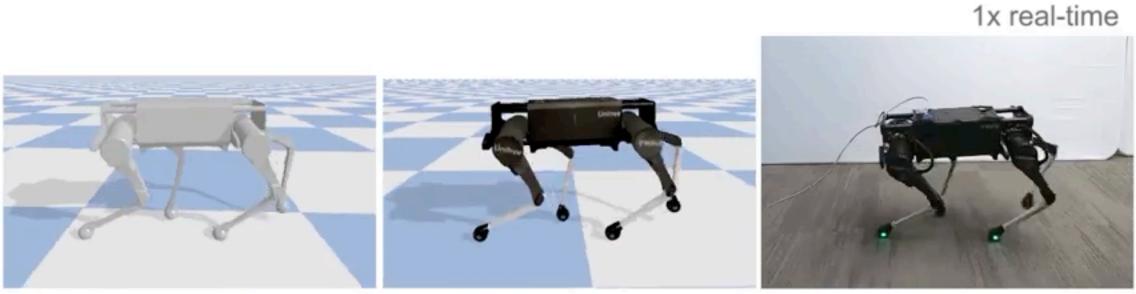
Correct-by-Learning Methods for Reliable Control

Sicun Gao

Neural Network Controllers

(L) Deep Drone Acrobatics, Kaufmann et al., RSS'20 (R) Learning Agile Robotic Locomotion Skills by Imitating Animals, Peng et al., RSS'20

Dog Backwards Pace



Reference

Simulation

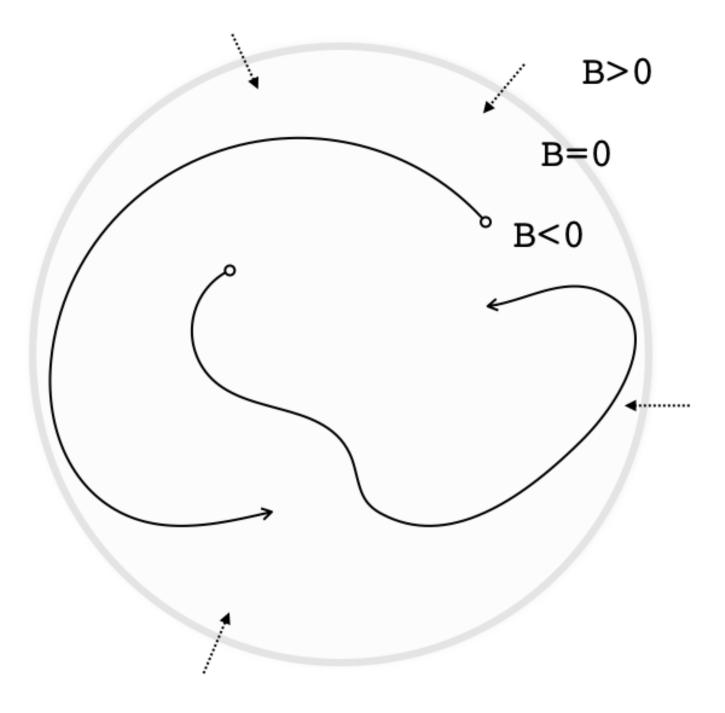
Real Robot

Neural Network Controllers

- Neural networks memorize well. Inputs pass through random activation patterns that create enough degrees of freedom to fit any output.
- For the same reason, never expect it to generalize easily
- We should differentiate "neural" (representations) and "learning" (methods)

- Neural control is opening up exciting new directions as general and practical nonlinear control methods
 - More simulation and sampling (data)
 - More demand for scalable optimization (algorithms)
 - More demand for certification (proofs)
- Inductive correct-by-construction methods are the key
 - Convergence of many different areas (FM/Control/ML)

Safety: Barrier Functions



$B(x) = 0 \to \mathsf{L}_f B(x) < 0$

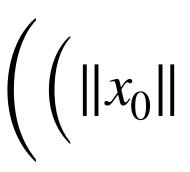
$$\forall x_0 \in X_0 \forall t \in T\left(x_t = \phi(x_0, t) \to \text{safe}(x_t)\right)$$

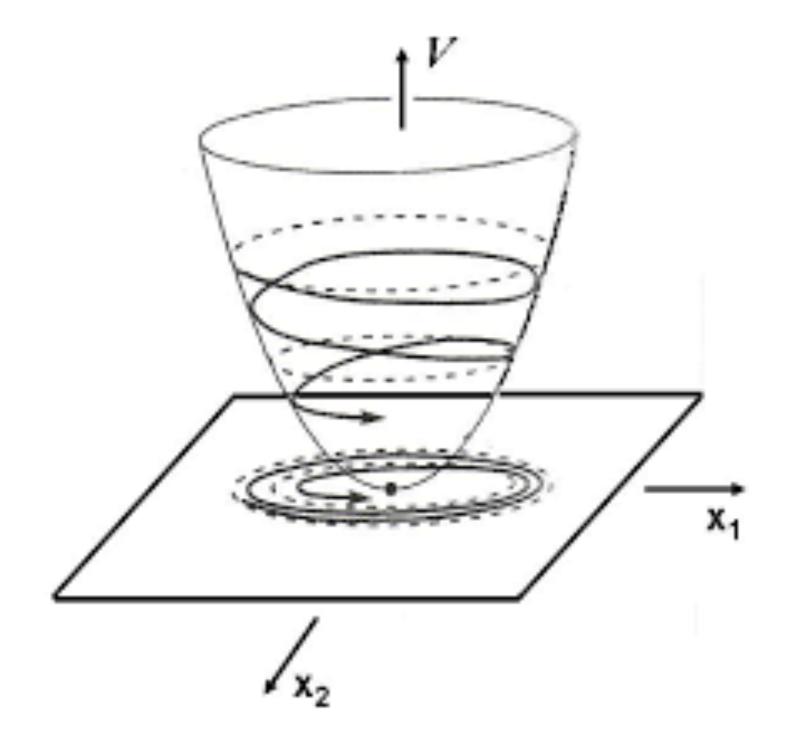
• A system is safe if we can construct a forward invariant set to show that the system's orbits can never escape some boundary

• The key is to find the right shape of the barrier function and certify the Lie derivative conditions

Stability: Lyapunov Functions

 $\forall \varepsilon \exists \delta \forall x_0 \forall t$



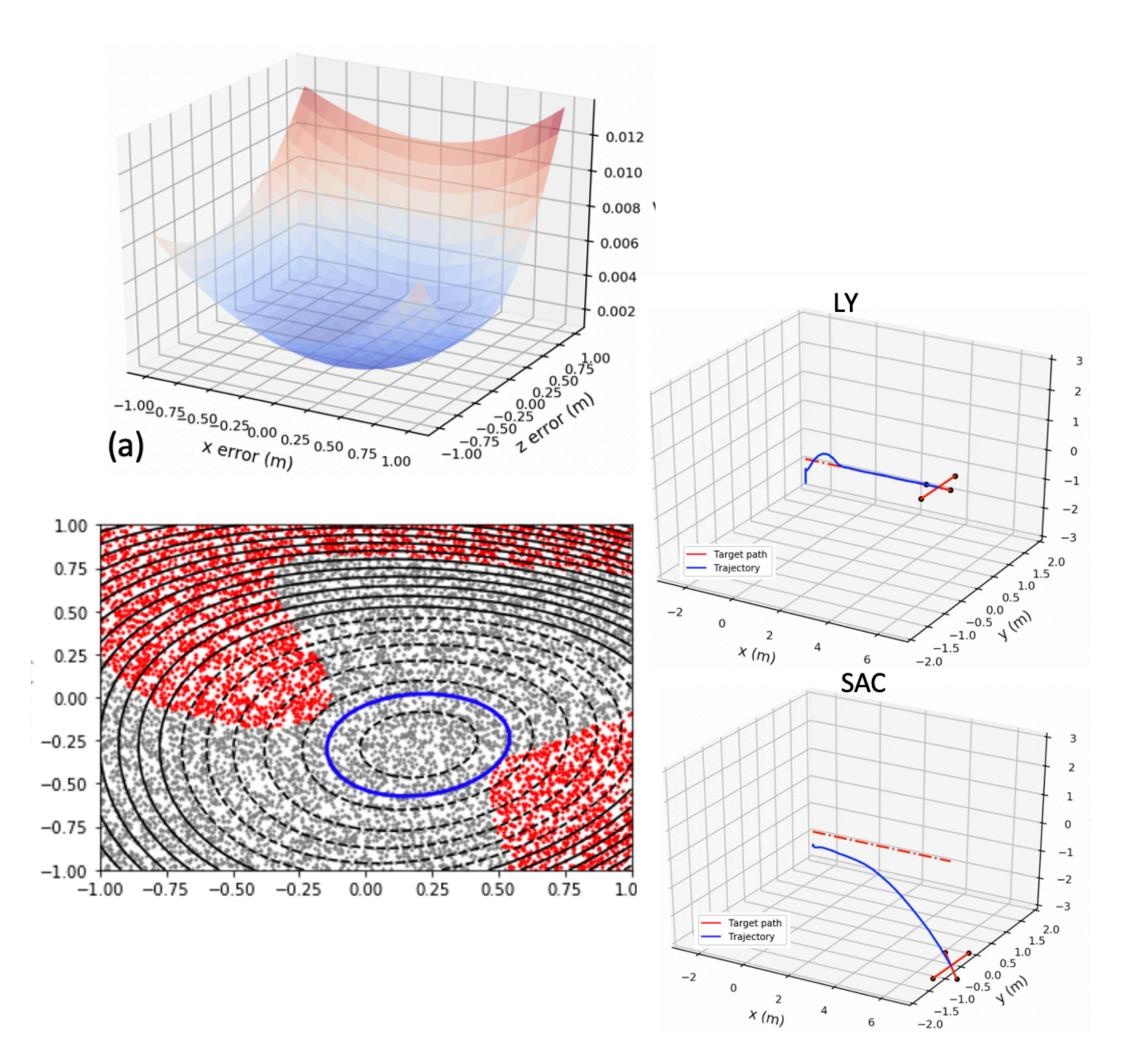


 $V(x) > 0 \wedge \mathsf{L}_f V(x) < 0$

$$\langle \delta \wedge x_t = \phi(x_0, t) \rangle \rightarrow ||x_t|| \langle \varepsilon \rangle \wedge \lim_{t \to \infty} ||\phi(x_0, t)|| =$$

• A system is stable if we can construct a Lyapunov function to show that the system has to converge to the stable point

Stability: Lyapunov Functions



• A system is stable if we can construct a Lyapunov function to show that the system has to converge to the stable point • The key is to find the right shape of the Lyapunov function and certify its Lie derivative conditions

Neural Certificates

control law g to produce inductive proofs by satisfying

- g can be a deep neural network
- We should need neural network V as well

• The key to ensuring safety and stability is to find certificate V and

 $\exists V \exists g \forall x \ \Phi_f(V, g, x)$

• With learning-based methods, f can be highly nonlinear dynamics and

Neural Certificates

- Key to the success of neural certificates:
 - Expressive function approximators
 - Scalable optimization (for \exists)
 - Scalable certification (for \forall)

 $\exists V \exists g \forall x \Phi_f(V, g, x)$

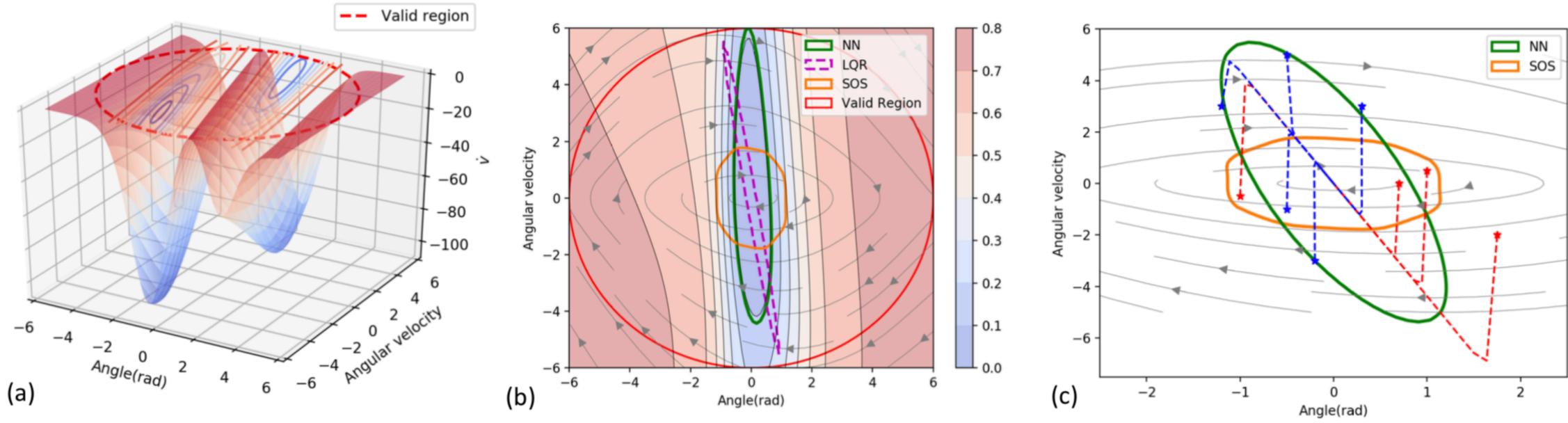
Neural Lyapunov Control [NeurIPS'19]

- Learn neural network Lyapunov functions purely from certify (the ∀ part)
 - neural networks better than polynomials

samples (the B part) and then give it to solver to directly

• Turns out dReal can often handle reasonably small tanh

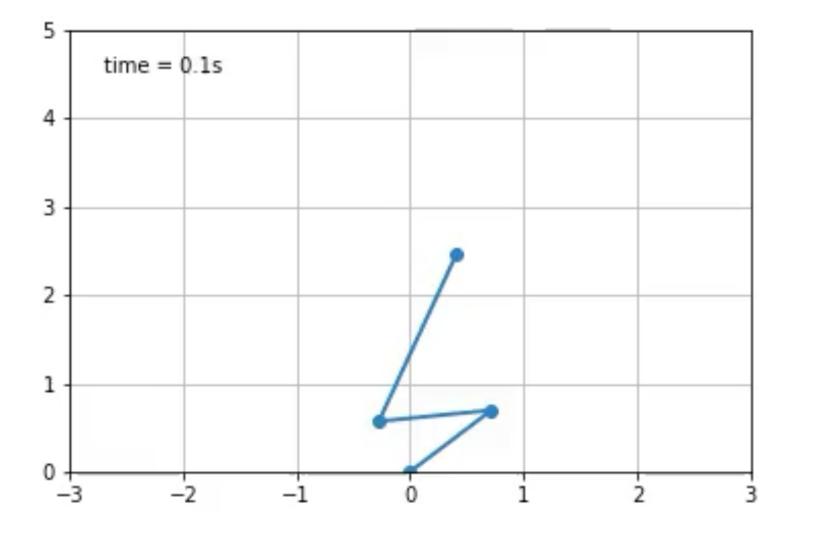
Neural Lyapunov Control

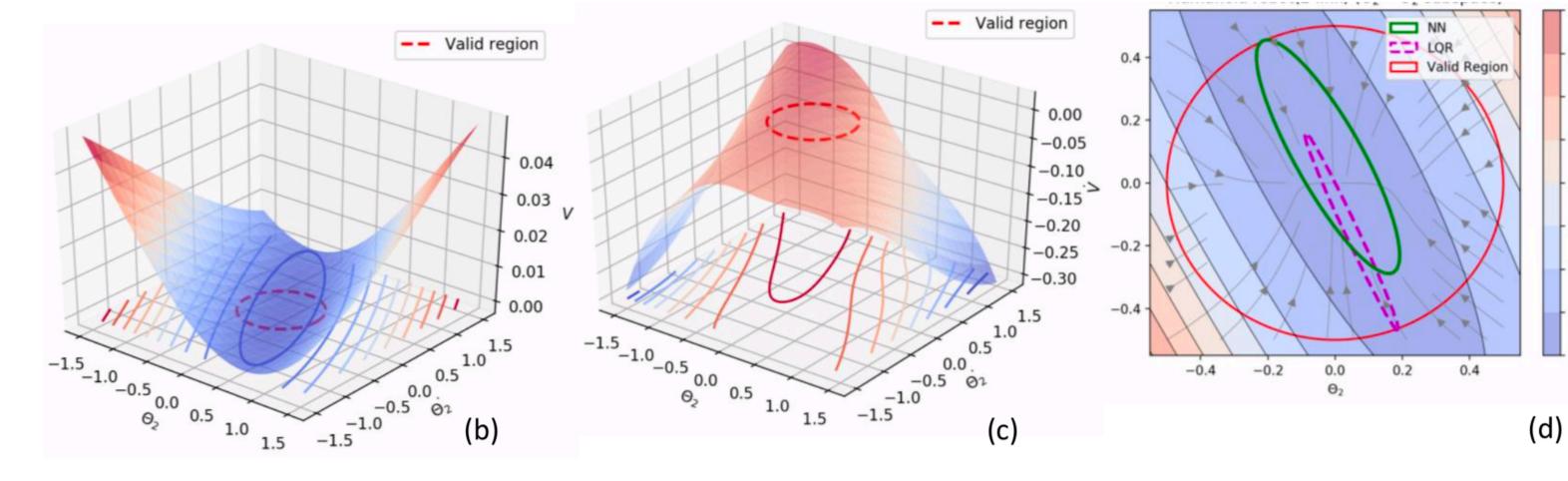


 Learned Lyapunov landscape for inverted pendulum

• Learned Lyapunov landscape (showing Lie-derivatives in (a))

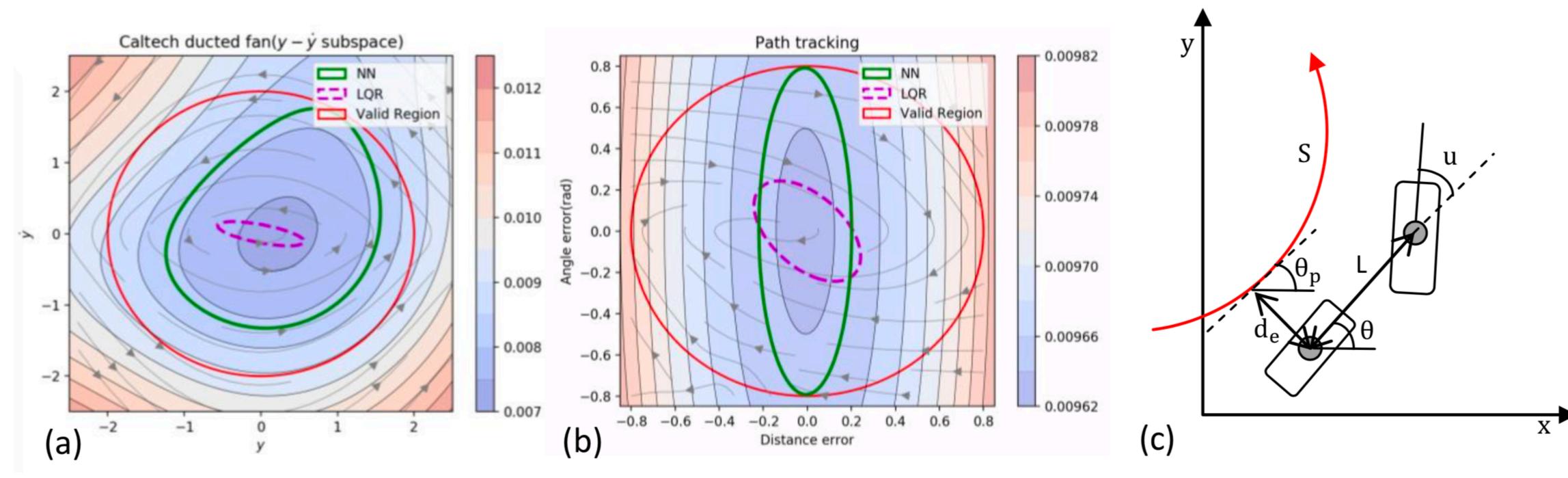
Neural Lyapunov Control







Neural Lyapunov Control



Neural Almost-Lyapunov Critics [ICRA'21]

- - model-free learning
 - integrate in policy optimization
 - sampling-based certification

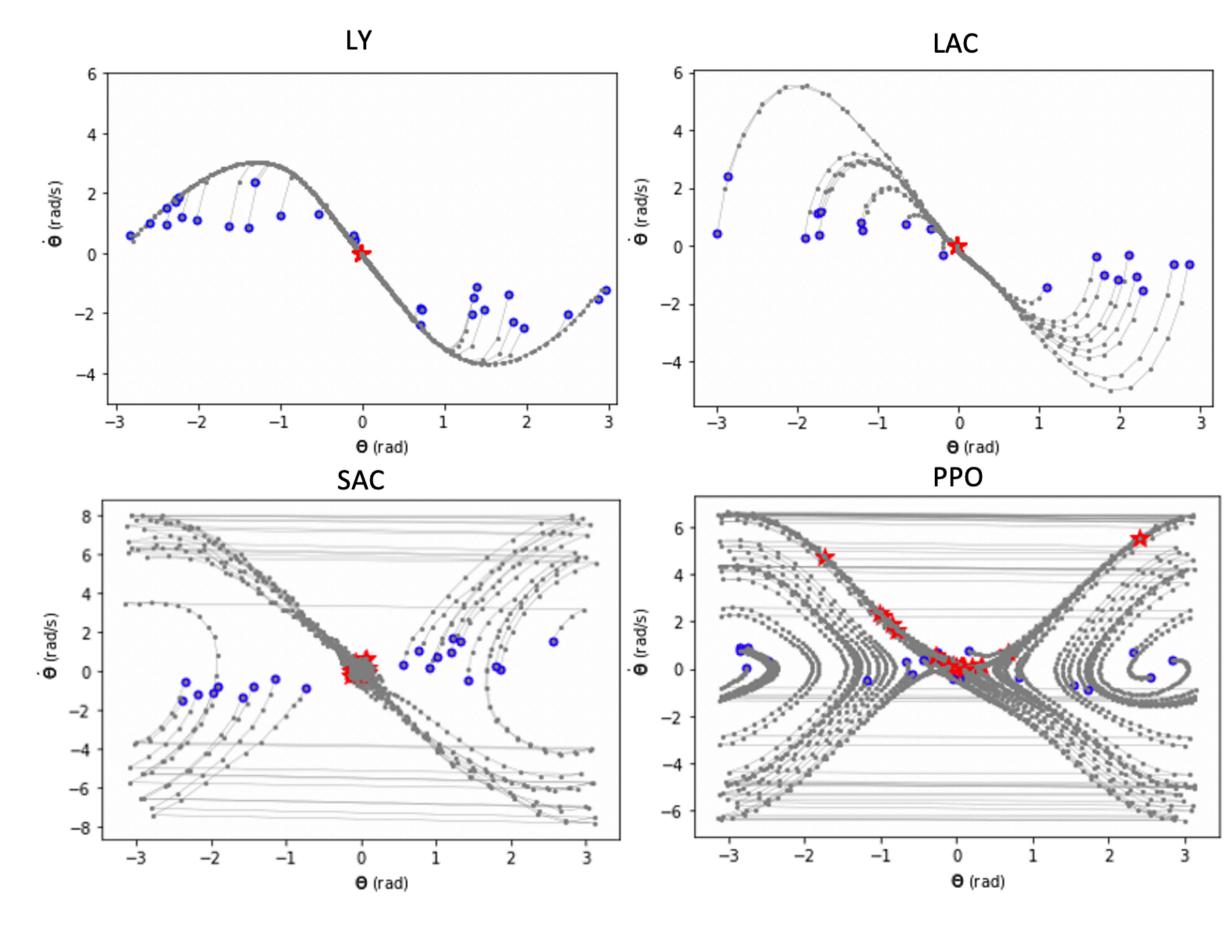
• After seeing the capability of neural Lyapunov functions, we became more bold in pushing it to full "neural control" setting:

Neural Almost-Lyapunov Critics

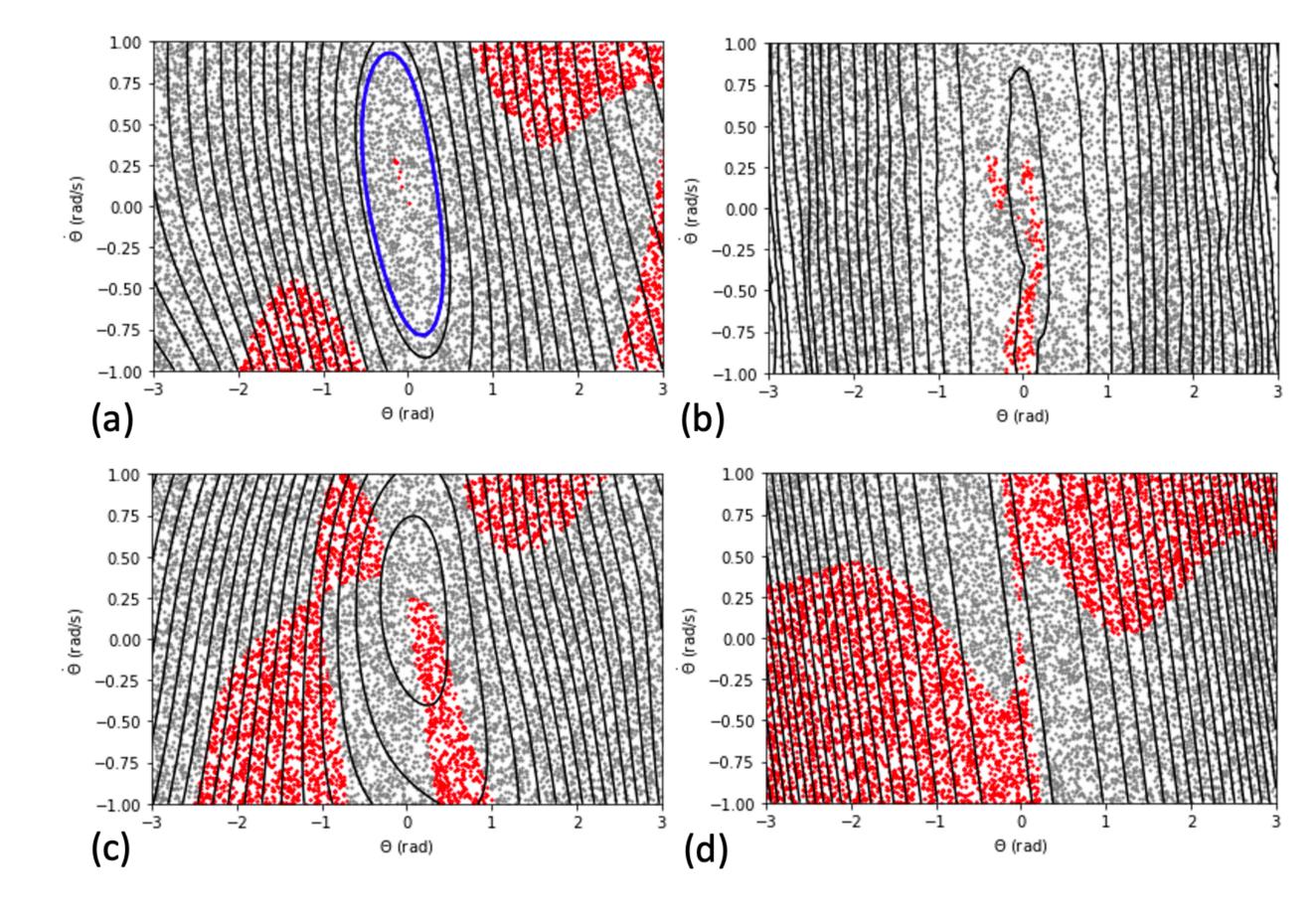
- We ask the agent to fit a temporary "neural Lyapunov function" in the critic step
- The policy optimization steps move actions towards more critic function
- Basically the agent attempts to formulate its own stability proof and learns policy to support that

negative Lie derivatives for the temporarily frozen Lyapunov

Neural Almost-Lyapunov Critics



phase plot

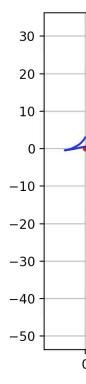


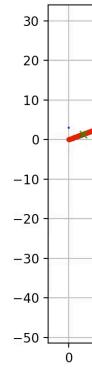
Lyapunov analysis of region of attraction

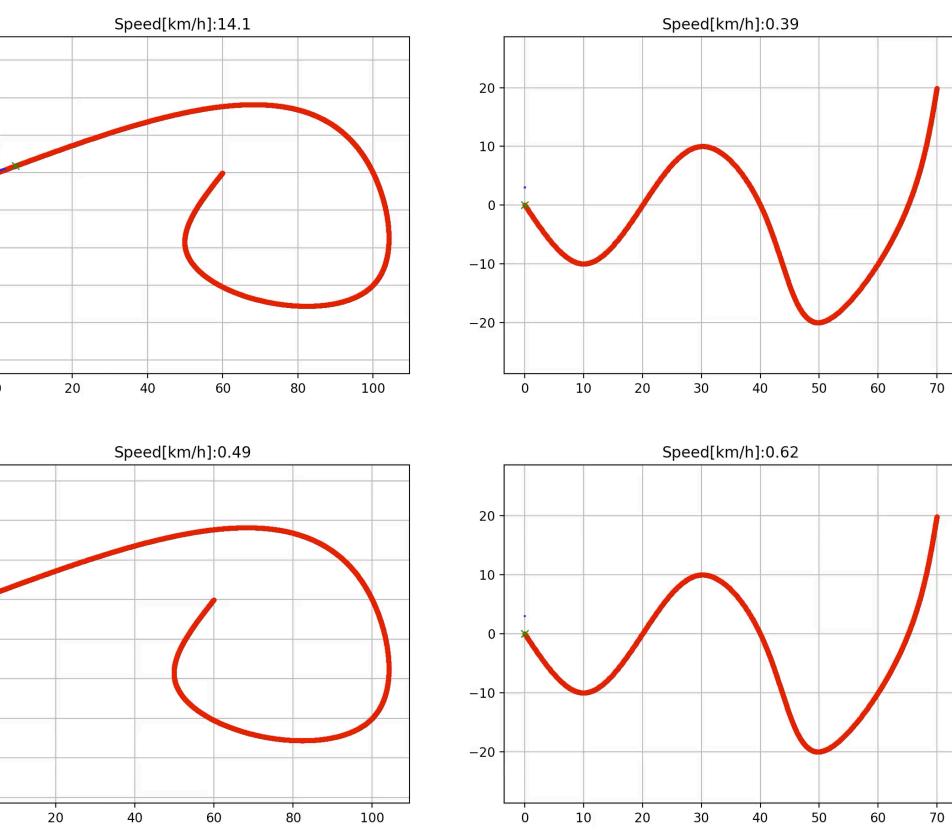
Neural Almost-Lyapunov Critics

PPO in trained vs. untrained env

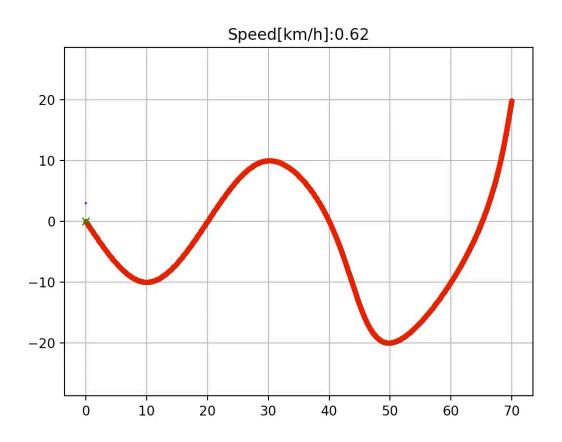
PPO with Lyapunov critics in trained vs. untrained env

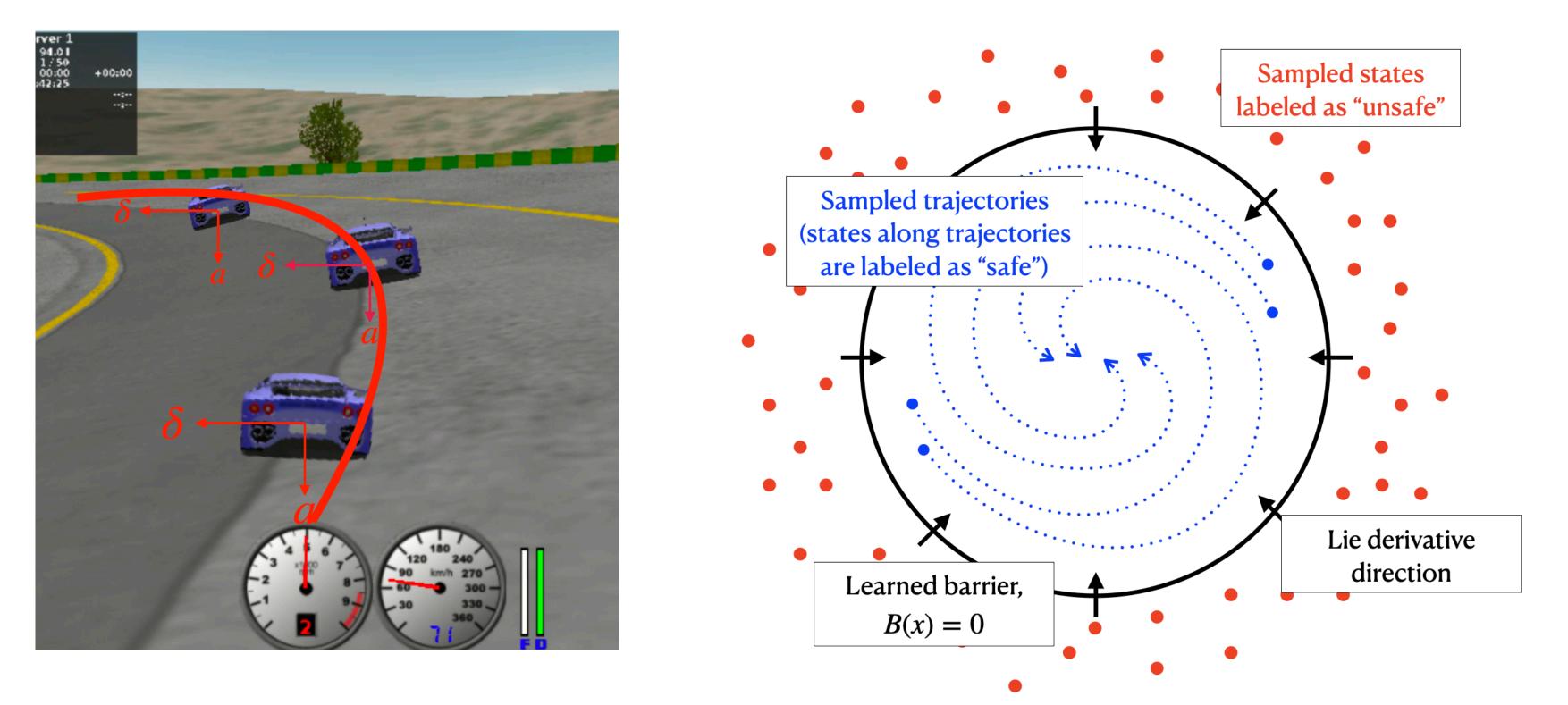






Quantifying Safety of Neural Controllers



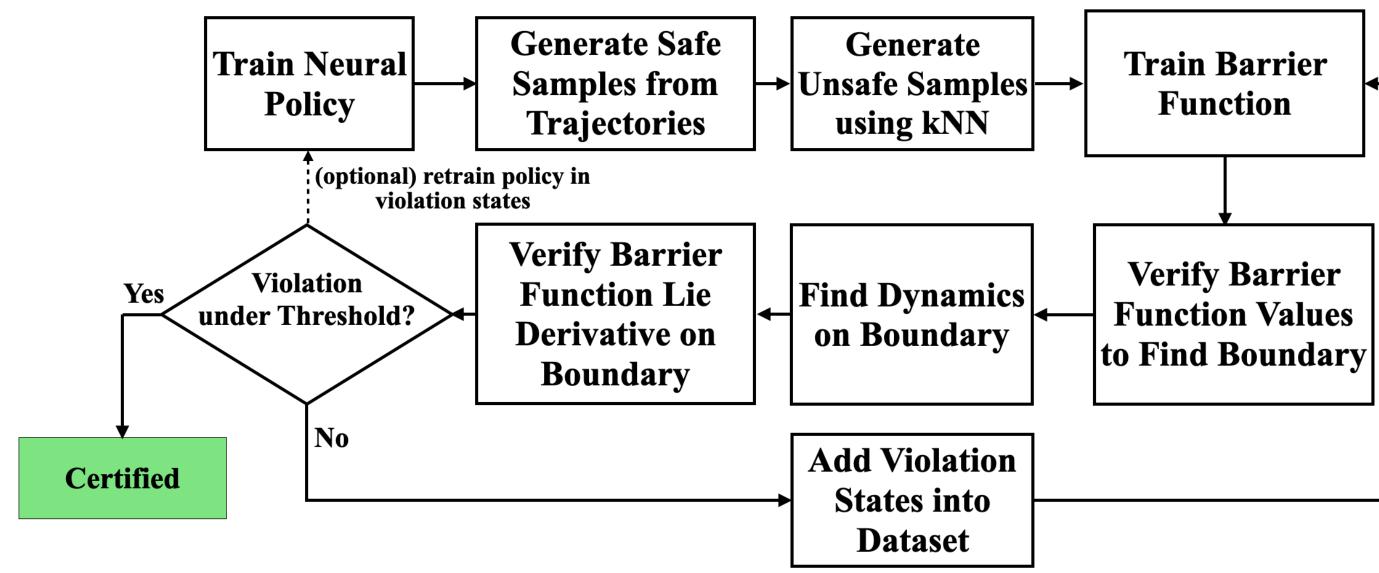


Learn a barrier function for the trained policy to identify potential forward invariance sets. Assume model-free setting with only blackbox simulators.

Quantifying Safety of Neural Controllers

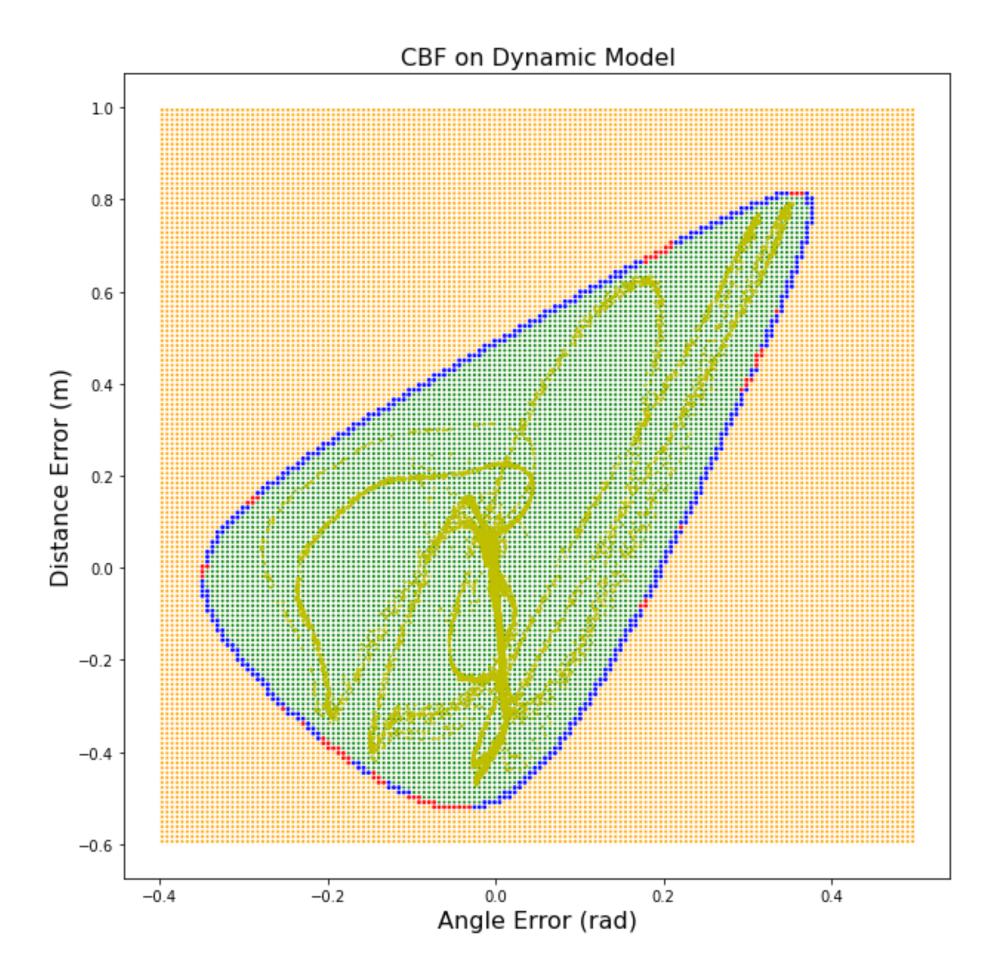
- The learning process turns the barrier conditions into loss functions and uses a counterexample-guided loop.

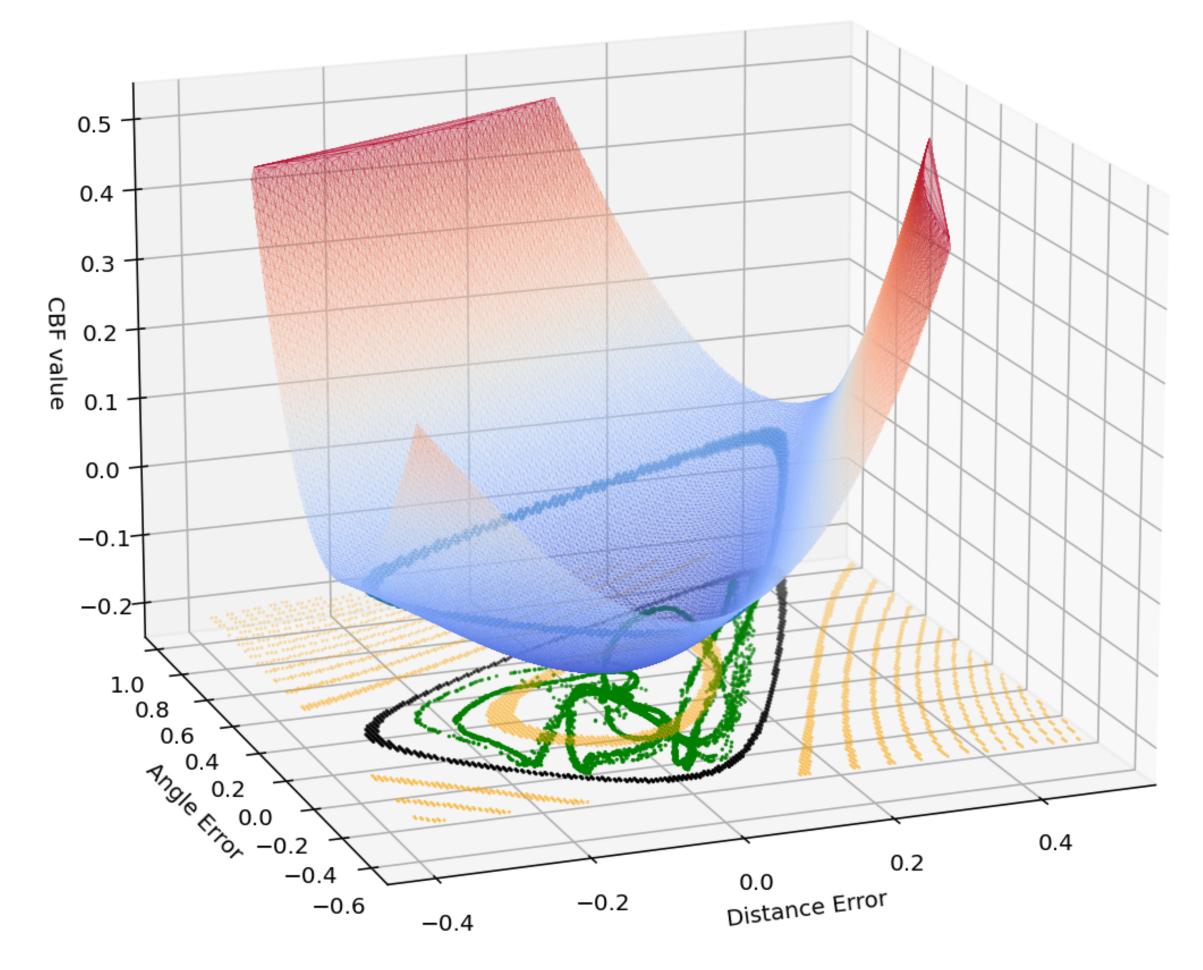
- The certification part is sampling-based and uses robustness analysis of neural networks.



$$L(\theta) = w_s \frac{1}{N_s} \sum_{i=0}^{N_s} \phi(B(x_s^i)) + w_u \frac{1}{N_u} \sum_{i=0}^{N_u} \phi(-B(x_u^i)) + w_l \frac{1}{N_s} \sum_{i=0}^{N_s} \phi(\mathsf{L}_f B(x_s^i) + \gamma B(x_s^i)))$$

Quantifying Safety of Neural Controllers





- More simulation and sampling (data)
 - blackbox high-fidelity simulators
 - Analytic methods still important
 - RL is not the only way

- More demand for scalable optimization (algorithms)
 - Optimization will take care of the details of design
 - Nonconvex optimization will become mainstream
 - Division of labor between human insight and algorithmic automation (learning and optimization will become part of the "compilers")

- More demand for certification (proofs)
 - Controllers are learned, so designers can no longer say "because I just know"!
 - Mindset from formal methods will be widely adopted

- How to make neural controllers generalize (sim to real)?
- How to scale to higher dimensions and eventually allow it to be based on raw perception inputs alone? (but with rigorous certification)
- How to improve interpretability of neural controllers' behaviors?
- How to only use real-world data such as from human interaction?
- How to build reliable end-to-end system stacks for neural controllers?

Conclusion

- of practical nonlinear control and formal methods
 - More simulation and sampling (data)
 - More demand for scalable optimization (algorithms)
 - More demand for certification (proofs)
- Convergence of many different areas

• Neural network controllers are opening up exciting new fronts