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First international competition on neural network
verification (VNN-COMP) happened this summer

Pre-COVID, 18 participants intended to participate

1. NNV (Vanderbilt)

2. DNNV (U of Virginia)

3. nnenum (Stony Brook)

4. Neurify (Columbia)

5. ReluVal (Columbia)

6. CROWN-IBP (UCLA / MIT / Michigan /

DeepMind / UIUC)

7. auto_LiRPA (Northeastern / Tsinghua / UCLA /

Lawrence Livermore National Laboratory)

8. Sherlock (U of Colorado Boulder)

9. NPAQ (U of Singapore / Berkeley)

  https://sites.google.com/view/vnn20/vnncomp

10. Branch-and-Bound (Oxford / DeepMind)

11. PaRoT from FiveAI (Cambridge / FiveAi)

12. MIPVerify.jl (MIT / Cruise Automation)

13. ARFramework (Utah State)

14. Marabou (Stanford / Hebrew U of

Jerusalem)

15. Venus (Imperial College London)

16. Verinet (Imperial College London)

17. ERAN (ETH Zurich / UIUC)

18. PeregriNN (UC Irvine)

2

https://sites.google.com/view/vnn20/vnncomp


What is Meant by
Neural Network Verification?
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Two Operations Needed
Verification needs to reason over two types of operations:
(1) affine transformations, and (2) activation functions.

Input Set Output Set

4



Affine Transform

An affine transformation  is a function that transforms
an -dimensional point  to a -dimensional point defined
using a matrix  and vector .

f

n x q

A b

f(x) : R →n Rq

x↦ Ax+ b

If  is a vector of  outputs of some layer, then the  inputs
to the next layer are , where  is the weights matrix
and  is the bias vector.

x n q

Ax+ b A

b
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ReLU Activation Functions

RELU(x) = max(x, 0)
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ReLU Activation Functions
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ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x )i
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ReLU Activation Functions

RELU(x) = max(x, 0)
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Set Operations are Needed for Verification

Input
Set

Output
Set

We need to be able to efficiently perform operations on sets:
- Affine Transformation
- Optimization
- Intersection
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Representations for Subsets of Rn

The set representation determines what operations
are possible and efficient.

Some options:

Boxes
-PolytopesV

-PolytopesH

Zonotopes                       
Linear Star Sets ( -Polytopes)AH
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Operations on Star Set ⟨c,V ,P ⟩

Affine Transform: matrix-matrix multiplication
to compute  and . Result is .
 

Optimization: put star set definition into a linear
program (LP) and minimize.
 

Intersection: given a halfspace
, let .

Result is .

c′ V ′ ⟨c ,V ,P ⟩′ ′

H = {x ∣ Gx ≤ g} P (α) =H GV α ≤ g −Gc

⟨c,V ,P ∧ P ⟩H
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Star Sets for Verification

Input
Set

Output
Set

Star Sets exactly and efficiently encode linear transformation,
optimizations and intersections.
 
This means exact analysis is possible for NNs with ReLUs,
fully connected layers, convolutional layers, avg / max pooling
layers.
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NN Verification is NP-Complete

Every ReLU neuron can in theory double the number of sets.
 
Example: A  neuron network could require  sets.
 
Does this happen in practice?
 
Need to define "in practice".

300 2300
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https://s3.amazonaws.com/media-p.slid.es/videos/1154051/zIhdjWOj/acasxu_anim.mp4


ACAS Xu Collision Avoidance System [Katz '17]

Why NN?: Replace a several GB lookup
table with 45 neural networks
(compression)
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Property : If the intruder is directly ahead and is moving
towards the ownship, a turn will be commanded.
 
Input: 

Unsafe Output: Clear  Weak-Left  Clear  Weak-Right 
Clear  Strong-Left  Clear  Strong-Right

φ3

1500 ≤ ρ ≤ 1800, ∣θ∣ ≤ 0.06,ψ ≥ 3.1, v ≥own 980, v ≥int 960

≤ ∧ ≤ ∧
≤ ∧ ≤

300 neurons in 6 layers

Inputs:
1. 
2. 
3. 
4. 
5. 

vint

vown

ρ

ψ

θ

Outputs:
1. Clear
2. Weak-Left
3. Weak-Right
4. Strong-Left
5. Strong-Right

ACAS Xu Collision Avoidance System [Katz '17]
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“Engineering matters: you can’t properly evaluate a
technique without an efficient implementation.”

-Ken McMillan

Formal Methods "at Scale"
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To improve performance, you must first find
the bottleneck of the algorithm.

Optimizations

The majority of the runtime is spent making
unnecessary copies.
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To improve performance, you must first find
the bottleneck of the algorithm.

Optimizations

The majority of the runtime is spent making
unnecessary copies.

The majority of the runtime is spent optimizing
(solving LPs), to find the input bounds for each
neuron.
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ReLU Activation Functions

RELU(x) = max(x, 0)

xi yi

y =i RELU(x )i
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Two LPs are solved to find  and  for each neuron.li ui 23



Observations

xi
uili

x
=
i

y i

Actually, we don't usually need to compute  and ,
just to check if .

li ui

l <i 0 < ui

If  > 0, we're done (single LP)!li

Also, if  < 0, we're done... how to choose direction?ui

Idea #1: use a concrete execution of the NN

Concrete
Input

24



Furter LP Reductions

xi
uili

x
=
i

y i

LP solving is still the bottleneck, can we do better than
a single LP per neuron?

In formal verification, achieving high performance
means using the appropriate level of abstraction

Idea #2: Use Zonotope overapproximations to prove
branching is possible without LP solving

Input Range from
Zonotope

Overapproximation
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Zonotope Accuracy

LP solving is still the bottleneck, how can we do
better?

The zonotope prefilter works better if it's more
accurate. How can we increase it's accuracy?

Idea #3: Contract the domain of the zonotope
overapproximation when splitting.
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Zonotope Domain Contraction
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Zonotope Domain Contraction
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Zonotope Domain Contraction 2
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Zonotope Domain Contraction 2
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Exact vs Overapproximation
For each ReLU with  and , you can choose between
splitting (exact) or single-set triangle overapproximation.
 
Neither is always best.
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Single Set Overapproximation

Idea #4: Combine splitting and overapproximation. Challenge:
how to choose?

In formal verification, achieving high performance means using
the appropriate level of abstraction



Results from
VNN-COMP 2020

186 Benchmarks from ACASXu System
 
Original runtimes in 2017 paper were seconds to days, with
some unsolved instances
 
Six tools submitted results
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Results from
VNN-COMP 2020

Our Tool
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Results from
VNN-COMP 2020

Our Tool
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Other Verification Problems
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Larger Perception NNs

VGG-16
(>10 million neurons)

Bell
Pepper?

See the CAV 2020 paper:
"Verification of Deep Convolutional Neural Networks Using ImageStars"

H.D Tran, S. Bak, W. Xiang and T. T. Johnson
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Closed-Loop Analysis

Physical
System
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Black-Box
Physical
System

Closed-Loop Analysis
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Decision Points
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From black-box analysis
with local numerical

linearization

Decision Points

40



Summary
Verification of neural networks is becoming increasingly feasible.

 
Now is a good opportunity for collaboration: stanley.bak@stonybrook.edu

 

Hoang-Dung Tran Taylor JohnsonKerianne HobbsStanley Bak
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