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Neural Network Controllers

(L) Deep Drone Acrobatics, Kaufmann et al., RSS’20 
(R) Learning Agile Robotic Locomotion Skills by Imitating Animals, Peng et al., RSS’20



•Neural networks memorize well. Inputs pass through 
random activation patterns that create enough degrees of 
freedom to fit any output.  

•For the same reason, never expect it to generalize easily 

•We should differentiate “neural” (representations) and 
“learning” (methods)  

Neural Network Controllers



Towards rigorous neural control

•Neural control is opening up exciting new directions as general and 
practical nonlinear control methods 

•More simulation and sampling (data) 

•More demand for scalable optimization (algorithms) 

•More demand for certification (proofs) 

•Inductive correct-by-construction methods are the key 

•Convergence of many different areas (FM/Control/ML)



Safety: Barrier Functions

•A system is safe if we can construct 
a forward invariant set to show 
that the system’s orbits can never 
escape some boundary 

• The key is to find the right shape 
of the barrier function and certify 
the Lie derivative conditionsB(x) = 0 → 𝖫f B(x) < 0

∀x0 ∈ X0 ∀t ∈ T(xt = ϕ(x0, t) → safe(xt))



Stability: Lyapunov Functions

•A system is stable if we can 
construct a Lyapunov function to 
show that the system has to 
converge to the stable point

V(x) > 0 ∧ 𝖫fV(x) < 0

∀ε∃δ ∀x0 ∀t

((∥x0∥ < δ ∧ xt = ϕ(x0, t)) → ∥xt∥ < ε) ∧ lim
t→∞

∥ϕ(x0, t)∥ = 0



Stability: Lyapunov Functions

•A system is stable if we can 
construct a Lyapunov function to 
show that the system has to 
converge to the stable point 

• The key is to find the right shape 
of the Lyapunov function and 
certify its Lie derivative conditions



Neural Certificates

•The key to ensuring safety and stability is to find certificate  and 
control law  to produce inductive proofs by satisfying 

•With learning-based methods,  can be highly nonlinear dynamics and 
 can be a deep neural network  

•We should need neural network  as well
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•Key to the success of neural certificates: 

•Expressive function approximators 

•Scalable optimization (for )  

•Scalable certification (for )
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Neural Certificates

∃V ∃g∀x Φf(V, g, x)



Neural Lyapunov Control [NeurIPS’19]

•Learn neural network Lyapunov functions purely from 
samples (the  part) and then give it to solver to directly 
certify (the  part)  

•Turns out dReal can often handle reasonably small tanh 
neural networks better than polynomials
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Neural Lyapunov Control

•Learned Lyapunov landscape (showing Lie-derivatives in (a)) 
for inverted pendulum



Neural Lyapunov Control



Neural Lyapunov Control



Neural Almost-Lyapunov Critics [ICRA’21]

•After seeing the capability of neural Lyapunov functions, we 
became more bold in pushing it to full “neural control” setting: 

•model-free learning 

•integrate in policy optimization 

•sampling-based certification



Neural Almost-Lyapunov Critics

•We ask the agent to fit a temporary “neural Lyapunov 
function” in the critic step 

•The policy optimization steps move actions towards more 
negative Lie derivatives for the temporarily frozen Lyapunov 
critic function 

•Basically the agent attempts to formulate its own stability 
proof and learns policy to support that 



phase plot Lyapunov analysis of region of attraction

Neural Almost-Lyapunov Critics



Neural Almost-Lyapunov Critics

PPO in trained vs. untrained env

PPO with Lyapunov critics  
in trained vs. untrained env



Quantifying Safety of Neural Controllers

Learn a barrier function for the trained policy to identify potential forward 
invariance sets. Assume model-free setting with only blackbox simulators.



Quantifying Safety of Neural Controllers

- The learning process turns the 
barrier conditions into loss 
functions and uses a 
counterexample-guided loop.  

- The certification part is 
sampling-based and uses 
robustness analysis of neural 
networks. 



Quantifying Safety of Neural Controllers



Towards rigorous neural control

•More simulation and sampling (data) 

•blackbox high-fidelity simulators 

•Analytic methods still important  

•RL is not the only way



Towards rigorous neural control

•More demand for scalable optimization (algorithms) 

•Optimization will take care of the details of design 

•Nonconvex optimization will become mainstream 

•Division of labor between human insight and algorithmic 
automation (learning and optimization will become part of 
the “compilers”)



Towards rigorous neural control

•More demand for certification (proofs)  

•Controllers are learned, so designers can no longer say 
“because I just know”! 

•Mindset from formal methods will be widely adopted



Towards rigorous neural control

•How to make neural controllers generalize (sim to real)? 

•How to scale to higher dimensions and eventually allow it to be based 
on raw perception inputs alone? (but with rigorous certification) 

•How to improve interpretability of neural controllers’ behaviors? 

•How to only use real-world data such as from human interaction? 

•How to build reliable end-to-end system stacks for neural controllers?



Conclusion

•Neural network controllers are opening up exciting new fronts 
of practical nonlinear control and formal methods 

•More simulation and sampling (data) 

•More demand for scalable optimization (algorithms) 

•More demand for certification (proofs) 

•Convergence of many different areas


