
 Generating Implementations
of Error Correcting Codes

using Kansas Lava

Andy Gill, Tristan Bull, Andrew Farmer,
Garrin Kimmel, Ed Komp, Erik Perrins

University of Kansas

Information and Telecommunication
Technology Center (ITTC)

Center collaboration based round
focus areas or labs

Faculty are associated with one or more labs.
Labs for Bioinformatics, Communications and
Networks, Computer Systems, e-Learning,
Intelligent Systems, Information Assurance,
Radar and Remote Sensing.
This project is a collaboration between three
labs.

HFEC Project
Forward Error Correction (FEC)
codes are part of the migration
path in future aeronautical
telemetry standards for DoD/
NASA test ranges
Two candidate FEC codes have
been selected

A serially concatenated convolutional
code (SCCC) developed at KU
A low-density parity check (LDPC) code
developed at NASA’s Jet Propulsion
Laboratory (JPL)

Both codes have an information
block size of 4096 bits and a
rate of 2/3
Hardware prototypes of these
systems are needed as the next
step in the evolution of the
standard

LDPC
Encode Modulatoran є {0,1} s(t)

4k
blocks

6k
blocks

Demodulator LDPC
Decode

r(t)

4k
blocks

6k
blocks

ân є {0,1}

Block Diagram of Prototype
LDPC Implementation

Decode

Encode

HFEC Game Plan
We want to generate circuits for implementing LDPC!

Interesting, practical problem.
Based on well understood math.
Real world constraints and requirements.

Current workflow is
Implement prototype of transmit / receive in MATLAB,
then re-implement in VHDL,
then re-re-implement in VHDL (once requirements are better understood).

Research Questions
Can we use use functional programming to complement and support the
developments being made in MATLAB?
Can we build a functional program that allow the tradeoffs which require
re-implementation to be avoided?
Can we gain a stronger assurance of the relationship between the
specification and implementation?

Binary phase-shift keying (BPSK)

BPSK encoding picks two phases for the binary symbols 0 and 1

symbol ‘0’ symbol ‘1’

Binary phase-shift keying (BPSK)

BPSK encoding picks two phases for the binary symbols 0 and 1
Always a possibility of the received symbol being wrong
Probability density function changes with different signal to noise ratios

symbol ‘0’ symbol ‘1’

Binary phase-shift keying (BPSK)

BPSK encoding picks two phases for the binary symbols 0 and 1
Always a possibility of the received symbol being wrong
Probability density function changes with different signal to noise ratios

symbol ‘0’ symbol ‘1’

symbol
error

LDPC encoding a codeword

1
0
1
0
1

1 0 0 0 0 1 1 0 0 1

0 0 0 0 1 0 1 0 1 1

0 0 1 0 0 1 0 1 1 0
0 1 0 0 0 0 1 1 1 0

0 0 0 1 0 1 0 1 0 1

LDPC encoding a codeword

1
0
1
0
1

1 0 0 0 0 1 1 0 0 1

0 0 0 0 1 0 1 0 1 1

0 0 1 0 0 1 0 1 1 0
0 1 0 0 0 0 1 1 1 0

0 0 0 1 0 1 0 1 0 1

1 0 1 0 1 0 0 1 0 0

LDPC encoding a codeword

1
0
1
0
1

1 0 0 0 0 1 1 0 0 1

0 0 0 0 1 0 1 0 1 1

0 0 1 0 0 1 0 1 1 0
0 1 0 0 0 0 1 1 1 0

0 0 0 1 0 1 0 1 0 1

1 0 1 0 1 0 0 1 0 0

Identity
Matrix

LDPC encoding a codeword

1
0
1
0
1

1 0 0 0 0 1 1 0 0 1

0 0 0 0 1 0 1 0 1 1

0 0 1 0 0 1 0 1 1 0
0 1 0 0 0 0 1 1 1 0

0 0 0 1 0 1 0 1 0 1

1 0 1 0 1 0 0 1 0 0

Parity
Generation

LDPC decoding
1 0 1 0 1 0 0 1 0 0

Original
Code

LDPC decoding

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

1 0 1 0 1 0 0 1 0 0

LDPC decoding

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

1 0 1 0 1 0 0 1 0 0

Single
parity
check

LDPC decoding

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

1 0 1 0 1 0 0 1 0 0

0
Single
parity
check

LDPC decoding

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

1 0 1 0 1 0 0 1 0 0

0
0
0
0
0

LDPC decoding with parity error

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

1 0 1 1 1 0 0 1 0 0

LDPC decoding with parity error

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

1 0 1 1 1 0 0 1 0 0

LDPC decoding with parity error

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

1 0 1 1 1 0 0 1 0 0

0
Single
parity
check

LDPC decoding with parity error

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

1 0 1 1 1 0 0 1 0 0

0
0
0
1
1

LDPC belief propagation

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

What does a point need for
a successful parity check?

LDPC belief propagation

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

What does a point need for
a successful parity check?

LDPC belief propagation

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

What does a point need for
a successful parity check?

1

If codeword is 1
the parity of activated

vertical siblings
should sum to 1

LDPC belief propagation

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

What does a point need for
a successful parity check?

If codeword is 0
the parity of activated

vertical siblings
should sum to 0

If codeword is 1
the parity of activated

vertical siblings
should sum to 1

0

LDPC belief propagation

Depending on how certain you are about your input,
you can make suggestions to your siblings.

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

What does a point need for
a successful parity check?

If codeword is 0
the parity of activated

vertical siblings
should sum to 0

If codeword is 1
the parity of activated

vertical siblings
should sum to 1

0

LDPC check nodes
1 -1 1 0.5 1 -1 -1 1 -1 -1

- - f f f - f - f f
Single
Line

Same
Single
Line

fj = tanh(-0.5 * (lamj - chkj))

gj = -2 * tanh-1(Π f(...))

- - g g g - g - g g

Use soft code guesses

LDPC check nodes
1 -1 1 0.5 1 -1 -1 1 -1 -1

- - f f f - f - f f
Single
Line

Same
Single
Line

fj = tanh(-0.5 * (lamj - chkj))

gj = -2 * tanh-1(Π f(...))

- - g g g - g - g g

Use soft code guesses

LDPC check nodes
1 -1 1 0.5 1 -1 -1 1 -1 -1

- - f f f - f - f f
Single
Line

Same
Single
Line

fj = tanh(-0.5 * (lamj - chkj))

gj = -2 * tanh-1(Π f(...))

- - g g g - g - g g

Use soft code guesses

LDPC check nodes
1 -1 1 0.5 1 -1 -1 1 -1 -1

- - f f f - f - f f
Single
Line

Same
Single
Line

fj = tanh(-0.5 * (lamj - chkj))

gj = -2 * tanh-1(Π f(...))

- - g g g - g - g g

Use soft code guesses

LDPC iterates over the codeword

+0.5

∑

Soft
codeword

+0.4

Each ‘1’ in
original decode

matrix has a
check node

Iterate using
this new

code guess

LDPC Specification

From
Error Correction Coding: Mathematical Methods and Algorithms,
Tood K. Moon, Wiley-Interscience.

LDPC In Haskell
loop options lc n a@(A a_rref aRows aCols) ne lam orig_lam
 | BitMatrix.cardinality ans == 0 = return (Just c_hat)
 | n > iterations options = return Nothing
 | otherwise = loop options lc (succ n) a ne' lam' orig_lam
 where
 c_hat :: Matrix x U1
 c_hat = (\ c -> if c > 0 then 1 else 0) <$> lam

 ans :: BitMatrix (y, X1)
 ans = a_rref `BitMatrix.mm` BitMatrix.fromMatrix (M.unitColumn c_hat)

 ne' :: SM.Matrix (y,x) a
 ne' = SM.fromAssocList 0
 [((m,n),
 -2 * (atanh (product

 [tanh ((-((lam ! j) - (ne SM.! (m,j))))/2)
 | j <- BitMatrix.toList (aRows ! m)
 , j /= n
])))
 | (m,n) <- BitMatrix.toList a_rref]

 lam' :: Matrix x a
 lam' = forAll $ \ n -> (orig_lam ! n)

 + sum [ne' SM.! (m,n)
 | m <- BitMatrix.toList (aCols ! n)]

Lava
Lava is an Embedded Domain
Specific Language (EDSL) for
describing hardware level concerns
Haskell acts as the host language

Lava is a Library in Haskell
Lava programs are Haskell programs
Haskell programs are not necessarily Lava
programs

halfAdder
 :: (Signal Bool, Signal Bool)
 -> (Signal Bool, Signal Bool)
halfAdder (a,b) = (carry,sum)
 where carry = and2 (a,b)
 sum = xor2 (a,b)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.all;

entity half is
 port (i0 : in std_logic;
 i1 : in std_logic;
 o0 : out std_logic;
 o1 : out std_logic);
end entity half;

architecture str of half is
signal sig_o0_4 : std_logic;
signal sig_o0_2 : std_logic;
begin
 sig_o0_4 <= i0 XOR i1;
 sig_o0_2 <= i0 AND i1;
 o0 <= sig_o0_2;
 o1 <= sig_o0_4;
end architecture;

Specifications and Implementations
We want to link together our Haskell executable specification
with our Lava implementations

Ease of test generation and debugging
Stepping stones provide placeholders for assurance arguments
Possibility of a future design methodology

Specification Implementation

Runs on Haskell RTS
Big step functions
No concept of clock cycles
Haskell recursion for
control flow
Mutable state is global

Both
Haskell

VHDL / ModelSim / FPGAs
execution platform
Fine grain execution (in
efficient implementations)
It is all about the cycles
Control logic direct datums
Mutable state is local

Kansas Lava
Started as a teaching tool for FP class
Used to generate binaries for orbital simulation in summer 2009
Grown into a primary FP research platform at KU
We want to address the range of computations that can be mapped
over functors

Lava

Synthesis & Execution

Signal-based
computation model

restricted computation
over functors

HawkClassical
Haskell

Execution

Signal-based
computation model

Arbitrary computation
over functors

Execution

Value-based
computation model

Arbitrary computation
over functors

Kansas
Lava

Family of Kansas Lava Functors

Seq

Comb

Stream

Enabled

Mema

Matrixx

List

Pipea

Synthesizable

Structural

Haskell

Key

map :: (a → b) → f a → f b
Functor f

map g . map h = map (g . h)
map id = id

Strategy
Refactor computation to
use synthesizable and

structural functors

Arrayx

Maybe

Kansas Lava Example

Primitives like “+” are
defined over Seq.
Kansas Lava programs
use functions like unpack
to move values so that
primitives can act.

sumMatrix :: (...) => Seq (Matrix x a) -> Seq a
sumMatrix = foldb (+)

 . M.toList
 . unpack

Seq

SeqMatrixx

SeqList

Matrixx

Seq

unpack

toList

foldb (+)

Gameplan
Refactor specification in Haskell to architecture,
reflecting where computation should take place

Computation is placed by architecture
Sub-components should be synthesizable in hardware
This is the push stage

Refine architecture to use Kansas Lava types
sub-components are joined to make larger synthesizable
components
This is the pull stage

The result is a synthesizable circuit
This circuit reflects the chosen architecture
This circuit implements the specification.

Spec

Spec

Gameplan
Refactor specification in Haskell to architecture,
reflecting where computation should take place

Computation is placed by architecture
Sub-components should be synthesizable in hardware
This is the push stage

Refine architecture to use Kansas Lava types
sub-components are joined to make larger synthesizable
components
This is the pull stage

The result is a synthesizable circuit
This circuit reflects the chosen architecture
This circuit implements the specification.

Spec Arch

Arch

Gameplan
Refactor specification in Haskell to architecture,
reflecting where computation should take place

Computation is placed by architecture
Sub-components should be synthesizable in hardware
This is the push stage

Refine architecture to use Kansas Lava types
sub-components are joined to make larger synthesizable
components
This is the pull stage

The result is a synthesizable circuit
This circuit reflects the chosen architecture
This circuit implements the specification.

Spec Arch

Gameplan
Refactor specification in Haskell to architecture,
reflecting where computation should take place

Computation is placed by architecture
Sub-components should be synthesizable in hardware
This is the push stage

Refine architecture to use Kansas Lava types
sub-components are joined to make larger synthesizable
components
This is the pull stage

The result is a synthesizable circuit
This circuit reflects the chosen architecture
This circuit implements the specification.

Spec ImpArch

Imp

LDPC Backbone for
Model, Architecture and Implementation

Backbone

Random
Packet

Generator Encode Decode

Bit Error
Rate

Assessment

M
atrix M

ul

R
ef Im

pl

R
efining

A
rchitecture

Som
e Lava

Final Im
p

First Im
p

AWGN

EbN0

LDPC Backbone for
Model, Architecture and Implementation

Backbone

Random
Packet

Generator Encode Decode

Bit Error
Rate

Assessment

M
atrix M

ul

R
ef Im

pl

R
efining

A
rchitecture

Som
e Lava

Final Im
p

First Im
p

AWGN

EbN0

R
ef Im

pl

LDPC Backbone for
Model, Architecture and Implementation

Backbone

Random
Packet

Generator Encode Decode

Bit Error
Rate

Assessment

M
atrix M

ul

R
ef Im

pl

R
efining

A
rchitecture

Som
e Lava

Final Im
p

First Im
p

AWGN

EbN0

LDPC Backbone for
Model, Architecture and Implementation

Backbone

Random
Packet

Generator Encode Decode

Bit Error
Rate

Assessment

M
atrix M

ul

R
ef Im

pl

R
efining

A
rchitecture

Som
e Lava

Final Im
p

First Im
p

Rewrite

AWGN

EbN0

LDPC Backbone for
Model, Architecture and Implementation

Backbone

Random
Packet

Generator Encode Decode

Bit Error
Rate

Assessment

M
atrix M

ul

R
ef Im

pl

R
efining

A
rchitecture

Som
e Lava

Final Im
p

First Im
p

AWGN

EbN0

LDPC Backbone for
Model, Architecture and Implementation

Backbone

Random
Packet

Generator Encode Decode

Bit Error
Rate

Assessment

M
atrix M

ul

R
ef Im

pl

R
efining

A
rchitecture

Som
e Lava

Final Im
p

First Im
p

Lift synthesizable Lava

AWGN

EbN0

Divide and Conquer LDPC

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

Divide and Conquer LDPC

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

Dividing LDPC
horizontally

requires performing
an addition to

combine answers

addition is
associative

Divide and Conquer LDPC

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

Dividing LDPC
horizontally

requires performing
an addition to

combine answers

addition is
associative

Dividing LPDC
vertically is much
more challenging

There was
considerable

sharing between
vertical siblings

min* - Common Implementation Trick
tanh and tanh-1 are tricky in hardware
Common implementation trick is to use the min* function instead

This costs about 0.2dB
min* when quantized is associative
fold min* (...) replaces tanh-1(Π ...)

fj = tanh(-0.5 * (lamj - chkj))

gj = -2 * tanh-1(Π f(...))

min* x y = signum(x) * signum(y) * (min (abs x) (abs y))

fj = -1 * (lamj - chkj)

Before After

gj = -0.75 * fold min* (f(...))

LDPC check nodes with min*
1 -1 1 0.5 1 -1 -1 1 -1 -1

- - f f f - f - f f

fold min*
inside g

- - g g g - g - g g

Use soft code guesses

fold min* (f(...))

fj = -1 * (lamj - chkj)

gj = -0.75 * fold min* (f(...))

LDPC check nodes with min*

- - f f f - f - f f

- - g g g - g - g g

LDPC check nodes with min*

- - f f f - f - f f

- - g g g - g - g g

LDPC check nodes with min*

- - f f f - f - f f

- - g g g - g - g g

fold min* (f(...))

Inside one side
the mixing is
the same...

LDPC check nodes with min*

- - f f f - f - f f

- - g g g - g - g g

fold min* (f(...))

fold min* (f(...))

Inside one side
the mixing is
the same...

With one
extra input

Cell Architecture

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

In JPL LDPC code
the matrix is built from

many rotated
identity matrixes

(and empty matrixes)

Cell Architecture

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

0 1
1 0

In JPL LDPC code
the matrix is built from

many rotated
identity matrixes

(and empty matrixes)

256
 x 256

Cell Architecture

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

0 1
1 0

In JPL LDPC code
the matrix is built from

many rotated
identity matrixes

(and empty matrixes)

256
 x 256

Cell Architecture

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

0 1
1 0

In JPL LDPC code
the matrix is built from

many rotated
identity matrixes

(and empty matrixes)

256
 x 256

Cell Architecture

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

0 1
1 0

In JPL LDPC code
the matrix is built from

many rotated
identity matrixes

(and empty matrixes)

256
 x 256

Cell Architecture

1 1 1 0 0 1 1 0 0 1

1 1 0 1 0 0 1 1 1 0

0 0 1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0 1

0 1
1 0

In JPL LDPC code
the matrix is built from

many rotated
identity matrixes

(and empty matrixes)

256
 x 256

Type of Cell Architecture

0 1
1 0

:: ([Stream (Array y b)], [Stream (Array x (Maybe b))])
-> ([Stream (Array x (Maybe b))], [Stream (Array y b)])

[Stream (Array y b)]

[Stream (Array x (Maybe b))]

[Stream (Array x (Maybe b))]

[Stream (Array y b)]

Dimensions of a Channel

Our channels are a composition of functors
Consider our neighbor sharing channel

[Stream (Array x (Maybe b))]

List . Stream . Arrayx . Maybe

List Stream MaybeArrayx

Over
Time

Many
Cells Collection Optional

Specification to Architecture (1)
Fission into driver and execution unit
Idea is execution unit will become our hardware entity
Driver can be used to (automatically) generate test vectors.

loop :: Matrix y a -> IO (Maybe (Matrix y U1))

encode loop

Matrixy a

Just (Matrixy U1)

Matrix (x,y) a

Matrix (x,y) a
Matrixy a

Specification to Architecture (1)
Fission into driver and execution unit
Idea is execution unit will become our hardware entity
Driver can be used to (automatically) generate test vectors.

loop :: Matrix y a -> IO (Maybe (Matrix y U1))

solve :: (SM.Matrix (x,y) a, Matrix y a)
 -> (SM.Matrix (x,y) a, Matrix y a)

encode loop

Matrixy a

Just (Matrixy U1)
solve

Matrix (x,y) a

Matrix (x,y) a
Matrixy a

Matrix (x,y) a
Matrixy a

Matrix (x,y) a
Matrixy a

Specification to Architecture (2)

First, push memory into computation.

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

Specification to Architecture (2)
solve0 :: (SM.Matrix (x,y) a, Matrix y a)

 -> (SM.Matrix (x,y) a, Matrix y a)

First, push memory into computation.

solve1 :: Stream (Matrix y a)
 -> Stream (Matrix y a)

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

Specification to Architecture (3)
solve0 :: (SM.Matrix (x,y) a, Matrix y a)

 -> (SM.Matrix (x,y) a, Matrix y a)

Push memory into computation (introduce Stream)
Generalize the size of the solution (List of (Stream of) Array)
Accept and send data to neighbors (extra in and out arguments)

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

:: ([Stream (Array y b)], [Stream (Array x (Maybe b))])
-> ([Stream (Array x (Maybe b))], [Stream (Array y b)])

Specification to Architecture (4)

Divide and conquer in both vertical and horizontal
Zero “cells” are trivial to handle
Our chosen “cell” size calls the earlier solution
We are ready to start the implementation

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

:: ([Stream (Array y b)], [Stream (Array x (Maybe b))])
-> ([Stream (Array x (Maybe b))], [Stream (Array y b)])

Architecture to Implementation

List . Stream . Arrayx . Maybe

List . Maybe . Seq . PipeSZ

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

Architecture to Implementation

Streams run every “cycle”.
Seq always are active, but
the meaning of their
value depends on some
control logic.
Pipe has its own control
logic

List . Stream . Arrayx . Maybe

List . Maybe . Seq . PipeSZ

toSeq

1 1 1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 1 1 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0

Commuting Functors
List Stream MaybeArrayxList Stream MaybeArrayx

List Maybe Seq Pipea

Commuting Functors

List Stream Maybe Arrayx

List Stream MaybeArrayx

List Maybe Seq Pipea

Commuting Functors

List StreamMaybe Arrayx

List Stream MaybeArrayx

List Maybe Seq Pipea

List Stream Maybe Arrayx

Commuting Functors

List StreamMaybe Arrayx

List Stream MaybeArrayx

List Maybe Seq Pipea

List Stream Maybe Arrayx

Commuting Functors

List StreamMaybe Arrayx

List Stream MaybeArrayx

List Maybe Seq Pipea

upsample

Stream

List Stream Maybe Arrayx

Commuting Functors

List StreamMaybe Arrayx

List Stream MaybeArrayx

List Maybe Seq Pipea

upsample

Stream

toSeq

List Stream Maybe Arrayx

Commuting Functors

List StreamMaybe Arrayx

List Stream MaybeArrayx

List Maybe Seq Pipea

upsample

Stream

toSeq

List Stream Maybe Arrayx

multiplexing

Conclusion and Status

The methodology of communing functors guided our rewriting towards
the types we wanted to use.

We used the worker/wrapper transformation to manual rewrite the types of the
functions each time.
This should be possible to automate.
We could focus on the meaning of values under control logic.

Our model (and mix* model) matched exactly the published bit error
rate curves, and implementation came in exactly where expected.
We have working simulations of the complete LDPC in Modelsim.
No FPGA version of LDPC (yet)
We want to make our system more flexible; exploring design decisions.

LDPC
Model

LDPC
Imp

LDPC
Arch

