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About Galois

high assurance
research and development

Creating trustworthiness in
critical systems

Galois [gal-wah] 
Named after French mathematician 
Évariste Galois
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Company facts

Founded in 1999
~30 full-time employees

Based in Portland, Oregon
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Offering overview

CLIENT SERVICES

Trusted software development

for government and commercial clients

Formal Methods
Language and Tools Design
Systems Engineering
Trustable Software

TECHNOLOGY SOLUTIONS

Technologies that provide information
assurance to the most challenging
systems and software environments

Cross-domain Solutions
Trusted Collaboration
Communications Security
Evaluation Tools
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The problem

Daniel G. Wolf
Former director
Information Assurance Directorate 
National Security Agency
January, 2006

“Of the 1.3 million 
cryptographic devices 
in the U.S. inventory, 

73 percent will be 
replaced over the next 

15 years ...” 
“… a severe lack of diagnostic 

capabilities to evaluate 
software products to detect 

unintentional vulnerabilities 
and maliciously implanted 

functionality in a timely and 
cost-effective manner.”

“Software 
evaluation is very 

manpower intensive 
and doesn’t scale.”
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Challenge: to support the correct of 
implementations of crypto-algorithms

 Algorithm V&V is critical in crypto-modernization
• Must manage assurance in face of exploding complexity 

and demands

 Not just the NSA / DoD
• 48% of crypto-modules, and 27% of crypto-algorithms 

had flaws. 
• Without evaluation, about 50-50 chance of buying 

correct crypto
 NIST Computer Security Division, 2008 Annual report (page 15)
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Contributing
factors

Validation is 
complex and tediousVariety of 

target architectures

Variety of  
requirements

Creating a crypto algorithm requires 
skills in math AND programming



© 2011 Galois, Inc. All rights reserved.8

We want to see software built
with the same diligence and analysis

as other engineers build bridges

A vision for software

• Let the software itself be trustworthy
– Software artifacts to speak for 

themselves
– Rather than hoping to rely on the 

process that created them

• Use mathematical models to enable 
tractable analysis
– Executable models and formal 

methods
– A model is an abstraction that 

allows thought at a higher level 

• Follow open standards
– Build components with high 

internal integrity
– Maximize interoperability
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Approach:
Specifications and formal methods

 Declarative specification language
• Language tailored to the crypto domain
• Designed with feedback from NSA

 Execution and Validation Tools
• Tool suite for different implementation and

verification applications
• In use by crypto-implementers
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Cryptol Project Mission: To reduce the cost (in both time and 
money) of developing and certifying cryptographic applications

Cryptol
Specification

A Domain Specific Specification Language
• Precise, Declarative Semantics
• High level design exploration

Automated Synthesis down to FPGA and VHDL verification
• Algebraic rewrite-based compilation
• Traceability back to specification
• Verifying generated and 3rd party VHDL

Property specification and verification
• SAT/SMT based property verification
• Push button assurance
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Cryptol language design goals

 High-level domain-specific language (DSL) for cryptographic 
algorithms
• Specify algorithms precisely and unambiguously
• But also be executable

 Use Cryptol specifications to guide and document crypto 
implementations
• And even generate them

 Be neutral as to implementation platform
• Don’t bake in Von Neumann assumptions
• Same Cryptol specification can be compiled to multiple architectures

 Have a clean, unambiguous semantics
• Essential for any specification language
• Forms the basis for verification



© 2011 Galois, Inc. All rights reserved.12

One specification - Many uses

Design Validate

Build

Domain-specific design capture

w0=u-I*I modp + u-I*wl mod p
s=f * (w0 +pw2) (mod q)

Assured implementation

Verify crypto 
implementations

Models and 
test cases

Special purpose 
processor

FPGA(s)

C

Target
HW code

Cryptol
tools

Cryptol
interpreter
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Cryptol programs

 File of mathematical definitions
• Bit-precise type signatures 
• Strong static typing, with size and shape polymorphism

 Definitions are computationally neutral
• Cryptol tools provide the computational content (interpreters, 

compilers, code generators, verifiers)

x : [4][32];
x = [23 13 1 0];

F : ([16],[16]) -> [16];
F (x,y) = 2 * x + y;
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Data types: Numbers and sequences

 Numbers, a.k.a. “words”
• 123, 0xF4, 0b11110100
• Types: 75 : [8]

 Homogeneous sequences
• [False True False True False False True]
• [[1 2 3 4] [5 6 7 8]]
• Can be finite or infinite
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Data types: Collections

 Heterogenous data can be grouped together into tuples
• (13, “hello”, True)

 Or, into records: Tuples with named fields
• {x : [8]; y : [8]}

 Values can be arbitrarily nested:
• A sequence of records:

 [{x=12; y=5} {x=16; y=8}]�

 Functions can take/return arbitrary values
 What Cryptol doesn’t have:

• Pointers, null or any other kind
• Mutable objects, side effects
• Cryptol is “purely functional”
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Sequences

 Sequence operators
• Concatenation (#), indexing (@)

[1..5] # [3 6 8]  =  [1 2 3 4 5 3 6 8]
[50 .. 99] @ 10  =  60

 Shifts and Rotations
• Shifts (<<, >>), Rotations (<<<, >>>)

[1 2 3 4] << 2  =  [3 4 0 0]
[1 2 3 4] <<< 2 =  [2 3 1 2]
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Standard operations

 Arithmetic operators
• Result is modulo the word size of the arguments
• + - * / % **

 Boolean operators
• From bits, to arbitrarily nested matrices of the same shape
• & | ^ ~

 Comparison operators
• Equality, order
• == != < <= > >=
• returns a Bit

 Conditional operator
• Expression-level if-then-else
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Cryptol types

 Types express size and shape of data

[[0x1FE 0x11] [0x132 0x183] [0x1B4 0x5C] [0x26  0x7A]]

has type      [4][2][9]

 Type inference
• Use type declarations for active documentation
• All other types computed

 Parametric polymorphism
• Express size parameterization of algorithms
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blockEncrypt : {k} (k >= 2, 4 >= k) => ([128], [64*k]) -> [128]

Cr
yp

to
l

Cryptol: Specify interfaces unambiguously

For all k …between 
2 and 4

First input is a 
sequence of 

128 bits

Second input 
is a sequence 
of 128, 192, 
or 256 bits

Output is a 
sequence 
of 128 bits

From the Advanced Encryption Standard definition†

†http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
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Cryptol: Expressing data-flow dependencies

encrypt128 : ([4][32],[4][4][8]) -> [4][4][8];
encrypt128 (initialKey, plainText) = cipherText where { 

roundKeys = [ initialKey ] # [| nextKey (round, prev) 
roundKeys = [ initialKey ] # || round <- [1..10] 
roundKeys = [ initialKey ] # || prev <- roundKeys 
roundKeys = [ initialKey ] # |];
initialState = first(roundKeys) ^ plainText; 
rounds = [ initialState ] # [| nextState (prev, roundKey, round) 
rounds = [ initialState ] # || round <- [1..10] 
rounds = [ initialState ] # || prev <- rounds 
rounds = [  initialState ] # || roundKey <- drop (1, roundKeys) 
rounds = [ initialState ] # |]; 
cipherText = last(rounds); 

};

Cr
yp

to
l
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AES/Rijndael API

keySchedule : [4*Nk][8] -> Xkey
encrypt : (Xkey, [4*Nb][8]) -> [4*Nb][8]
decrypt : (Xkey, [4*Nb][8]) -> [4*Nb][8]

type Xkey = ( [4][Nb][8]
, [max(Nb,Nk)+5][4][Nb][8]
, [4][Nb][8])

Nb Nk
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Splitting and joining sequences

0x99FAC6F975BABB3E

split

[0x99 0xFA 0xC6 0xF9 0x75 0xBA 0xBB 0x3E]

0x99FAC6F975BABB3E

join

Polymorphic operation:
use a type to resolve
how many terms in

the split list
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Sequence comprehensions

 The comprehension notion borrowed from set 
theory

 Applying an operation to each element

[| 2*x + 3  ||  x <- [1 2 3 4] |]

= [5 7 9 11]
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Traversals

 Cartesian traversal

[| [x y] ||  x <- [0 1 2], y <- [3 4] |]

= [[0 3] [0 4] 
[1 3] [1 4]
[2 3] [2 4]]

 Parallel traversal

[| x + y ||  x <- [1 2 3] 
||  y <- [3 4 5 6 7] |]

=  [4 6 8]
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Row traversals in AES

ShiftRow : [4][Nb][8] -> [4][Nb][8];
ShiftRow(state)
= [| row <<< i || row <- state

|| i <- [0 1 2 3] |];
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Column traversals

MixColumn : [4][Nb][8] -> [4][Nb][8]; 
MixColumn(state)
= transpose [| ptimes(col,cx)

|| col <- transpose(state)
|]
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Nested traversals

ByteSub : [4][Nb][8] -> [4][Nb][8];
ByteSub(state) = [| [| sbox @ a || a <- row |]

|| row <- state 
|];
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Recurrence

 Textual description of shift circuits
• Follow mathematics: use stream-equations
• Stream-definitions can be recursive

 nats = [0] # [| y+1 || y <- nats |];

0nats

+1
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More complex stream equations

as  = [Ox3F OxE2 Ox65 OxCA] # new;
new = [| a ^ b ^ c || a <- as

|| b <- drop(1,as)
|| c <- drop(3,as)  |];

3Fas E2

^

65 CA

^

new
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AES rounds
Rounds(State,(initialKey,rndKeys,finalKey)) = final 
where { 

istate = State ^ initialKey; 
rnds = [istate] # [| Round(state,key)

|| state <- rnds
|| key <- rndKeys |]; 

final = FinalRound(last(rnds),finalKey); 
}; 

Round :([4][Nb][8],[4][Nb][8]) -> [4][Nb][8];
Round (State,RoundKey) 
= MixColumn(ShiftRow(ByteSub(State))) ^ RoundKey
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Modes: Electronic code book

 Modes are expressed in the same way as other 
cycles

cts = [| encrypt (pt, key) || pt <- pts |]

enckey
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Modes: Cipher block chaining

cts = [iv] # [| encrypt (pt^ct, key)
|| pt <- pts
|| ct <- cts 

|]

^ iv

pt ct

enckey
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Domain-specific design capture

rc6ks : {a} (w >= width a) => 
[a][8] -> [r+2][2][w];

rc6ks key = split (rs >>> (v - 3 * nk))
where {
c = max (1, (width key + 3) / (w / 8));
v = 3 * max (c, nk);
initS =  [pw (pw+qw) ..]@@[0 .. (nk-1)];
padKey : [4*c][8];
padKey = key # zero;  
initL : [c][w];
initL = split (join padKey);
ss = [| (s+a+b) <<< 3     

|| s <- initS # ss   
|| a <- [0] # ss
|| b <- [0] # ls |];

ls = [| (l+a+b) <<< (a+b) 
|| l <- initL # ls
|| a <- ss
|| b <- [0] # ls |];

rs = ss @@ [(v-nk) .. (v-1)];
};

 Models crypto-algorithm
 Natural expression
 Clear and unambiguous

w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)

Design Validate

Build

Cryptol
interpreter



© 2011 Galois, Inc. All rights reserved.34

Test case generation

Cryptol 
reference

specification

Hand-coded 
implementation

Reference 
test cases

Interpret and 
validate

Validated 
implementation

 Generates “known good 
tests”

 Built-in capture of 
intermediate vectors 
simplifies debugging

 Easy to generate new 
intermediate vectors as 
needed

Models and 
test cases

Cryptol
tools
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Equivalence checking

 Given two Cryptol functions f, g
• Either prove they agree on all inputs:   

 ∀x. f x == g x

• Or, provide a counter example x such that
 f x != g x

 Typically:
• f: Specification, written for clarity
• g: Implementation, optimized for speed/space/FPGA, 

etc.
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Simple equivalence checking example
f, g, h : [64] -> [64];
f x = 2*x;
g x = x << 1;
h x = x >> 1;

Cryptol> :eq f g
True

Cryptol> :eq f h
False
f 2

= 4
h 2

= 1
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Other equivalence checking use-cases

 Actually, f and g don’t have to be written in Cryptol. 
Our equivalence checker also supports:
• C code
• Java (via JVM byte code)
• Anything else that can be translated into And-Inverter 

Graphs (our formal model notation)

 And in particular,
• Xilinx FPGA netlists
• This is the basis of our 3rd parth VHDL verification work
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Cryptol Project Mission: To reduce the cost (in both time and 
money) of developing and certifying cryptographic applications

Cryptol
Specification

A Domain Specific Specification Language
• Precise, Declarative Semantics
• High level design exploration

Automated Synthesis down to FPGA and VHDL verification
• Algebraic rewrite-based compilation
• Traceability back to specification
• Verifying generated and 3rd party VHDL

Property specification and verification
• SAT/SMT based property verification
• Push button assurance
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Why implement crypto algorithms on FPGAs?

 Lack of trust in commodity hardware 
• Evaluators can see as much of the solution as possible
• Do not have to ship designs off-shore
• FPGAs are more flexible than programmable custom 

crypto processors
 Natural match between Cryptography and FPGAs

• Highly-parallel stream processing

 And FPGAs are fast…
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Why use Cryptol to produce FPGAs?

Because Cryptol naturally models hardware
 No Von Neumann assumption

• Sequentialization comes only from data-dependency

 Sequences can be mapped over space or time
• Cryptol’s fixed-length sequences naturally model hardware bit-vectors

• The user can explore space-time tradeoffs without significantly changing the Cryptol source

Because Cryptol provides a low barrier-to-entry to FPGAs
 Standard libraries of Cryptol specifications 

• FPGA implementation is a small delta for the user

 Cross-compilation development
• Develop specs on conventional hardware

• Execute on FPGA
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Refine spec 
for a specific 

target

Strategy
Maintain functional equivalence with the reference specification 

throughout the tool chain

Reference 
Specification

Reference
Model

Target
Model

Crypto
Developer

Target
Specification

Create an FPGA 
implementation from the 

target specification

IP Core
Generator

VHDL

Equivalence 
Checker

Equivalence
Evidence

Place and
Route

Netlist
Model

Synthesis

Place&Route
Model

Bit Gen

Bitfile
Model

BitfileNetlistNetlist

Key

Xilinx tools

Galois tools

Data files

Cryptol files

Input to tool

Input to designer

Formal Models

SPIR
Model

SPIR
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System
Simulation

Cryptol
compiler

VHDL

C

Synthesis

Netlist

Cryptol
reference 

specification
Test

Vectors

Symbolic
evaluator

Reference
model

Equivalence
checker

Symbolic
evaluator

Implementation
model

Cryptol
interpreter

Symbolic
simulator

Netlist
model

Equivalence
checker

Bitfile

Cryptol in the Development Process: 
Automatically-generated VHDL 

A Cryptol-FPGA engineer:
 Modifies the reference 

specification to 
emphasize particular 
implementation choices

 Generates the VHDL 
automatically

 Uses the equivalence 
checker to confirm that 
the implementation 
remains equivalent to the 
reference specification

FPGA Vendor tools

Galois tools

Data files produced by Cryptol tools

Data files produced by vendor toolsInput to tool

Feedback to designer

Specification

Source files 

Cryptol
implementation

specification

It is easier to experiment in
Cryptol than in VHDL
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FPGA Vendor tools

Galois tools

Data files produced by Cryptol tools

Data files produced by vendor toolsInput to tool

Feedback to designer

Specification

Source files 

Cryptol in the Development Process:
Hand-written VHDL 

A VHDL-FPGA engineer:
 Studies the reference 

specification to gain 
understanding

 Crafts a VHDL 
implementation by hand

 Uses the equivalence 
checker to debug the 
implementation or confirm 
that it is equivalent to the 
reference specification

Cryptol
reference 

specification

Symbolic
evaluator

Synthesis
Reference

model

handwritten
VHDL

implementation

Equivalence
checker

Symbolic
evaluator

Netlist
model

Netlist Bitfile
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Cryptol use-case: Verify VHDL crypto cores

Cryptol
reference 

specificationhandwritten
VHDL

implementation

FPGA vendor
tool chain

Verilog
netlist

Verilog
simulator

implementation
model

Cryptol
simulator

specification
model

Equivalence
checker

True or False
with 

counter-example
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SHA3: NIST Hash competition
 “NIST has opened a public competition to develop a new 

cryptographic hash algorithm, which converts a variable length 
message into a short “message digest” that can be used for digital 
signatures, message authentication and other applications.”

 51 original submissions
 Recently, 5 candidates made it to the final round
 Galois has received requests to verify VHDL implementations for some
 We’ll look at Skein verification in detail:

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
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Case Study: Verification process

 Develop a specification
 Understand the implementation
 Bring the implementation to “Cryptol” land

• via Cryptol’s foreign-function-interface

 Coerce the type signature of the implementation 
and specification

 Use Cryptol verification tools to prove equivalence
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Develop a specification
encrypt256 : ([32][8],[16][8],[32][8]) -> [4][64];

encrypt256 (key,tweak,pt) = vn + kn

where {

// Threefish-256 has 72 rounds:

nr  = 72;

nw  = 4;

…

key_words : [4][64];

key_words = split(join key);

tw_words : [2][64];

tw_words = split(join tweak);

pt_words : [nw][64];

pt_words = split(join pt);

};

http://www.galois.com/blog/2009/01/23/a-cryptol-implementation-of-skein/
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Verification process

 Develop a specification
 Understand the implementation
 Coerce the type signature of the implementation 

and specification
 Use Cryptol verification tools to prove equivalence
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Understanding the implementation
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extern vhdl("datatype.vhd”, "skein_mixcolumn.vhd", "skein_round.vhd”, 

"skein_shiftrow.vhd“, "skein_add_round_key.vhd”, "skein.vhd“,

skein, clock=clk, reset=resetn, invertreset)

extern_skein : [inf](start:Bit, data_in_L:[256], hash_iv_L:[256],

tweak_L:[128]) ->

[inf](done:Bit, data_out_L:[256]);

vhdlSkein : [256] -> [256];

vhdlSkein inp = res

where { wait     = (False, inp, zero, zero);

start    = (True, inp, zero, zero);

rest     = [wait] # rest;

(_, res) = extern_skein([wait start] # rest) @ 74;

};

Import the VHDL to Cryptol
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Verification process

 Develop a specification
 Understand the implementation
 Coerce the type signature of the implementation 

and specification
 Use Cryptol verification tools to prove equivalence



© 2011 Galois, Inc. All rights reserved.52

skeinRef : [256] -> [256];

skeinRef inp =

alignOut(encrypt256(zero, zero, reverse (split inp))) ^ inp

where { alignOut : [4][64] -> [256];

alignOut xs = join (reverse (split (join xs) : [32][8]));

};

vhdlSkein : [256] -> [256];

vhdlSkein inp = res

where { wait     = (False, inp, zero, zero);

start    = (True, inp, zero, zero);

rest     = [wait] # rest;

(_, res) = extern_menLong([wait start] # rest) @ 74;

};

Coerce the type signatures
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Verification Process

 Develop a specification
 Understand the implementation
 Coerce the type signature of the implementation 

and specification
 Use Cryptol verification tools to prove equivalence
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First verification

 Skein implementation by Men Long in VHDL
 Skein UBI Block AIG Sizes

• Cryptol Reference, 118156 nodes
• Men Long, 653963 nodes

 Ambiguity issue: Men Long’s concise cyclic 
rotation was interpreted differently by GHDL, 
Simili and Xilinx.  Resolved by replacement by 
call to standard library function.

 Used ABC (UC Berkeley) Equivalence Checker
 In ~1 hr VHDL code proved equivalent to spec
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Second verification

 Full Skein VHDL Implementation
 Skein AIG Sizes (256 bits input/output)

• Cryptol Reference, 301342 nodes
• Stefan Tillich, 900496 nodes

 Used ABC (UC Berkeley) Equivalence Checker
 Time: ~17.5h
 VHDL code is equivalent to Cryptol spec.

http://www.iaik.tugraz.at/content/research/
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Cryptol Project Mission:
To reduce the cost (in both time and money) of 

developing and certifying cryptographic applications

Cryptol
Specification

A Domain Specific Specification Language
• Precise, Declarative Semantics
• High level design exploration

Automated Synthesis down to FPGA and VHDL verification
• Algebraic rewrite-based compilation
• Traceability back to specification
• Verifying generated and 3rd party VHDL

Property specification and verification
• SAT/SMT based property verification
• Push button assurance
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Property verification
 Equivalence checking shows functional equivalence

• The input/output behaviors are “precisely the same”
• Or, they both have the exact same bugs..

 Property verification goes further
• Allows “correctness” properties to be specified and proved automatically

 Traditional examples:
• The algorithm works correctly
• The function defined is associative and commutative
• Value returned is the minimum..

 Classic crypto example:
• For all values of key and plain-text, encryption followed by the decryption using the 

same key returns the plain-text
• In Cryptol:

theorem encDec: {key, pt}. dec (key, enc(key, pt)) == pt; 
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Example: Merge-sort
mergeSort : {a b} (fin a, fin b) => [a][b] -> [a][b];
mergeSort xs = take(width xs, unTag (taggedMrgSort (tag xs)));

taggedMrgSort xs = if v then combined else xs
where {
(_, v)    = xs@1;
xsGrouped = groupBy (2, xs);
strm1     = [| x || [x _] <- xsGrouped |];
strm2     = [| y || [_ y] <- xsGrouped |];
sorted1   = taggedMrgSort strm1;
sorted2   = taggedMrgSort strm2;
combined  = merge (sorted1, sorted2);

};

merge (xs, ys) = if      ~vx   then ys
else if ~vy   then xs
else if x < y then xh # merge(xt, ys)
else yh # merge(xs, yt)

where { (x, vx) = xs @ 0;
(y, vy) = ys @ 0;
xh = take(1, xs);
xt = drop(1, xs);
yh = take(1, ys);
yt = drop(1, ys);

};
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Test

mergeSortOK =
(mergeSort []            == [])

& (mergeSort [1 1]         == [1 1])
& (mergeSort [1 0 3]       == [0 1 3])
& (mergeSort [100 99 .. 0] == [0 .. 100])
& (mergeSort [1 3 1 1 4 5] == [1 1 1 3 4 5]);

But we’d like to do better!
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Proof obligations

 To prove sorting correct, we need to show
• Output is in non-decreasing order
• Output is a permutation of the input

 Strategy:
• Define these as “predicates” in Cryptol
• Write a theorem to capture correctness

 Example: recognizing non-decreasing sequences:

 Recognizing permutations is similar

nonDecreasing : {a b} (fin a, fin b) => [a][b] -> Bit;
nonDecreasing xs = pairComps == ~zero

where pairComps = [| x <= x' || x  <- [0] # xs
|| x' <- xs

|];
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Putting it together

 Express correctness by combining the two:

 Theorem declarations are:
• First class citizens of Cryptol; coexists with the code

 No need to learn a separate “verification” language

• Not comments, or documentation
 Although they serve as great documentation

• Can be quick-checked for fast feedback
• Or, proved automatically using SAT/SMT based technologies
• External tool usage is all transparent to the user!

 Counter-examples are priceless!

theorem mergeSortIsCorrect: {xs}. 
nonDecreasing(ys) & isPermutationOf(xs, 

ys)
where ys = mergeSort(xs);
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Other Cryptol assurance tools
 “Quickcheck” property-based testing

• User gives a property, Cryptol automatically tests it on random inputs.
 Safety checking

• Automatically checks that a Cryptol function will never raise an exception
• Some possible exceptions: Divide-by-zero, Out-of-bounds array access, 

assertion failures

 Use of SMT-based property checkers
• SAT: Checks for satisfiability of large Boolean formulas
• SMT extends SAT with higher-level constraint solvers (linear arithmetic, 

arrays, functions, etc.)
 Semi-automatic theorem proving 

• Translator from Cryptol to Isabelle theorem prover
• User can specify arbitrary Cryptol properties, but proof may need human 

guidance
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Verification tools use cases

 Formal Verification
• Prove whether a low level implementation matches a high level 

mathematical specification

 Verifying Compiler
• Confirm the correct functionality of generated code

 Regression verification
• Use previous implementations to maintain the correctness of future 

implementations
• cf. Regression testing
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Current Research Challenges

 Cryptol language
• Extension into other data-flow domains (like DSP)

• Other code generators (like ASIC, GPU, proprietary microcode)

 FPGA generation
• Improved type constraint simplifications and error messages

• If a Cryptol spec is not synthesizeable, communicating back to user why not

• Synthesizing circuits across multiple FPGAs

• Supporting vendor optimizations in Cryptol

 Equivalence checking 
• End-to-end Xilinx tool flow support

• ECC and PKI algorithms, initial attempts quite promising

• Large bit vector sizes, deep semantic optimizations

• Equivalence checking for modes
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Questions?

www.cryptol.net

Contact: cryptol@galois.com

http://www.cryptol.net/
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