
Guardol:
A domain-specific language for guards

supporting strong automated formal analysis

Andrew GacekRockwellCollins David HardinRockwellCollins

Konrad SlindRockwellCollins Mike WhalenU.Minnesota

May 5, 2011

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Part 1

Guards and Guardol

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Guard technology

A guard mediates information sharing between security
domains according to a specified policy.

Typical guard operations on a packet stream:
read field values in a packet
change fields in a packet
transform packet by adding new fields
drop fields from a packet
construct audit messages
remove entire packet from stream

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Guard technology at Rockwell-Collins

Rockwell-Collins has some experience in the area (reported at
previous HCSS meetings)

2005: High assurance guard demo
2007: Turnstile guard based on AAMP7

AAMP7 based
designed, built, delivered
undergoing accreditation

2010: MicroTurnstile
used to guard USB comms in soldier systems
AAMP7 based
matchbox size

We now seek to make the process of specifying, implementing,
and certifying high assurance guards more efficient, flexible,
and retargetable.

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

The Guardol language

Our approach is to develop a domain-specific language for
guards, plus support technology.

Automatic generation of implementation and formal
analysis artifacts
Integrate and highly automate formal analysis
Support a wide variety of guard platforms
Ability to glue together existing or mandated functionality

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

The Guardol language

Roughly: Guardol = Ada + ML

Ada provides a familiar setting for our target programmers.

ML types succinctly capture tree-structured data, e.g., email,
XML

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Guardol language summary

Guardol is a simple conventional imperative language with
ML-style datatypes.

base types (bool,int,word32,string)
record types
mutual, nested recursive types
pattern-matching
second order functions (via externals)
package system
specifications integrated into programs

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

What Guardol doesn’t have

no polymorphism
no pointers
no I/O

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Example 1: Swap

package SwapModule =
begin

function swap (a : in out int, b : in out int) =
begin
var tmp : int;

in
tmp := a;
a := b;
b := tmp;

end

end

This is not a guard

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Example 2: Tree Guard

Examines and possibly transforms a tree of messages
(strings), calling out to an external dirty-word-search function.

package DWSTree =
begin
type Msg = string;

type Tree =
{ Leaf
| Node: [Value: Msg; Left: Tree; Right: Tree]
};

type MsgResult = {Ok: Msg | Audit: string};

type TreeResult = {TreeOk: Tree | TreeAudit: string};

imported function
DIRTY_WORD_SEARCH(Text:in Msg, Output:out MsgResult);

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Tree Guard function
function Guard (Input : in Tree, Output : out TreeResult) =
begin
var

ValueResult : MsgResult;
LeftResult,RightResult : TreeResult;

in
match Input with
begin

Tree’Leaf => Output := TreeResult’TreeOk(Tree’Leaf);
Tree’Node node =>
begin
DIRTY_WORD_SEARCH(node.Value, ValueResult);
match ValueResult with
begin
MsgResult’Audit A => Output := TreeResult’TreeAudit(A);
MsgResult’Ok ValueMsg =>
begin

Guard (node.Left, LeftResult);
match LeftResult with
begin
TreeResult’TreeAudit A => Output := LeftResult;
TreeResult’Ok LeftTree =>
begin

Guard (node.Right, RightResult);
match RightResult with
begin
TreeResult’TreeAudit A => Output := RightResult;
TreeResult’Ok RightTree =>

Output := TreeResult’TreeOk(Tree’Node
[Value: ValueMsg, Left : LeftTree, Right: RightTree]);

end end end end end end end
end package

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Control flow via matching

...
in
match Input with
begin

Tree’Leaf => Output := TreeResult’TreeOk(Tree’Leaf);
Tree’Node node =>
begin
DIRTY_WORD_SEARCH(node.Value, ValueResult);
match ValueResult with
begin

MsgResult’Audit A => Output := ...

MsgResult’Ok ValueMsg => ...

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Constructed data

...
in
match Input with
begin

Tree’Leaf => Output := TreeResult’TreeOk(Tree’Leaf);
Tree’Node node =>

....
TreeResult’Ok RightTree =>
Output :=
TreeResult’TreeOk(Tree’Node

[Value:ValueMsg,Left:LeftTree, Right:RightTree])
...

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Second order procedures/parameterized modules

...
in
match Input with
begin

Tree’Leaf => Output := TreeResult’TreeOk(Tree’Leaf);
Tree’Node node =>
begin

DIRTY_WORD_SEARCH(node.Value, ValueResult);
match ValueResult with
begin

...

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Specification of properties

We add a specification to the Swap module:

package SwapModule = begin

function swap (a : in out int, b : in out int) =

spec reswap =
begin
var x, y, x0, y0 : int;

in
x0 := x; y0 := y;
swap (x,y);
swap (x,y);
check x = x0 and y = y0;

end
end package

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Design aspects

We adopted an intermediate language from Gryphon as
the basis for Guardol

“Software model checking takes off”, Miller, Whalen, Cofer,
CACM Feb 2010

Leverages existing code-generation facilities of Gryphon
Little emphasis on incorporating cutting edge
programming language features
Instead, we have a simple language and aim at cutting
edge proof support

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Part 2

Guardol System Overview

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

System Diagram

Guardol
Source

Generated
VCs

Gryphon
Suite

Operational
Semantics

Ada
CodeG

HOL
Functional
Decompiler

VC Gen

Gs
Guardol

S-‐expression

OpenSMT /
z3

Datatype
Decision
Procedure

Resolution Proof

Proof
Check G

Counterexample

X
Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

System Components

Front end
Gryphon toolchain
parsing, type-checking
Ada code generation

Semantic representation
Theory of programs/evaluation
Translation to intermediate form
Derive functional footprints

Automatic proof

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Code generation

Currently we generate Ada from Guardol programs.

Extended and adapted existing Gryphon code generator
Base types directly translate to Ada types
Recursive datatypes implemented with reference counting
(smart pointers)
Pattern matching translated to Ada case statements (not
the same thing!)

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Code generation cont’d

External types and functions result in Ada spec files being
generated
BUT implementations for such need to be supplied by the
Ada programmer
IO ‘driver’ also needs to be implemented by the Ada
programmer
Can also generate rules for Turnstile guard

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Semantic representation

In order to reason about Guardol programs we need to have a
semantics for programs.

Guardol semantics formalized in higher order logic
AST of programs + Operational Semantics
Translation of programs into equivalent footprint functions
Translation of functions + specifications to SMT

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Automated reasoning about Guardol programs

Our setting provides
Unbounded user-declared data
Recursive programs

Although theoretically impossible, we want to automate much
or all of the reasoning about Guardol programs.

New decision procedures have recently emerged
(Suter-Kuncak) and we have been implementing them.

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Part 3

Logical Basis

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Guardol program formally

We formalize the evaluation of Guardol programs in HOL by
adapting a quite general semantics due to Norbert Schirmer.

“Verification of Sequential Imperative Programs in
Isabelle/HOL”, Norbert Schirmer, TU Munich, 2006.

Datatype of program ASTs:

prog
= Skip
| Basic of ’a -> ’a
| Seq of prog * prog
| Cond of (’a -> bool) * prog * prog
| Call of ’b
| withState of (’a -> prog)
| Throw
| Catch of prog * prog
| While of (’a -> bool) * prog
| Guard of ’c * (’a -> bool) * prog
| Spec of ’a -> ’a -> bool

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Guardol programs formally cont’d

Currently we are using the following subset:

prog
= Skip
| Basic of ’state -> ’state
| Seq of prog * prog
| Cond of (’state -> bool) * prog * prog
| Call of string * string
| withState of (’state -> prog)

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Notes:

Assignment (and other things) represented by Basic
State type is polymorphic: can be any HOL type!
Call takes the name of a procedure to call
withState is exotic and very powerful
Some are superfluous, e.g., While
Some we don’t use yet (but will)

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Evaluation

Evaluation is defined using a big-step operational semantics.

Phrased in terms of a mode of evaluation. The evaluation state
is either in Normal mode, or in one of a set of abnormal modes.

STEPS : env → program → mode → mode

Example:

STEPS Γ Skip (Normal s) (Normal s)

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Sequential evaluation

SEQ
STEPS Γ c1(Normal s1) s2 STEPS Γ c2 s2 s3

STEPS Γ (Seq c1 c2) (Normal s1) s3

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Procedure call

CALL
proc ∈ Dom(Γ)

Γ(proc) = c STEPS Γ c (Normal s1) s2

STEPS Γ (Call proc) (Normal s1) s2

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Non-fixed-size commands

Blocks and procedure call are derived notions, using withState
in a clever way.

WITHSTATE
STEPS Γ (f s1) (Normal s1) s2

STEPS Γ (withState f) (Normal s1) s2

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Technical comment (modelling types)

Guardol provides user-definable types.

If we were doing a typical exercise in operational semantics, we
would probably formalize the type system of Guardol.

But our principal use of this operational semantics is as a basis
for reasoning about individual programs

So we instead rely on the fact that HOL can define any type in
Guardol, i.e., Guardol types are shallowly embedded.

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Translation of programs

A Guardol program is translated as follows:
Guardol base types map to existing HOL types
Guardol datatypes map to HOL datatype declarations
All variables are put into a hierarchical state record
Assignments are state-transforming functions
Blocks and procedure calls are macro-expanded with
pre-and-post assignments to handle argument passing and
local variables

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Technical comment (modelling state)

The state of a program at any point in execution is the values of
all the variables in the program.

Finite maps (or assoc-list) commonly used.

Instead we use records. Variable reads and writes are just
record field access and update.

To access a procedure in a state: s.p
To access a variable in a state: s.p.v
To update a variable: s with p.v = x . . .

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Swap body translation

Block (\s1. s1)
(Seq
(Basic (\st. st with swap.tmp = st.swap.a))

(Seq
(Basic (\st. st with swap.a = st.swap.b))
(Basic (\st. st with swap.b = st.swap.tmp))))

(\s1 s2.
s1 with

swap.b = s2.swap.b, swap.a = s2.swap.a)

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

From operational semantics to functions

Now we are confronted by a gaping chasm when trying to do
automated proofs about specific Guardol programs

An AST having an operational semantics
SMT proof systems which do not understand operational
semantics

The program needs to be liberated from the semantics, yet
we need the semantics to make sure that any theorems proved
pertain to the Guardol program.

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Decompilation theorems

“Formal verification of machine-code programs”, Magnus
Myreen, Cambridge University, 2008.

A decompilation theorem has the form

s1.p.v1 = v1 ∧ . . . ∧ s1.p.vk = vk ∧
STEPS Γ code (Normal s1) (Normal s2)
⇒
let (o1, . . . , on) = fn (v1, . . . , vk)
in
s2 = s1 with p.o1 = o1, . . . , p.on = on

It’s just a stylized Hoare triple

The footprint function fn is the mathematical function that
code computes

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Decompilation cont’d

Decompilation theorems are automatically proved.

Bottom-up pass from leaves of AST
Code and function it computes are built-up simultaneously,
using code and functions from child AST nodes

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Decompilation cont’d

For example, the decompilation theorem for c1; c2 is (roughly)

inspec ∧
STEPS Γ (c1; c2) (Normal s1) (Normal s2)
⇒
let ovars = (fn2 ◦ fn1)(invars)
in
s2 = s1 with ovars updates

where fn1, fn2 are the synthesized footprint functions for c1, c2.

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Decompilation for swap

|- ∀u1 u2 a b.
((u1.swap.a = a) ∧ (u1.swap.b = b)) ∧
STEPS Gamma swap_body (Normal u1) (Normal u2)

⇒
let (a’,b’) = swapFn (a,b)
in

u2 = u1.swap with a = a’, b = b’

where the following function definition has been automatically
generated

|- swapFn(a,b) = let tmp = a in
let a = b in
let b = tmp
in (a,b)

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Generating proof goals

Recall our specification for swap:

spec reswap =
begin
var x, y, x0, y0 : int;

in
x0 := x; y0 := y; swap (x,y); swap (x,y);

check x = x0 and y = y0;
end

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Generating proof goals

We decompile the code up to the check statement and
construct the following goal

∀u1 u2 x y x0 y0.
((u1.reswap.x = x) ∧ (u1.reswap.y = y) ∧
(u1.reswap.x0 = x0) ∧ (u1.reswap.y0 = y0)) ∧
STEPS Gamma code (Normal u1) (Normal u2)

⇒
(u2.reswap.x = u2.reswap.x0) ∧
(u2.reswap.y = u2.reswap.y0)

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Generating proof goals

The decompilation theorem itself looks like

∀u1 u2 x y x0 y0.
((u1.reswap.x = x) ∧ (u1.reswap.y = y)) ∧
STEPS Gamma code (Normal u1) (Normal u2)
⇒
let (x’’,x0,y’’,y0) =

(λ(x,y).
let x0 = x in
let y0 = y in
let (x’,y’) = swapFn (x,y) in
let (x’’,y’’) = swapFn (x’,y’)
in (x’’,x0,y’’,y0)) (x,y)

in
u2 = u1.reswap with x = x’’, x0 = x0,

y = y’’, y0 = y0

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Starting the proof

Now the antecedents of the goal satisfy the antecendents of the
decomp. theorem so we can now use swapFn to prove the
goal.

let (x’’,x0,y’’,y0) =
(λ(x,y).

let x0 = x in
let y0 = y in
let (x’,y’) = swapFn (x,y) in

let (x’’,y’’) = swapFn (x’,y’)
in (x’’,x0,y’’,y0)) (x,y)

in
u2 = u1.reswap with x = x’’, x0 = x0,

y = y’’, y0 = y0
⇒
(u2.reswap.x = u2.reswap.x0) ∧
(u2.reswap.y = u2.reswap.y0)

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Mapping to SMT

Given a guard, plus a property to prove, we somehow have to
reduce it inside HOL until it becomes acceptable to an SMT
system.

There are two parts to this:
Inducting using the induction scheme for the guard. This
generates the sub-cases of the goal that don’t need
induction.
Reducing the resulting problems to be acceptable to the
SMT solver

The first task is a well-known theorem proving activity.

The second task I will skip for lack of time.

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Part 4

SMT for recursive programs

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Proofs of recursive programs

Systems like ACL2 have been used for eons now to reason
about recursive programs over tree-structured data

This is valuable technology for our group and will likely remain
so

However, new decision procedures are emerging for functional
programs over recursive data

They may provide higher levels of automation

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Suter-Kuncak formulas

Properties over recursive datatypes, where catamorphisms
are used to map the data objects into decidable theories.

cat nil = e
cat(h :: t) = {h} ∪ cat t

A slightly weaker form of primitive recursion

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Contemporary SMT design

Purification

Conjunction
of Bit-‐Vector

Termsbitvector solver (BV)
Purification occurs during preprocessing to split terms involving multiple theories
BV solver is fed a conjunction of terms ONLY from bitvector theory: (x ^ y ^ z

Equality
Reasoning

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Suter-Kuncak design

SAT Solver

To create a tool to implement & procedure we need to modify the standard
SMT architecture
The Suter decision procedure is supervisory. It operates over terms containing atoms from
other theories. Therefore, we forward all theory atoms to it at the top level.
The theory generates SMT-‐style theories with disjunctions involving terms from other
theories; we call an inner instance of OpenSMT

Implementing Suter & Kuncak Decision
Procedure

Top Level SMT Instance: [Datatype Theory Only]

Boolean
Enumerator

Preprocessor

Datatype Decision Procedure

Purifier

Unification
& Partial

Evaluation

Inner SMT Instance: [Element
and Collection Theories]

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

S-K implementation issues

No implementations!
Incomplete approaches, via quantifier instantiation
Extension to mutual recursion.
Completeness and its importance.
Counterexamples

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Summary

The Guardol system is a domain-specific language aimed at
advancing the state of the art in developing and proving
correctness of high-assurance guards.

Guardol programs have their functional equivalents derived by
proof

Functional specifications of Guardol programs are soundly and
automatically translated into SMT goals.

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Status

Ada code generation works
Small examples + specs decompiling
Working on recursive procedures
Automatic generation of goals for Z3, using quantifiers
Working on OpenSMT S-K implementation

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

Future Work

End-to-end system
Larger examples
Decompilation of higher-order packages, type
parameterization
Proof-producing SMT
Improve specification language
Improve concrete syntax

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

THE END

Andrew Gacek, David Hardin, Konrad Slind, Mike Whalen Guardol: A domain-specific language for guards supporting strong automated formal analysis

