
– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

HARDWARE/SOFTWARE
COASSURANCE USING
ALGORITHMIC C AND ACL2

David Hardin
Collins Aerospace

<first>.<last>@collins.com

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

INTRODUCTION

• Floating-point hardware verification is a signature success of formal methods

• Automated theorem proving has been used in the verification of many floating-point
hardware designs, including those from:

• AMD
• ARM
• Centaur (x86-compatible)
• Intel
• Oracle (SPARC)

• Yet, outside the reuse of basic bit-vector libraries, little use of the specific tools and
techniques of floating-point verification has been made outside of that domain

• In this talk, we will describe an experiment in the use of a particular approach to
floating-point verification to produce verified algebraic data types, suitable for
implementation in either hardware or software

!2

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

THE RUSSINOFF-O’LEARY APPROACH TO
FLOATING POINT HARDWARE VERIF ICATION

• The floating-point hardware verification approach we
employ was developed by David Russinoff and John
O’Leary, while both were at Intel (ACL2 Workshop 2014)

• The approach was initially based on SystemC, and
was called MASC

• Russinoff changed the source language from
SystemC to Algorithmic C after he moved to ARM,
made several enhancements, and renamed the
system RAC (Restricted Algoritmic C)

• RAC is extensively documented in Russinoff’s 2018 book,
Formal Verification of Floating-Point Hardware Design: A
Mathematical Approach, wherein RAC is applied to the
verification of realistic ARM floating-point designs

• RAC, and the verifications described in the book, are
all available as part of the standard ACL2 distribution

!3

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

ALGORITHMIC C

• The Algorithmic C datatypes “provide a basis for writing bit-accurate
algorithms to be synthesized into hardware”

• The Algorithmic C datatypes are defined via an open source C++ header file
that users can #include in their designs

• No runtime library required

• Example use:
• typedef ac_int<112,false> ui112;

 declares an unsigned 112-bit type used in floating-point hardware datapaths

• Supported by Mentor hardware synthesis tools

• Further information is available at https://hlslibs.org

!4

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

RESTRICTED ALGORITHMIC C (RAC)

• Restricted Algortihmic C defines a C subset that promotes proof, hardware
synthesis, and simulation

• Use case: A hardware developer expresses hardware functionality in RAC, which
is then translated into a theorem prover language used by the verification expert

• RAC encompasses many of the restrictions common in “high-assurance” C, such
as no function pointers, disallowing recursion, etc.

• RAC also disallows all pointers, as well as function side-effects
• Certain control constructs (such as breaking out of a for loop) are disallowed

• Provides support for bit slices and multiple-value return

• For more information on RAC, please consult Chapter 15 of Russinoff’s book

!5

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

RAC TOOLCHAIN (S IMPLIF IED VIEW)

!6

RAC Source
Code

ACL2
Theorem

Prover
RAC-to-ACL2

Translator

Algorithmic
C Header Lemmas

C++ Compiler
Proofs

(.cert files)

#include

Hardware
Design Tools

Simulation and
Test

Synthesis,
Simulation, Test,

Equivalence
Checking

“Verification
Side”

“Design
Side”

read/eval/print

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

ACL2

• ACL2 is “A Computational Logic for Applicative Common Lisp”, developed by Matt
Kaufmann and J Moore

• ACL2 is a winner of the ACM Software Systems Award

• ACL2 developers model their system as Common Lisp functions, then state and
prove theorems about their model using ACL2’s highly automated proof heuristics

• These functions and theorems are gathered into libraries, called books, which
are proved once, then utilized many times

• ACL2 has been used in many large academic and industrial verification efforts:
• Floating-point unit verification (AMD, ARM, Centaur, Intel, Oracle)
• AAMP7 separation kernel microcode and Green Hills INTEGRITY-178B

kernel information flow verification (Collins Aerospace)
• Used to certify the correctness of the “world’s largest math proofs” (Heule)

• Proofs are discovered by massively parallel SAT solving

!7

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

BR IDGING THE DESIGN/VERIF ICATION GULF

• A key issue in the formal verification of engineering artifacts is the gulf between the sorts
of programs that can be readily specified and verified, and the sorts of programs that
“real-world” developers actually write:

• The Russinoff-O’Leary toolchain, in combination with the ACL2 theorem prover, does an
admirable job of bridging these two worlds

!8

Formal Verification “Comfort Zone” Real World

Functional Programming Imperative Programming

Non-tail-recursive functions Loops

Okasaki-style pure functional algebraic
data types Structs and Arrays

Infinite-precision Integers Modular Integers

Linear arithmetic Linear and non-linear arithmetic

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

RAC-TO-ACL2 TRANSLATOR

• Translates loops into tail-recursive functions

• Generates ACL2 “measures” to aid in function termination proofs
• All functions to be admitted into ACL2 must be proved to terminate
• Termination proofs are conducted mostly automatically by ACL2,

with hints provided by the measure annotations (if needed)

• Translates fixed-width integer operations into functions defined in
Russinoff’s “RTL” (Register Transfer Language) ACL2 books

• Ensures that translated operations are “wrapped” with an
appropriate RTL bit-width coercion operator so as to accurately
translate modular integer aritmetic

• RTL is described in detail in Part I of Russinoff’s book

!9

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

RAC-TO-ACL2 TRANSLATOR (CONT’D.)

• Converts assignments to Lisp let-bindings

• Converts struct/array reads/writes to ACL2 record gets/sets, for which
get-over-set, set-over-get, etc. theorems are available

• In addition, ACL2’s powerful arithmetic capability allows it to reason
about non-linear arithmetic expressions

• ACL2 also features a very capable induction scheme generator
• ACL2 automatically finds suitable induction schemes for the vast

majority of inductive proof attempts, including hybrid schemes

• …allowing us to reason about real-world designs expressed in RAC

!10

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

THE EXPERIMENT

• Utilize the RAC toolchain to
• specify,
• verify,
• and generate executable code

 for a number of classic algebraic datatypes, suitable for
 implementation either hardware or software components

• Document the experiment and its results in a public forum (this talk)
• Discuss advantages, shortcomings, and next steps

!11

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

A USEFUL SIMPLIF ICATION

• We don’t want to provide heap management in hardware

• We have experience in utilizing an array-based representation for
graph data structures

• Thus, we adopt our array-based approach in our RAC code for
algebraic datatypes

!12

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

ARRAY-BASED GRAPH REPRESENTATION

• Based on a data structure layout approach created for efficient GPU execution
(Harish and Narayanan, HiPC 2007); used to code Dijkstra’s All-Pairs Shortest
Path algorithm (APSP)

• Amenable to efficient CUDA, OpenCL implementation, as well as hardware
implmentation (VHDL)

• Implementated as an ACL2 single-threaded object (ACL2 Workshop 2013)
• Execution of Dijkstra’s shortest path algorithm on compiled graph using

stobjs was linear in number of vertices up to at least 1 million vertices at
10 edges per vertex

• Applied to DASL toolchain (ACL2 Workshop 2018)
• DASL compiler analyzes datatype, graphtype, and sized declarations,

creates appropriate array-based layout, and instantiates runtime functions

!13

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

GRAPH COMPILATION EXAMPLE, TWO EDGES
PER VERTEX

!14

“Null” indices

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

EXPERIMENT 1 : DOUBLY-L INKED L IST

• In this experiment, we implement a classic doubly-linked list, with “cons” and
“rest” mutators on both the head and tail of the list

• No logic for concurrent update of head and tail in this experiment

• The RAC code maintains the vertices (elements) of the list, as well as the “next”
and “previous” edges for the vertices of the list, using our array-based form

• Experiment Goals:
• Specify a doubly-linked list with millions of vertices in RAC

• Generate an executable using the clang C++ compiler
• Translate into ACL2 using the Russinoff-O’Leary toolchain

• Validate in ACL2 by way of basic unit tests
• Prove basic functional correctness properties for the translated

implementation of the doubly-linked list using ACL2

!15

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

DOUBLY-L INKED L IST SPECIF ICATION IN RAC

!16

// Note: MAX_VTX1 == 2**23 (~8 million vertices)

struct DLSTObj {
 ui23 vtxHd;
 ui23 vtxTl;
 ui23 vtxCount;
 // (V) stores the first edge array index for each vertex
 // Note: Must use the new C++ syntax for array declarations
 array<ui24, MAX_VTX1> vtxArr;
 // (D) Data Value array
 array<ui64, MAX_VTX1> valArr;
 // (E) stores the destination vertex for each edge
 array<ui23, MAX_EDGE1> edgeArr;
};

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

DOUBLY-L INKED L IST OPERATORS
IMPLEMENTED TO DATE

!17

Operator Description

hd Value at head of list

tl Value at tail of list

ln Length of list

cns Add to front of list

snc Add to tail of list

rst Remove head element of list

tsr Remove tail element of list

ins Insert element in front of nth element of list

del Remove nth element of list

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

DOUBLY-L INKED L IST “CONS” FUNCTION IN
RAC

!18

DLSTObj cns (ui64 n, DLSTObj Obj) {
 if (Obj.vtxCount == MAX_VTX) {
 return Obj;
 } else {
 ui23 prevHd = Obj.vtxHd;
 ui23 index = find_free_vtx(Obj);
 if (index == 0) {
 return Obj;
 } else {
 Obj.vtxHd = index;
 if (Obj.vtxCount == 0) {
 Obj.vtxTl = index;
 }
 Obj = add_vtx_at_index(index, n, Obj);
 Obj.edgeArr[Obj.vtxArr[index]] = prevHd;
 if ((prevHd > 0) && (Obj.vtxArr[prevHd] > 0)) {
 Obj.edgeArr[Obj.vtxArr[prevHd] + 1] = index; // backptr
 }
 return Obj; }}}

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

DOUBLY-L INKED L IST “CONS” FUNCTION
TRANSLATED TO ACL2

!19

(DEFUN CNS (N OBJ)
 (IF1 (LOG= (AG 'VTXCOUNT OBJ) 8388607) OBJ
 (LET ((PREVHD (AG 'VTXHD OBJ)) (INDEX (FIND_FREE_VTX OBJ)))
 (IF1 (LOG= INDEX 0) OBJ
 (LET* ((OBJ (AS 'VTXHD INDEX OBJ))
 (OBJ (IF1 (LOG= (AG 'VTXCOUNT OBJ) 0)
 (AS 'VTXTL INDEX OBJ) OBJ))
 (OBJ (ADD_VTX_AT_INDEX INDEX (BITS N 63 0) OBJ))
 (OBJ (AS 'EDGEARR
 (AS (AG INDEX (AG 'VTXARR OBJ))
 PREVHD (AG 'EDGEARR OBJ)) OBJ)))
 (IF1 (LOGAND1 (LOG> PREVHD 0)
 (LOG> (AG PREVHD (AG 'VTXARR OBJ)) 0))
 (AS 'EDGEARR
 (AS (+ (AG PREVHD (AG 'VTXARR OBJ)) 1)
 INDEX (AG 'EDGEARR OBJ)) OBJ)
 OBJ))))))

Note: ‘AG’ and ‘AS’
are ACL2
untyped record get
and set,
respectively

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

EXAMPLE DOUBLY-L INKED L IST FUNCTIONAL
CORRECTNESS THEOREMS

!20

(defthm hd-of-cns—-thm ;; list head after cons
 (implies
 (and
 (dlstp Obj) ;; basic “type” predicate
 (good-Objp Obj) ;; record field consistency predicate
 (spacep Obj) ;; space available?
 (acl2::unsigned-byte-p 64 n))
 (= (hd (cns n Obj))) n)))

(defthm ln-of-snc-—thm ;; list length after ‘cons to tail’
 (implies
 (and
 (dlstp Obj) ;; basic “type” predicate
 (good-Objp Obj) ;; record field consistency predicate
 (spacep Obj) ;; space available?
 (acl2::unsigned-byte-p 64 n))
 (= (ln (snc n Obj))) (1+ (ln Obj)))

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

MORE DOUBLY-L INKED L IST FUNCTIONAL
CORRECTNESS THEOREMS

!21

(defthm hd-of-rst-of-cns--thm
 (implies
 (and
 (dlstp Obj) ;; basic “type” predicate
 (good-Objp Obj) ;; record field consistency predicate
 (spacep Obj) ;; space available?
 (acl2::unsigned-byte-p 64 n))
 (= (hd (rst (cns n Obj))) (hd Obj))))

(defthm tl-of-tsr-of-snc--thm
 (implies
 (and
 (dlstp Obj) ;; basic “type” predicate
 (good-Objp Obj) ;; record field consistency predicate
 (spacep Obj) ;; space available?
 (acl2::unsigned-byte-p 64 n))
 (= (tl (tsr (snc n Obj))) (tl Obj))))

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

EXERCISING THE DOUBLY-L INKED L IST IN
ACL2

!22

RTL !>(cns 3 (cns 4 (cns 5 (reset nil))))
((EDGEARR (16777209 . 8388606)
 (16777211 . 8388607)
 (16777212 . 8388605)
 (16777214 . 8388606))
 (VALARR (8388605 . 3)
 (8388606 . 4)
 (8388607 . 5))
 (VTXARR (8388605 . 16777209)
 (8388606 . 16777211)
 (8388607 . 16777213))
 (VTXCOUNT . 3)
 (VTXHD . 8388605)
 (VTXTL . 8388607))
RTL !>(hd (cns 3 (cns 4 (cns 5 (reset nil)))))
3
RTL !>(tl (cns 3 (cns 4 (cns 5 (reset nil)))))
5

Note: Arrays are represented
as association lists, with array
elements in (index . value)
form. ’0’ values are not
explicitly stored.

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

RESULTS

• We have developed several data types using the RAC coassurance approach:
• Stacks
• Lists
• Doubly-Linked Lists
• Binary Trees
• Binary Search Trees
• Graphs

• We translated these datatype specifications into ACL2 using the Russinoff-O’Leary
toolchain, and developed basic correctness proofs

• We employed the clang C++ compiler to conduct basic simulation and test
• We also performed validation testing using the ACL2 read/eval/print loop

• No access yet to a Mentor license for hardware synthesis; this is future work

!23

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

CONCLUDING REMARKS

• Floating-point hardware verification tools and techniques can be
employed for more general hardware/software coassurance tasks

• It is feasible to prove correctness properties for algebraic datatype
components generated using the RAC toolchain

• Such efforts would be aided by improvements in the RAC code
generator, such as the use of typed ACL2 records

• The RAC-to-ACL2 translator is untrusted code; it would be a worthwhile
project to give it a formal foundation

• Generation of verified software components that interface to verified
hardware components, both generated using this technique, would make
for an instructive future Experiment

!24

