evidence created by these directed 
random tests?

Summary and Question

30


