
High-Assurance Java Card

Alessandro Coglio
Kestrel Institute

January 2002

What Is Java Card?
A version of Java for smart cards

chip

plastic
substrate

authentication,
banking,
telephony,
health care,
…

Java Card Technology

JAVA CARD
RUNTIME ENVIRONMENT

Java Card
program

INTERPRETER NATIVE
LIBRARIES

SMART CARD OS
SMART CARD HW

• subset of Java
• different libraries

JAVA
COMPILER

Java
bytecode
program

JAVA CARD
CONVERTER

Java Card
applet

Java Card Libraries
� Standard

� crypto
� applet firewall
� persistent & transient objects
� atomicity & transactions
� communication with host terminal

� Industry-specific
� telephony (GSM)
� banking
� …

Why Java for smart cards?
� Many different HW/OS platforms

� write once, run anywhere
� strong typing (support for security)
� multiple vendors
� post-issuance personalization/update

� Other standards
� C/MULTOS
� Windows for Smart Card

� conjecture: .NET for smart cards?

High Assurance
� Critical requirement for smart cards
� Pursued by smart card vendors (Gemplus,

Bull, Schlumberger, …)
� Measurable (Common Criteria)
� Focus of Kestrel Institute’s research

� automated synthesis (“specs to code”)
� formal analysis

Kestrel’s Synthesis Systems
� Specware

� formal specs
� refinement
� composition
� code generation

� Designware
� libraries of specs and refinements embodying software

design knowledge (algorithms, optimizations, …)
� tactics for automated refinement in Specware

� Planware
� automatic generator of high-performance, complex resource

systems (allocation, transportation schedulers, …)
� on top of Specware

� MoBIES, HARBINGER, SVA, …

Kestrel’s Synthesis Approach
spec

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

Kestrel’s Synthesis Approach
spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

Kestrel’s Synthesis Approach
spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

Kestrel’s Synthesis Approach
spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

Kestrel’s Synthesis Approach
spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

Kestrel’s Synthesis Approach
spec

B

A

Kestrel’s Synthesis Approach
spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

Kestrel’s Synthesis Approach
spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

Kestrel’s Synthesis Approach
spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

spec’

spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

spec’

Kestrel’s Synthesis Approach

C

D

spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

spec’

Kestrel’s Synthesis Approach

C

D

spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

spec’

Kestrel’s Synthesis Approach

C

D

spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

spec’

Kestrel’s Synthesis Approach

C

D

spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

spec’

Kestrel’s Synthesis Approach

C

D

spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

spec’

Kestrel’s Synthesis Approach

C

D

Kestrel’s Synthesis Approach

C

D

spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

spec’

Kestrel’s Synthesis Approach

C

D

spec

B

A

sets
as
lists

divide
and
conquer

C

DB

A
library of refinements

spec’

Dspec’’

code

Kestrel’s Past Work on Java
Type safety in the Java Virtual Machine
(base for Java security)
� bytecode verification

� complete verifier in Specware (spec to code)
� improvements over Sun’s (subroutines, subtyping, …)
� found bugs in Sun’s spec and verifier

� class loading
� formal specification
� type safety theorem

� first
� formally developed verifier
� useful spec of class loading

High-Assurance Java Card
�Platform

� synthesis of
� Java Card Runtime Environment (JCRE)
� simulator
� off-card verifier
� … JAVA CARD

RUNTIME ENVIRONMENT

INTERPRETER NATIVE
LIBRARIES

SMART CARD OS
SMART CARD HW

�Applets
� applet generator

Applet Generator

GENERATOR
applet
spec

applet
code

domain-specific language
(domain = smart cards)

• Java Card
• C/MULTOS
• …

for:
• productivity
• high assurance

(automatic)

(e.g., authenticator, e-wallet)

Specware-Based Approach
GENERATOR

TRANSLATOR
spec

REFINEMENT
ENGINE

CODE
GENERATOR

code

REFINEMENT
ENGINE

refinement
directives

functional
spec

platform-
independent
refined spec

platform-
specific

refined spec

• ISO 7816
• crypto
• …

• language
• OS APIs
• …

platform-
independent
smart card
knowledge

platform-
specific

smart card
knowledge

Specware-Based Approach
GENERATOR

TRANSLATOR
spec

REFINEMENT
ENGINE

CODE
GENERATOR

code

REFINEMENT
ENGINE

refinement
directives

functional
spec

platform-
independent
refined spec

platform-
specific

refined spec

platform-
independent
smart card
knowledge

platform-
specific

smart card
knowledge

Specware
specs and
refinements

• ISO 7816
• crypto
• …

• language
• OS APIs
• …

Specware

inside

Example of Applet Derivation
� Functional spec (abstract commands,

responses, and states)
� Encoding of commands and

responses as APDUs (bytes)
� Refinement of states as bytes
� Introduction of Java Card libraries
� Generation of Java Card code

Advantages of the Approach
�Higher assurance

� synthesis
(specs to code)

� analysis
(write & verify)

� invest in transform
correctness

� get repeated benefit
by re-use

� mathematical
foundations

� bad combinatorics
� little or no re-use
� hard to infer all

properties

Why Not Develop Library
Components to Build Applets?
�Optimization

� synthesis produces code optimized for
� size
� speed

�Large variability in applet functionality
� hard to predict all needed components

�Security properties
� synthesis produces proof for whole system

Advantages of the Approach
(cont’d)
� Easier to evolve the generator

� evolve internal knowledge, e.g.
� add inter-applet communication
� add new platform (C/MULTOS)

� evolve individual components, e.g.
� more platform-specific optimizations
� smaller footprint of generated code

� Previously successful in Planware
� Independent certification

Independent Certification

proof

CHECKER

yes/no

independent,
hopefully smaller

applet carrying
complete spec & proof

GENERATOR
applet
spec

applet
code

developed in Specware,
via specs and refinements

How Do We Build the Proof?

spec

spec’

spec’’

proof

proof ’

proof + proof ’

refinements have
proofs attached

the proofs come from
the library refinements
(i.e., re-use of proofs)

B

A

divide
and
conquer

C

DD

sets
as

lists

scalability �

Initial effort:

GENERATOR

TRANSLATOR
spec

REFINEMENT
ENGINE

CODE
GENERATOR

code

REFINEMENT
ENGINE

refinement
directives

functional
spec

platform-
independent
refined spec

platform-
specific

refined spec

platform-
independent
smart card
knowledge

platform-
specific

smart card
knowledge

Initial effort : Complete
Spec-to-code CAC Applet

GENERATOR

TRANSLATOR
spec

REFINEMENT
ENGINE

CODE
GENERATOR

code

REFINEMENT
ENGINE

refinement
directives

functional
spec

platform-
independent
refined spec

platform-
specific

refined spec

platform-
independent
smart card
knowledge

platform-
specific

smart card
knowledge

by hand; no
generator

(yet)

Java
Card

Purpose of This Initial Effort
� Determine initial fundamental

specs and refinements needed
� Elaborate patterns/structure of such

specs and refinement construction
� Develop applet design knowledge

(e.g., theories and refinements for ISO 7816)
� Build 1st version of generator

based on the above

For More Information

http://www.kestrel.edu/java

Backup Slides

Proof Composition: Example
spec A
 axiom a1
 …
 axiom an

spec B
 axiom b1
 …
 axiom bm

spec C
 axiom c1
 …
 axiom cp

b1 b2

a3

c2 c3c1

b1 b2

b1 b2

a3

c2 c3c1

Synthesis of JCRE & Tools
�Use of Specware
�Spec of JCRE

� refinement to simulator (runs on PC)
� refinement to smart card HW/OS

�Off-card verifier
� leverage of our JVM bytecode verifier
� approaches to put it on card (security �)

Results to Date
�Working CAC applet
�Ready to build 1st version of generator
� Integration with other Kestrel work for

� stateful specs and refinements
� generation of (maintainable) Java code

� Integration of Specware-generated code
with external libraries (APIs)

	High-Assurance Java Card
	What Is Java Card?
	Java Card Technology
	Java Card Libraries
	Why Java for smart cards?
	High Assurance
	Kestrel’s Synthesis Systems
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Synthesis Approach
	Kestrel’s Past Work on Java
	High-Assurance Java Card
	Applet Generator
	Specware-Based Approach
	Specware-Based Approach
	Example of Applet Derivation
	Advantages of the Approach
	Why Not Develop Library Components to Build Applets?
	Advantages of the Approach (cont’d)
	Independent Certification
	How Do We Build the Proof?
	Initial effort:
	Initial effort : CompleteSpec-to-code CAC Applet
	Purpose of This Initial Effort
	For More Information
	Backup Slides
	Proof Composition: Example
	Synthesis of JCRE & Tools
	Results to Date

