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Information and Telecommunication 
Technology Center (ITTC)

Center collaboration based round 
focus areas or labs

Faculty are associated with one or more labs.
Labs for Bioinformatics, Communications and 
Networks, Computer Systems, e-Learning, 
Intelligent Systems, Information Assurance, 
Radar and Remote Sensing. 
This project is a collaboration between three 
labs.



HFEC Project
Forward Error Correction (FEC) 
codes are part of the migration 
path in future aeronautical 
telemetry standards for DoD/
NASA test ranges
Two candidate FEC codes have 
been selected

A serially concatenated convolutional 
code (SCCC) developed at KU
A low-density parity check (LDPC) code 
developed at NASA’s Jet Propulsion 
Laboratory (JPL)

Both codes have an information 
block size of 4096 bits and a 
rate of 2/3
Hardware prototypes of these 
systems are needed as the next 
step in the evolution of the 
standard
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HFEC Game Plan
We want to generate circuits for implementing LDPC!

Interesting, practical problem.
Based on well understood math.
Real world constraints and requirements.

Current workflow is
Implement prototype of transmit / receive in MATLAB,
then re-implement in VHDL,
then re-re-implement in VHDL (once requirements are better understood).

Research Questions
Can we use use functional programming to complement and support the 
developments being made in MATLAB?
Can we build a functional program that allow the tradeoffs which require 
re-implementation to be avoided?
Can we gain a stronger assurance of the relationship between the 
specification and implementation?
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LDPC decoding
1 0 1 0 1 0 0 1 0 0  

Original
Code
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LDPC decoding with parity error
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LDPC belief propagation

Depending on how certain you are about your input,
you can make suggestions to your siblings.
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LDPC iterates over the codeword

+0.5 

∑

Soft
codeword

+0.4 

Each ‘1’ in 
original decode

matrix has a 
check node

Iterate using
this new

code guess



LDPC Specification

From 
Error Correction Coding: Mathematical Methods and Algorithms,
Tood K. Moon, Wiley-Interscience.



LDPC In Haskell
loop options lc n a@(A a_rref aRows aCols) ne lam orig_lam
                | BitMatrix.cardinality ans == 0 = return (Just c_hat)
                | n > iterations options         = return Nothing
                | otherwise = loop options lc (succ n) a ne' lam' orig_lam
  where
            c_hat :: Matrix x U1
            c_hat = (\ c -> if c > 0 then 1 else 0) <$> lam

            ans :: BitMatrix (y, X1)
            ans = a_rref `BitMatrix.mm` BitMatrix.fromMatrix (M.unitColumn c_hat)

            ne' :: SM.Matrix (y,x) a
            ne' = SM.fromAssocList 0
                   [ ((m,n),
                      -2 * (atanh (product 

              [tanh ((-((lam ! j) - (ne SM.! (m,j))))/2)
                                          | j <- BitMatrix.toList (aRows ! m)
                                          , j /= n
                                          ])))
                   | (m,n) <- BitMatrix.toList a_rref ]

            lam' :: Matrix x a
            lam' = forAll $ \ n -> (orig_lam ! n)  

  + sum [ ne' SM.! (m,n)
                           | m <- BitMatrix.toList (aCols ! n) ]
                         



Lava
Lava is an Embedded Domain 
Specific Language (EDSL) for 
describing hardware level concerns
Haskell acts as the host language

Lava is a Library in Haskell 
Lava programs are Haskell programs
Haskell programs are not necessarily Lava 
programs

halfAdder 
  :: (Signal Bool, Signal Bool) 
  -> (Signal Bool, Signal Bool)
halfAdder (a,b) = (carry,sum) 
  where carry = and2 (a,b) 
        sum   = xor2 (a,b) 

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;

entity half is
  port (i0 : in std_logic;
        i1 : in std_logic;
        o0 : out std_logic;
        o1 : out std_logic);
end entity half;

architecture str of half is
signal sig_o0_4 : std_logic;
signal sig_o0_2 : std_logic;
begin
  sig_o0_4 <= i0 XOR i1;
  sig_o0_2 <= i0 AND i1;
  o0 <= sig_o0_2;
  o1 <= sig_o0_4;
end architecture;



Specifications and Implementations
We want to link together our Haskell executable specification 
with our Lava implementations

Ease of test generation and debugging
Stepping stones provide placeholders for assurance arguments
Possibility of a future design methodology

Specification Implementation

Runs on Haskell RTS
Big step functions
No concept of clock cycles
Haskell recursion for 
control flow
Mutable state is global

Both
Haskell

VHDL / ModelSim / FPGAs 
execution platform
Fine grain execution (in 
efficient implementations)
It is all about the cycles
Control logic direct datums
Mutable state is local



Kansas Lava
Started as a teaching tool for FP class
Used to generate binaries for orbital simulation in summer 2009
Grown into a primary FP research platform at KU
We want to address the range of computations that can be mapped 
over functors

Lava

Synthesis & Execution

Signal-based
computation model

restricted computation 
over functors

HawkClassical
Haskell

Execution

Signal-based
computation model

Arbitrary computation
over functors

Execution

Value-based
computation model

Arbitrary computation
over functors

Kansas
Lava



Family of Kansas Lava Functors

Seq

Comb

Stream

Enabled

Mema

Matrixx

List 

Pipea

Synthesizable

Structural

Haskell

Key

map :: (a → b) → f a → f b
Functor f 

map g . map h  = map (g . h)
map id  = id

Strategy
Refactor computation to
use synthesizable and 

structural functors 

Arrayx

Maybe



Kansas Lava Example

Primitives like “+” are 
defined over Seq.
Kansas Lava programs 
use functions like unpack 
to move values so that 
primitives can act. 

sumMatrix :: (...) => Seq (Matrix x a) -> Seq a
sumMatrix = foldb (+) 

   . M.toList 
   . unpack 

Seq

SeqMatrixx

SeqList 

Matrixx

Seq

unpack

toList

foldb (+)



Gameplan
Refactor specification in Haskell to architecture, 
reflecting where computation should take place

Computation is placed by architecture
Sub-components should be synthesizable in hardware
This is the push stage

Refine architecture to use Kansas Lava types
sub-components are joined to make larger synthesizable 
components
This is the pull stage

The result is a synthesizable circuit
This circuit reflects the chosen architecture
This circuit implements the specification.

Spec

Spec
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Gameplan
Refactor specification in Haskell to architecture, 
reflecting where computation should take place

Computation is placed by architecture
Sub-components should be synthesizable in hardware
This is the push stage

Refine architecture to use Kansas Lava types
sub-components are joined to make larger synthesizable 
components
This is the pull stage

The result is a synthesizable circuit
This circuit reflects the chosen architecture
This circuit implements the specification.

Spec ImpArch

Imp
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Divide and Conquer LDPC

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

Dividing LDPC
horizontally

requires performing
an addition to 

combine answers

addition is 
associative

Dividing LPDC
vertically is much
more challenging

There was 
considerable 

sharing between 
vertical siblings



min* - Common Implementation Trick
tanh and tanh-1 are tricky in hardware
Common implementation trick is to use the min* function instead

This costs about 0.2dB
min* when quantized is associative
fold min* (...) replaces tanh-1(Π ...)

fj = tanh(-0.5 * (lamj - chkj))

gj = -2 * tanh-1(Π f(...))

min* x y = signum(x) * signum(y) * (min (abs x) (abs y))

fj = -1 * (lamj - chkj)

Before After

gj = -0.75 * fold min*  (f(...))



LDPC check nodes with min*
1  -1  1 0.5 1  -1  -1  1  -1  -1 

-  - f  f  f  -  f  -  f  f
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inside g

-  - g g g - g -  g g

Use soft code guesses

fold min*  (f(...))

fj = -1 * (lamj - chkj)

gj = -0.75 * fold min*  (f(...))
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LDPC check nodes with min*

-  - f  f  f  -  f  -  f  f

-  - g g g - g -  g g

fold min*  (f(...))

fold min*  (f(...))

Inside one side 
the mixing is 
the same...

With one
extra input
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Type of Cell Architecture

0 1
1 0

:: ([Stream (Array y b)], [Stream (Array x (Maybe b))])
-> ([Stream (Array x (Maybe b))], [Stream (Array y b)])

[Stream (Array y b)]

[Stream (Array x (Maybe b))]

[Stream (Array x (Maybe b))]

[Stream (Array y b)]



Dimensions of a Channel

Our channels are a composition of functors
Consider our neighbor sharing channel

[Stream (Array x (Maybe b))]

List . Stream . Arrayx . Maybe

List Stream MaybeArrayx

Over
Time

Many
Cells Collection Optional



Specification to Architecture (1)
Fission into driver and execution unit
Idea is execution unit will become our hardware entity
Driver can be used to (automatically) generate test vectors.

loop :: Matrix y a -> IO (Maybe (Matrix y U1))

encode loop

Matrixy a

Just (Matrixy U1)

Matrix (x,y) a

Matrix (x,y) a
Matrixy a



Specification to Architecture (1)
Fission into driver and execution unit
Idea is execution unit will become our hardware entity
Driver can be used to (automatically) generate test vectors.

loop :: Matrix y a -> IO (Maybe (Matrix y U1))

solve :: (SM.Matrix (x,y) a, Matrix y a) 
    -> (SM.Matrix (x,y) a, Matrix y a)

encode loop

Matrixy a

Just (Matrixy U1)
solve

Matrix (x,y) a

Matrix (x,y) a
Matrixy a

Matrix (x,y) a
Matrixy a

Matrix (x,y) a
Matrixy a



Specification to Architecture (2)

First, push memory into computation.
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1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0



Specification to Architecture (2)
solve0 :: (SM.Matrix (x,y) a, Matrix y a) 

    -> (SM.Matrix (x,y) a, Matrix y a)

First, push memory into computation.

solve1 :: Stream (Matrix y a)
       -> Stream (Matrix y a)

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0



Specification to Architecture (3)
solve0 :: (SM.Matrix (x,y) a, Matrix y a) 

    -> (SM.Matrix (x,y) a, Matrix y a)

Push memory into computation (introduce Stream)
Generalize the size of the solution (List of (Stream of) Array)
Accept and send data to neighbors (extra in and out arguments)

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

:: ([Stream (Array y b)], [Stream (Array x (Maybe b))])
-> ([Stream (Array x (Maybe b))], [Stream (Array y b)])



Specification to Architecture (4)

Divide and conquer in both vertical and horizontal
Zero “cells” are trivial to handle
Our chosen “cell” size calls the earlier solution
We are ready to start the implementation

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

:: ([Stream (Array y b)], [Stream (Array x (Maybe b))])
-> ([Stream (Array x (Maybe b))], [Stream (Array y b)])



Architecture to Implementation

List . Stream . Arrayx . Maybe

List . Maybe . Seq . PipeSZ 

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0



Architecture to Implementation

Streams run every “cycle”.
Seq always are active, but 
the meaning of their 
value depends on some 
control logic.
Pipe has its own control 
logic

List . Stream . Arrayx . Maybe

List . Maybe . Seq . PipeSZ 

toSeq

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0



Commuting Functors   
List Stream MaybeArrayxList Stream MaybeArrayx

List Maybe Seq Pipea
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List StreamMaybe Arrayx

List Stream MaybeArrayx

List Maybe Seq Pipea

upsample

Stream

toSeq

List Stream Maybe Arrayx

multiplexing



Conclusion and Status

The methodology of communing functors guided our rewriting towards 
the types we wanted to use.

We used the worker/wrapper transformation to manual rewrite the types of the 
functions each time.
This should be possible to automate.
We could focus on the meaning of values under control logic.

Our model (and mix* model) matched exactly the published bit error 
rate curves, and implementation came in exactly where expected.
We have working simulations of the complete LDPC in Modelsim.
No FPGA version of LDPC (yet)
We want to make our system more flexible; exploring design decisions.

LDPC
Model

LDPC
Imp

LDPC
Arch


