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What Is Java Card?
A version of Java for smart cards

chip

plastic
substrate

authentication,
banking,
telephony,
health care,
…



Java Card Technology

JAVA CARD
RUNTIME ENVIRONMENT

Java Card
program

INTERPRETER NATIVE
LIBRARIES

SMART CARD OS
SMART CARD HW

• subset of Java
• different libraries

JAVA
COMPILER

Java
bytecode
program

JAVA CARD
CONVERTER

Java Card
applet



Java Card Libraries
� Standard

� crypto
� applet firewall
� persistent & transient objects
� atomicity & transactions
� communication with host terminal

� Industry-specific
� telephony (GSM)
� banking
� …



Why Java for smart cards?
� Many different HW/OS platforms

� write once, run anywhere
� strong typing (support for security)
� multiple vendors
� post-issuance personalization/update

� Other standards
� C/MULTOS
� Windows for Smart Card

� conjecture: .NET for smart cards?



High Assurance
� Critical requirement for smart cards
� Pursued by smart card vendors (Gemplus,

Bull, Schlumberger, …)
� Measurable (Common Criteria)
� Focus of Kestrel Institute’s research

� automated synthesis (“specs to code”)
� formal analysis



Kestrel’s Synthesis Systems
� Specware

� formal specs
� refinement
� composition
� code generation

� Designware
� libraries of specs and refinements embodying software

design knowledge (algorithms, optimizations, …)
� tactics for automated refinement in Specware

� Planware
� automatic generator of high-performance, complex resource

systems (allocation, transportation schedulers, …)
� on top of Specware

� MoBIES, HARBINGER, SVA, …
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Kestrel’s Past Work on Java
Type safety in the Java Virtual Machine
(base for Java security)
� bytecode verification

� complete verifier in Specware (spec to code)
� improvements over Sun’s (subroutines, subtyping, …)
� found bugs in Sun’s spec and verifier

� class loading
� formal specification
� type safety theorem

� first
� formally developed verifier
� useful spec of class loading



High-Assurance Java Card
�Platform

� synthesis of
� Java Card Runtime Environment (JCRE)
� simulator
� off-card verifier
� … JAVA CARD

RUNTIME ENVIRONMENT

INTERPRETER NATIVE
LIBRARIES

SMART CARD OS
SMART CARD HW

�Applets
� applet generator



Applet Generator

GENERATOR
applet
spec

applet
code

domain-specific language
(domain = smart cards)

• Java Card
• C/MULTOS
• …

for:
• productivity
• high assurance

(automatic)

(e.g., authenticator, e-wallet)



Specware-Based Approach
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Example of Applet Derivation
� Functional spec (abstract commands,

responses, and states)
� Encoding of commands and

responses as APDUs (bytes)
� Refinement of states as bytes
� Introduction of Java Card libraries
� Generation of Java Card code



Advantages of the Approach
�Higher assurance

� synthesis
(specs to code)

� analysis
(write & verify)

� invest in transform
correctness

� get repeated benefit
by re-use

� mathematical
foundations

� bad combinatorics
� little or no re-use
� hard to infer all

properties



Why Not Develop Library
Components to Build Applets?
�Optimization

� synthesis produces code optimized for
� size
� speed

�Large variability in applet functionality
� hard to predict all needed components

�Security properties
� synthesis produces proof for whole system



Advantages of the Approach
(cont’d)
� Easier to evolve the generator

� evolve internal knowledge, e.g.
� add inter-applet communication
� add new platform (C/MULTOS)

� evolve individual components, e.g.
� more platform-specific optimizations
� smaller footprint of generated code

� Previously successful in Planware
� Independent certification



Independent Certification

proof

CHECKER

yes/no

independent,
hopefully smaller

applet carrying
complete spec & proof

GENERATOR
applet
spec

applet
code

developed in Specware,
via specs and refinements



How Do We Build the Proof?

spec

spec’

spec’’

proof

proof ’
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refinements have
proofs attached

the proofs come from
the library refinements
(i.e., re-use of proofs)
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Initial effort:
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Initial effort : Complete
Spec-to-code CAC Applet

GENERATOR

TRANSLATOR
spec

REFINEMENT
ENGINE

CODE
GENERATOR

code

REFINEMENT
ENGINE

refinement
directives

functional
spec

platform-
independent
refined spec

platform-
specific

refined spec

platform-
independent
smart card
knowledge

platform-
specific

smart card
knowledge

by hand; no
generator

(yet)

Java
Card



Purpose of This Initial Effort
� Determine initial fundamental

specs and refinements needed
� Elaborate patterns/structure of such

specs and refinement construction
� Develop applet design knowledge

(e.g., theories and refinements for ISO 7816)
� Build 1st version of generator

based on the above



For More Information

http://www.kestrel.edu/java



Backup Slides



Proof Composition: Example
spec A
  axiom a1
  …
  axiom an

spec B
  axiom b1
  …
  axiom bm

spec C
  axiom c1
  …
  axiom cp

b1 b2

a3

c2 c3c1

b1 b2

b1 b2

a3

c2 c3c1



Synthesis of JCRE & Tools
�Use of Specware
�Spec of JCRE

� refinement to simulator (runs on PC)
� refinement to smart card HW/OS

�Off-card verifier
� leverage of our JVM bytecode verifier
� approaches to put it on card (security �)



Results to Date
�Working CAC applet
�Ready to build 1st version of generator
� Integration with other Kestrel work for

� stateful specs and refinements
� generation of (maintainable) Java code

� Integration of Specware-generated code
with external libraries (APIs)
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