
© 2010 IBM Corporation

HWMAC: Hardware-Enforced Fine-Grained
Policy-Driven Security

W. Eric Hall, Guerney D. H. Hunt, Paul A. Karger, Mark F. Mergen,
David R. Safford, and David C. Toll

Thomas J. Watson Research Center

11 May 2010 – 10th Annual High Confidence Software and Systems Conference

© 2010 IBM Corporation2

Next Generation Secure Processor Architecture
IBM Research has been exploring a major paradigm shift in hardware security
architecture

Goal is to make building high security systems easier

CPU security features originated in the late 1960s / early 1970s
– Virtual memory with protection bits in page and/or segment descriptors
– Protection rings or Capabilities

Since then, semiconductor technology has changed drastically, but security
features have not expoited those improvements

– For the most part – we do have crypto hardware and co-processors

Now we have massive multi-cores on a single chip
– Software developers are having a very hard time making effective use of

massive multi-core designs

We could use some of the newly avalable transistors for new security features
– Might have fewer cores, but might achieve much higher security at lower

performance impacts
– Might make achieving high assurance easier

© 2010 IBM Corporation3

Project Objective
The objective of this project is to develop and evaluate a computer
architecture which enhances the security and isolation of all levels of
software running in the resulting systems.
– Ideally this new architecture should be instruction set neutral (except

for new features).
– Ideally it should be transparent to applications, although there will be

some impact to operating systems and hypervisors.
– Ideally it should provide better support for software as a service and

service oriented architectures.

Approach:
– Reduce size and complexity of software portion of the Reference

Monitor (TCB) by moving functions from software to hardware

Future Reference Monitors

NGSCA ER
HW

SW

HW

SW

Current Reference Monitors

© 2010 IBM Corporation4

Background

IBM’s existing Secure Processor Architecture teaches that hardware can
make a substantial difference in security – essentially an approach to encrypt
all of memory on an arbitrary chip design
Covers one hardware threat model, and software attacks dependent on that
vector, extremely well. However it does not address hardware and software
attacks that it was not designed for
New project addresses attacks/issues not addressed by existing Secure
Processor Architecture and, for some technologies, builds upon that
architecture
A derivative of this architecture has been extensively used by IBM customers

Chip Boundary

Processor

Other Masters

Master Key

Boot Record

S/W Record

Secure
BridgeTamper Detect

and Response

Other Masters

External
Bus

Controller

Memory
Controller

Host Bus
Bridge

SDRAM

FLASH

Access
Control

Meta-Data
Cache/SRAM

Crypto
Engine

Key/Zone
Tables

HW
RNG

© 2010 IBM Corporation5

Technologies Proposed by the ER

There are nine technologies in different stages of investigation
– Object and subject labelling with mandatory access control (HWMAC)
– Tagged architecture with automatic state save
– Architecture Support for Modular Software
– Secure recursive virtualization
– Logical partition memory:

a)Improved MMU with hypervisor translation
b)Recursive logical partition memory
c)Hardware supported recursive virtualization with hierarchical TLB.

– Secure Message Passing Bus
– Hardware enforced protection against timing channels
– LPAR Isolation
– Hardware support for modularizing the kernel

– Additional contributors: Rick Bovie, Tom Fox, Suzanne McIntosh, and Marcel
Rosu

These technologies are in various states of development, from proposed
approaches to implemented and running in a simulator
This talk focuses only on HWMAC
– Only technology for which we have received export control clearance

© 2010 IBM Corporation6

Hardware-Enforced Fine-Grained Policy-Driven Security (HWMAC)

Design motivated by traditional capability machines and the
Linux SMACK, but with significant changes

Labelling data in memory/cache/registers
–The novel concept is to label all data/state in memory, cache, and

registers, and provide full, policy based, instruction level, Mandatory
Access Control in hardware

–Only a small part of hypervisor needs to be trusted to manage labels
• Errors in other software cannot result in secrecy or integrity data leaks

–Policy can implement MAC, capability, taint flow, injection attacks, and
other security architectures including HW type checking.

–We have focused first on taint flow, and injection attacks as they have
the most commercial relevance

Demonstrated

Possibility

© 2010 IBM Corporation7

Labelling Concept

Core
Registers

L1
cache

L2
cache...

chip

MMU
TLB Main

Memory

I/O

K(A,D)

K(A,D) L

L

L

LL

Core
Registers

L1
cache

MMU
TLB

L LL

L

-Labelled memory with mandatory access control (new) L
- The data is labelled wherever It exist in the system

© 2010 IBM Corporation8

Theoretical Basis for byte label sanitization
– Z. Su and G. Wassermann, “The Essence of Command Injection Attacks in Web

Applications”, POPL '06
• proof that byte level labeling can support “perfect” sanitization for any CFG

(SQL, shell, XSS) under reasonable assumptions.
Smack (Linux kernel MAC) provides Lampson Access Matrix

Implementations typically simplify this
– Capabilities (one row at a time)
– Access Control List (one column at a time)
– Separate integrity and secrecy tables

Policies must be defined for each CPU instruction and can be dynamically loaded into the
CPU policy engines

Hardware Mandatory Access Control Policies

RWXW*N

WRWXRX…

*RXRWX1
N…1Subject\Object

© 2010 IBM Corporation9

Impact of HWMAC on Processor Architecture

MEMORY

LABEL

DISPATCH

POLICY
ENGINE

INST
BUFFER

LABELS

POLICY
ENGINE
BRANCH

UNIT
(PC,CR,LR)

LABELS

RENAME

PROGRAM
REGS

(GPR,FPR)

LABELS

INST
CACHE

LABEL

DATA
CACHE

LABEL

LABEL
POLICY
CACHE

LABEL
POLICY
ENGINE

INST
MMU

LABEL

POLICY
ENGINE

DATA
MMU

LABEL

EXECUTE
UNIT
/ * +

POLICY
ENGINE

LD/ST
UNIT

+

POLICY
ENGINE

I + IL + CL
Policy

I + IL

D+DLD+DL

PC + CL

Cond+RL

R+RL

D+DL

D+DL

PC + CL

I +
 IL

I +
 IL

D
 +

 D
L

Ad
dr

Ad
dr

D
 +

 D
LE

A
 +

 C
L

D
 +

 D
L P
C

 +
 C

LCond+RL

I + IL + CL

Effective AddressEA

Context LabelCL
Inst AddressPC

Result LabelRL
Data LabelDL
ResultR
Data (Operand) D
Inst LabelIL
InstructionI

Legend:

Policy

© 2010 IBM Corporation10

HWMAC for traditional MLS

The most obvious use of hardware MAC labels is to implement traditional mandatory
policies, such as Bell and Lapadula secrecy or Biba integrity

The potential payoff for such an implementation is to provide much more fine grained control
of the data than simply at the granularity of files

Historically, there have been two major software subsystems built that required finer
granularity

– Multics message segments for MLS email – each message carried its own label
• Required significant increase in the size of the TCB

– Multi-level secure database management systems (MLS DBMS)
• To avoid having to trust the entire MLS DBMS, the Hinke-Schaefer and Seaview

DBMSs partitioned the data by storing information for each secrecy access class in a
different file or segment

• Untrusted DMBS processes could see only those partitions permitted by the policy
• Required significant restructuring of the untrusted DBMS software to make this work

Speculation – could HWMAC labels on each byte of data allow an essentially unmodified
DBMS to be MLS? (Small modifications might still be needed, but at much lower cost)

– We have NOT yet studied this question – potentially HUGE payoff if this could work
– There are covert channel issues in the database metadata that could cause serious

problems, but perhaps that can be overcome
– Significant additional research needed

© 2010 IBM Corporation11

HWMAC to implement capability architecture and/or HW typing

Our proposed HWMAC architecture attaches multi-bit tags to each byte of memory

HWMAC uses the concept of a tag from the early tagged memory approaches, such as the
Burroughs B5000 or various tagged capability machines, such as the Chicago Magic
Number machine or the IBM System/38

– Major difference is that the policy enforced from the tags is dynamically loadable into the
CPU hardware, rather than simply implemented in a software type manager

– Our tags are per-byte, while the traditional capability machines tagged per word

HWMAC tags can be used to distinguish data from capabilities, as in traditional tagged
capability machines

– Note that most PowerPC processors already include a one-bit tag per 64-bit word to
provide tagged capability hardware for IBM’s System i servers (formerly known as
AS/400)

HWMAC tags could also designate data types, as in the B5000 processor which had only
one kind of arithmetic instructions

– The B5000 tag bits determined whether the operands were fixed point, floating point, etc.

© 2010 IBM Corporation12

SQL Injection Attacks

Problem – User Supplied Input:

– SELECT * FROM users WHERE name='David'

– SELECT * FROM users WHERE name='a';DROP TABLE users;'‘

Most widely used exploits in the wild today are either SQL or shell injection
attacks

© 2010 IBM Corporation13

Injection Attacks (SQL, Shell, XSS)

Potential Solutions:
– Fix API (use parameterized calls- execve(), parameterized SQL)

• Lots of legacy code to fix

– Software “escaping”
• SELECT * FROM users WHERE name='a\'\;DROP TABLE

users\;\''
• Lots of code to rewrite, easy to miss instances, bypassable

– Hardware MAC labelling – a single mechanism
• Can cover all layers of software, and interfaces
• Can automatically trap/remediate at runtime
• Does not trust software
• Do not need to change existing code
• Theoretical Basis for byte label sanitization

Z. Su and G. Wassermann, “The Essence of Command
Injection Attacks in Web Applications”, POPL '06

proof that byte level labeling can support “perfect”
iti ti f CFG (SQL h ll XSS) d

© 2010 IBM Corporation14

Live Demo Categories (28 Total Demonstrations)

Simulated CPU
– 440 unmodified
– 440 with MAC

Main pages
– SQL injection
– Shell Injection

Options
– XSS
– Heap pointer overflow
– Bypass sanitizer

We will only show Demos related to SQL injection

Not enough time for live demo during this presentation
– Can run it after sessions or during breaks

© 2010 IBM Corporation15

Injection Sanitization – Demo Architecture

Backend
SQLite

Frontend
CGI

PPC Linux kernel

Web
Server

Tango (Mambo Derivative)
Sequoia PPC+MAC simulator

XSS

SQLshell

Unmodified

New/Modified

S

S

S

S

Browser

Malicious
Script

Sanitizer
Truth in advertising: For this demo we implemented the instructions that control the policy as user
level instructions to avoid having to rewrite the OS to demonstrate the value of the architecture.
These should be privileged instructions

Tango is a PPC functional simulator, developed by IBM Research

Sequoia is a third-party embedded PPC board that we simulate in Tango

© 2010 IBM Corporation16

SQL Demo – HTML Form

© 2010 IBM Corporation17

SQL Demo – HTML Form

Your results on 11/16/2009:

David Safford 914-784-6261

(Backend Command was ./sqlite phone.db "select * from phone where fname='David'")

© 2010 IBM Corporation18

SQL Demo – Good Input on MAC

Untrusted input

© 2010 IBM Corporation19

SQL Demo – Malicious Input Script

#!/bin/sh
STRING="x' or 'x' = 'x"
NET=192.168.1.30
for opt in $*; do
if [$opt == "-cgi"]; then STRING=$STRING\&cgi=f;
elif [$opt == "cgi"]; then STRING=$STRING\&cgi=t;
elif [$opt == "-xss"]; then STRING=$STRING\&xss=f;
elif [$opt == "xss"]; then STRING=$STRING\&xss=t;
elif [$opt == "pass"]; then STRING=$STRING\&pol=1;
elif [$opt == "ignore"]; then STRING=$STRING\&pol=2;
elif [$opt == "40"]; then NET=192.168.1.40;
fi
done
(perl -e 'print "POST /cgi-bin/sql_untrust HTTP/1.0\r\nContent-Type: "';
perl -e 'print "application/x-www-form-urlencoded\r\nContent-Length: "';
perl -e 'print "69\r\n\r\nlname="' ; echo $STRING) | nc $NET 80 ;

© 2010 IBM Corporation20

SQL Demo – Malicious Input on MAC

Good quote Bad quote

Good quote
Not escaped

Bad quote
escaped

© 2010 IBM Corporation21

SQL Demo – Malicious Input with bypass on MAC

Trap on backend reading first “frontend” character.
This demonstrates byte level integrity MAC.

© 2010 IBM Corporation22

Conclusions

We have demonstrated that significant security benefits can be gained from a major new
approach to hardware security features

HWMAC proposes significant changes to the CPU architectures
– Significant additional logic to implement policy engines
– Potentially doubling memory consumption to store per-byte tags in memory and on disk
– New software loadable policy tables

Mitigating factors
– Memory is cheap!
– Processor logic is also cheap, given that software still does not exploit massive

parallelism well, except in a few special cases

This is a snapshot of high risk, potentially high payoff research in progress

HWMAC is intended to be a prototype used to explore this design space.
– HWMAC seems to be a very powerful mechanism

Open research questions:
– Do the security benefits gained outweigh the costs?
– Management of policy tables may be very hard
– Is this level of flexibility, one policy table per instruction per task required, can we

simplify?
– What else can be done with it that we haven’t thought of yet?

© 2010 IBM Corporation23

Backup Slides

© 2010 IBM Corporation24

Cited References

Message segments
– Whitmore, J., A. Bensoussan, P. Green, D. Hunt, A. Kobziar, and J. Stern, Design for

Multics Security Enhancements, ESD-TR-74-176, December 1973, Honeywell
Information Systems, Inc., HQ Electronic Systems Division: Hanscom AFB, MA. URL:
http://csrc.nist.gov/publications/history/whit74.pdf

Hinke-Schaefer
– Hinke, T.H. and M. Schaefer, Secure Data Management System, RADC-TR-75-266

[NTIS AD A019201], November 1975, Rome Air Development Center: Griffiss AFB, NY.

Seaview
– Lunt, T.F. and P.K. Boucher. The SeaView Prototype: Project Summary. in 17th

National Computer Security Conference. 11-14 October 1994, Baltimore, MD: Vol. 1.
National Institute of Standard and Technology / National Computer Security Center. p.
88-102.

Burroughs B5000
– Organick, E.I., Computer System Organization - The B5700/B6700 Series. 1973, New

York: Academic Press.URL:
http://bitsavers.org/pdf/burroughs/B5000_5500_5700/Organick_B5700_B6700_1973.pdf

IBM iSeries
– Soltis, F.G., Fortress Rochester : The Inside Story of the IBM iSeries. 2001, Lewisville,

TX: 29th Street Press

