
High-Performance Regular Expression Processing
for Cross-Domain Systems with High Assurance

Requirements

David S. Hardin Konrad L. Slind

Trusted Systems Group
Advanced Technology Center

Rockwell Collins

c© 2014 Rockwell Collins. All rights reserved. 1 / 37

Collaborators

Rockwell Collins ATC: David Hardin, Doug Hiratzka, Konrad Slind
Rockwell Collins Government Systems: Ed Tubbs

c© 2014 Rockwell Collins. All rights reserved. 2 / 37

Cross-Domain Guards

A guard mediates information sharing between security domains
according to a specified policy.

High Security Network
Internet /

Low Security Network
Guard

Application

Trusted Untrusted

Infiltration

Exfiltration

Many guards have been developed over time by different vendors,
each with their own particular method of programming and operation.

c© 2014 Rockwell Collins. All rights reserved. 3 / 37

Turnstile

Turnstile is a high-assurance guard accredited to DCID 6/3 PL 5
(the highest level), and is UCDMO listed.
Turnstile was developed by Rockwell Collins under contract to
NSA R2, and is currently being used in several applications.
A variant, called MicroTurnstile, was designed as a
“bump-in-the-wire” guard for USB data, and is being productized
by the Tactical Army Cross Domain Information Solution (TACDIS)
program.
The basic guard engine software for Turnstile was ported to the
Rockwell Collins SecureOne hardware, which is serving as the
ground guard for the USAF CRIIS program.

c© 2014 Rockwell Collins. All rights reserved. 4 / 37

Guardol

Guardol is a Domain-Specific Language for guards.

Guardol program goals include:
Provide a single language that can be used to program many
guards

Guardol has been used to program the Rockwell Collins Turnstile,
MicroTurnstile, and the Raytheon High-Speed Guard
The Guardol toolchain also produces executables for host-based
development and testing

Integrate highly automated formal verification with development
Support high-assurance code generation

c© 2014 Rockwell Collins. All rights reserved. 5 / 37

Guardol Toolchain Architecture

IDE HOL RADA

Ada

parse; edit

formalize
program

code generation

proof

automation

c© 2014 Rockwell Collins. All rights reserved. 6 / 37

Guardol Eclipse Environment

c© 2014 Rockwell Collins. All rights reserved. 7 / 37

ANTLR grammar example

The Eclipse/Xtext-based Guardol Interactive Development
Environment uses ANTLR4 to generate parsers.

expr: ID
| INT
| REAL
| BOOL
| ID ’(’ (expr (’,’ expr)*)? ’)’
| ’not’ expr
| ’-’ expr
| expr op=(’*’ | ’/’ | ’div’) expr
| expr op=(’+’ | ’-’) expr
| expr op=(’<’ | ’<=’ | ’>’ | ’>=’ | ’=’ | ’<>’) expr
| expr op=’and’ expr
| expr op=(’or’ | ’xor’) expr
| expr op=’=>’<assoc=right> expr
| expr op=’->’<assoc=right> expr
| ’if’ expr ’then’ expr ’else’ expr
| ’(’ expr ’)’

c© 2014 Rockwell Collins. All rights reserved. 8 / 37

Verification

HOL4 is used as a semantical conduit to RADA

RADA is a SMT-based system for reasoning about catamorphisms
HOL4 is an implementation of higher order logic.
We use it to give a semantics to Guardol evaluation
Decompilation into logic transforms specs about Guardol program
evaluation into properties of HOL functions
The translation is verified by HOL proof
Induction schemes from the definition of the functions are used to
drive the skeleton of the inductive proof

c© 2014 Rockwell Collins. All rights reserved. 9 / 37

Verification path

τ1, . . . , τj
p1, . . . ,pk
s1, . . . , s`

τ1, . . . , τj
p1, . . . ,pk
s1, . . . ,s`

f1, . . . , fk
g1, . . . ,g`

f1, . . . , fk
g11, . . . ,g1k1

g`1, . . . ,g`k`

RADA

formalize
program

decompile (`)

induct (`)

c© 2014 Rockwell Collins. All rights reserved. 10 / 37

Turnstile/Guardol Demonstration Requirements

Assume low-to-high and high-to-low traffic employs the syslog
protocol, over UDP
Employ a Turnstile in a two-way guard configuration
Filter traffic from high to low based on destination IP address,
UDP protocol, syslog port number, and value of PRI header field
(e.g., <9>).
Filter traffic from low to high based on destination IP address,
UDP protocol, syslog port number, and a regular expression
provided by the customer.
Audit message (in syslog format) is generated when a “bad”
packet is detected, and sent over Turnstile’s audit network.

c© 2014 Rockwell Collins. All rights reserved. 11 / 37

Demonstration Architecture

Low Syslog
Gen

Turnstile High Syslog
Gen

Audit

status

commands

status

drop indications

commands

c© 2014 Rockwell Collins. All rights reserved. 12 / 37

Demonstration Lab Setup

c© 2014 Rockwell Collins. All rights reserved. 13 / 37

Issues

Issue: It is impractical to encode the customer’s regular expression
logic as Turnstile rules.

Solution: Use Guardol on low-to-high transfers, and traditional
Turnstile rules for high-to-low transfers.

Issue: Guardol does not support regular expressions.

Solution: Add regular expression support to the Guardol language.

c© 2014 Rockwell Collins. All rights reserved. 14 / 37

Regular Languages Background

Reg = NFA = DFA
Two choices for matching a regular expression:

interpretation: run a regex interpreter function
compilation: translate regex to a DFA that does the match

Usual story: Reg −→ NFA −→ DFA
subset construction on automata
awkward handling of negation

Brzozowski story: Reg −→ DFA
algebraic and beautiful
handles negation and intersection
often generates minimal DFAs

Strange historical fact: Brzozowski’s work published much earlier, but
Ken Thompson’s regex matcher for Unix used automata and was very
influential.

c© 2014 Rockwell Collins. All rights reserved. 15 / 37

Extended Regular Expressions: Syntax

The abstract syntax of regular expressions can be given by the
following ML-style datatype declaration.

regex ::= Epsilon ; empty string
| Symbs of charset ; set of characters
| Not of regex ; complement (non-standard)
| Or of regex regex ; disjunction
| And of regex regex ; intersection (non-standard)
| Cat of regex regex ; concatenation
| Star of regex ; Kleene star

c© 2014 Rockwell Collins. All rights reserved. 16 / 37

Extended Regular Expressions: Semantics

The semantics of regular expressions is given in terms of definitions
made in Formal Language Theory.

L(ε) = {ε} set of just the empty string
L(Symbs P) = {w | ∃x . P x ∧ (w = [x])} character set
L(Star r) = (L(r))∗ Kleene star
L(Not r) = L(r) complement
L(Or r1 r2) = L(r1) ∪ L(r2) union
L(And r1 r2) = L(r1) ∩ L(r2) intersection
L(Cat r1 r2) = L(r1) · L(r2) concatenation

c© 2014 Rockwell Collins. All rights reserved. 17 / 37

Interpreting Regular Expressions

Brzozowski (1964) presented an algorithm which can be thought
of as an interpreter for membership of string s in the language
denoted by regular expression r.
The algorithm operates by proceeding, left-to-right, through s. At
each step, it takes the “derivative” of the regular expression (an
innovation due to Brzozowski) with respect to the current symbol
in the string.
Once the string has been completely traversed, the algorithm
checks to see if the resulting regular expression has the empty
string in its language. If so, s is accepted.
A paper by Owens, Reppy, and Turon (JFP, 2009) extended
Brzozowski’s technique to handle character classes, and also to
handle larger character sets, such as Unicode.

c© 2014 Rockwell Collins. All rights reserved. 18 / 37

Brzozowski’s Derivative

Loosely speaking, Brzozowki’s Derivative, (Deriv x r), computes a
regular expression that generates the language obtained by removing
symbol x from the front of all strings in Lang(r). The basic correctness
property of Deriv, proved in HOL4, states

|- w IN Lang (Deriv x r) = (x::w) IN Lang r

The string matching procedure (Matches) iterates Deriv through a
string and checks if the final result has Epsilon in its language.

Matches r w = hasEpsilon(DerivString w r)
DerivString (a · w) r = DerivString w (Deriv a r)
Deriv ε r = r

c© 2014 Rockwell Collins. All rights reserved. 19 / 37

Example

Consider the regular expression

[a− t]∗

and the strings “combat” and “wombat”. Then, for “combat”,

(Deriv ′t ′ (Deriv ′a′ (Deriv ′b′ (Deriv ′m′ (Deriv ′o′ (Deriv ′c′ [a− t]∗))))))
= (Deriv ′t ′ · · · (Deriv ′o′ (norm (ε · [a− t]∗))))
= (Deriv ′t ′ · · · (Deriv ′o′ [a− t]∗))
· · ·
= [a− t]∗

The empty string is in the language

L([a− t]∗)

Thus, the string “combat” matches the regular expression.
c© 2014 Rockwell Collins. All rights reserved. 20 / 37

Example (cont’d.)

On the other hand, for the string “wombat”,

(Deriv ′t ′ (Deriv ′a′ (Deriv ′b′ (Deriv ′m′ (Deriv ′o′ (Deriv ′w ′ [a− t]∗))))))
= (Deriv ′t ′ · · · (Deriv ′o′ (norm (∅ · [a− t]∗))))
= (Deriv ′t ′ · · · (Deriv ′o′ ∅))
· · ·
= ∅

Thus, the string “wombat” does not match the regular expression.

c© 2014 Rockwell Collins. All rights reserved. 21 / 37

Interpreter Correctness

The correctness of Matches follows from the correctness of Deriv by
induction on the length of the string.

` Matches r s ⇐⇒ s ∈ Lang r

This theorem is a simple result to prove in HOL4. Using it, reasoning
about the match interpreter can be replaced by reasoning about
membership in the language of r. This is actually simpler in general.

Matches is an executable function, but it is quite slow, especially when
compared to automata. For execution it is better to use a DFA
(deterministic finite state automaton).

c© 2014 Rockwell Collins. All rights reserved. 22 / 37

Compiling Extended Regular Expressions to
DFAs

One can think of Brzozowksi’s regex compilation algorithm (Brz) as
compiling a regular expression to a DFA, which is subsequently run on
strings.

The essential insight behind Brz is that regexs are identified with DFA
states:

The given regex r0 is the start state
For each symbol ai in the alphabet, compute rai = Deriv ai r
The rai are the successor states to r
Stop when no new states are created
Final states are those that match the empty string

c© 2014 Rockwell Collins. All rights reserved. 23 / 37

Compiling Regular Expressions to DFA’s

Let r be a regular expression. Then

Brz(r) = {init , trans, final}

where the components of the automaton have the following signature:

init : state ; the start state
trans : state * symbol -> state ; the transition function
final : state -> bool ; the set of final states

c© 2014 Rockwell Collins. All rights reserved. 24 / 37

Compiling Regular Expressions to DFA’s (cont’d.)

The following pseudo-code executes DFA d on input s:

Exec_DFA (d:DFA, s:string) returns verdict:bool = {
var

q,len : int;
in

len := s’Length;
q := d.init;
for (i=0; i<len; i++) { q := d.trans[q,s[i]]; }
verdict := member(q,d.final);

}

Brzozowski proved that, for all extended regular expressions r, and
strings s:

` (Exec_DFA (Brz(r)) s = true) ⇐⇒ s ∈ L(r)

c© 2014 Rockwell Collins. All rights reserved. 25 / 37

Regular Expressions in Guardol

We have extended the Guardol language with a new primitive
expression

regex_match(rlit , s)

which takes a regular expression literal rlit , and a string expression s,
and returns a boolean result indicating whether s ∈ L(r), where r is
the regexp corresponding to rlit .

c© 2014 Rockwell Collins. All rights reserved. 26 / 37

Guardol Regular Expression Literals

Regular expression literals in Guardol largely conform to the syntax in
the Python programming language.

\d = 0..9
\w = [a-zA-Z0-9_]
. = any char except \n
\s = whitespace = [\n\r\t\f] (* Note the space character! *)
\t = tab
\n = newline
\r = return
\f = formfeed
\c = escape c

rs = concatenation
r|s = disjunction
r* = Kleene star
r+ = rr*
r? = "" | r
r{n} = r^n
r{m,n} = r{m} | r{m+1} | ... | r{n} (m<=n)
r{m,} = r{m}r*
r{,n} = r{0,n}
(r) = grouping
[...] = character set

c© 2014 Rockwell Collins. All rights reserved. 27 / 37

Regular Expressions in Guardol (cont’d.)

A regex expression in a Guardol program is treated differently
depending on whether code is being generated, or whether properties
are to be proved.

regex_match(rlit , s) Matches r s

Exec_DFA(Brz(r), s)

Code Gen

Prop. Gen

c© 2014 Rockwell Collins. All rights reserved. 28 / 37

Guardol Demo program utilizing regular
expressions

package Regex =

-- Filter for full syslog message. Meant to handle messages conforming to either
-- RFC 5424 or RFC 3164. Skips over leading information by looking for an occurrence
-- of a space followed by an open bracket, i.e., " [". After that, it expects
-- the remainder of the structured data portion of the message.

function syslog_5424_or_3164_filter (input : in string) returns verdict : bool =
{
verdict := regex_match(
‘.* \[\{"time":"\d{13}(:\d{3})?","\w{1,20}":\{("\w{1,25}":"\w{1,30}",?)+\}\}\]‘,

input);
}
end

In English:
"A JSON array contains an object, with key "time" and a value of a string of
numbers, surrounded by quotes, 13 characters long, and possiby ending with a
colon and 3 additional numerals. Next is another key, 1 to 20 alphanumeric
(plus ’_’) characters long, whose value is an object having one or more
groups of keys that are a quoted string of 1 to 25 alphanumeric (plus ’_’)
characters, and values that are 1 to 30 alphanumeric (plus ’_’) characters
long, also quoted."

c© 2014 Rockwell Collins. All rights reserved. 29 / 37

Generated Ada code

package body Regex is

function execDFA_1 (str : in String) return Boolean is
verdict : Boolean;
state : uint;
len : uint;
i : uint;

begin
state := Regex.DFA_1.start;
i := 0;
len := str’Length;
while (i < len) loop

i := (i + 1);
state :=
Regex.DFA_1.trans(Natural(state),Natural(Character’Pos(str(i))));

end loop;
verdict := Regex.DFA_1.final(Natural(state));
return(verdict);

end;

function syslog_5424_or_3164_filter (input : in String) return Boolean is
verdict : Boolean;

begin
verdict := Regex.execDFA_1(input);
return(verdict);

end;
end Regex;

c© 2014 Rockwell Collins. All rights reserved. 30 / 37

Results

We have generated UDP syslog packets that conform/fail to
conform to the customer’s regular expression input, and have
filtered these packets with a Turnstile two-way guard.
For high-to-low traffic, we filter based on destination IP address,
UDP protocol, syslog port number, and value of PRI header field
(e.g., <9>).
For low-to-high traffic, we filter based on destination IP address,
UDP protocol, syslog port number, and a regular expression
provided by the customer.
Audit message (in syslog format) is generated when a “bad”
packet is detected, and sent over Turnstile’s audit network.

c© 2014 Rockwell Collins. All rights reserved. 31 / 37

Future Work: Automating Regex Proofs

Although many properties of regular languages are decidable, such
problems are typically a question of whether a given concrete literal
string has a particular property.

However, in our work we expect that the string has been constructed
by application of a function. This makes things more interesting.

As a simple example, suppose that we have implemented a dirty-word
function (Elim_Dirty) that replaces a particular string, say “monkey” by
dashes:

"monkey" --> "------"

c© 2014 Rockwell Collins. All rights reserved. 32 / 37

Future Work: Automating Regex Proofs (cont’d.)

Then we would be able to write a specification of the following form:

spec Elim_Dirty_Correct = {
var s1,s2 : string;

in
s2 := Elim_Dirty(s1);
check regex_match(‘~(.*monkey.*)‘,s2);

}

Note the use of negation to succinctly express the property.

c© 2014 Rockwell Collins. All rights reserved. 33 / 37

Future Work: Automating Regex Proofs (cont’d.)

The resulting proof obligation is to show that

∀s. Matches (parse ‘¬(. ∗ monkey.∗)‘) (Elim_Dirty s)

i.e., that the string "monkey" is not a substring of the result returned by
Elim_Dirty.

This will only be provable by reasoning inductively about Elim_Dirty
and Matches.

We hope to follow the catamorphism approach taken by our work with
Rada.

c© 2014 Rockwell Collins. All rights reserved. 34 / 37

Future Work: Verified Regex Compilation

We will be strengthening the link between the generation of DFAs and
applications of the Matches function by formally showing that the DFA
and the Matches function always return the same result. This is
essentially Brzozowski’s proof.

Once that is accomplished, we can data-refine to the array-based code
ultimately generated:

s ∈ L(r) iff Matches r s ; already proved
iff Exec_Fmap_DFA(Brzfmap(r)) s ;finite map
iff Exec_Array_DFA(Brz2Darray (r)) s ; 2D array

c© 2014 Rockwell Collins. All rights reserved. 35 / 37

Future Work: Verified Code Generation

We are currently investigating the use of the verified cakeML compiler
(Kumar, Myreen, Norrish, and Owens, POPL’14) to compile the code,
and apply the cakeML correctness theorem to establish a
Guardol-to-binary correctness result.

This “direct to machine code” approach would eliminate the need to
trust the translation to source code (Ada, C, ...) as well as eliminate the
need to trust the output of a compiler.

c© 2014 Rockwell Collins. All rights reserved. 36 / 37

THE END

c© 2014 Rockwell Collins. All rights reserved. 37 / 37

