
© 2011 Galois, Inc. All rights reserved.1

High assurance
crypto-development with Cryptol

Cryptol Team| May 2nd, 2011
Levent Erkök

The Cryptol team, past and present:
Sally Browning, Magnus Carlsson, Levent Erkök, Sigbjorn Finne,
Andy Gill, Fergus Henderson, John Launchbury, Jeff Lewis, Lee
Pike, John Matthews, Thomas Nordin, Mark Shields, Joel Stanley,
Frank Seaton Taylor, Jim Teisher, Philip Weaver, Adam Wick

© 2011 Galois, Inc. All rights reserved.2

About Galois

high assurance
research and development

Creating trustworthiness in
critical systems

Galois [gal-wah]
Named after French mathematician
Évariste Galois

© 2011 Galois, Inc. All rights reserved.3

Company facts

Founded in 1999
~30 full-time employees

Based in Portland, Oregon

© 2011 Galois, Inc. All rights reserved.4

Offering overview

CLIENT SERVICES

Trusted software development

for government and commercial clients

Formal Methods
Language and Tools Design
Systems Engineering
Trustable Software

TECHNOLOGY SOLUTIONS

Technologies that provide information
assurance to the most challenging
systems and software environments

Cross-domain Solutions
Trusted Collaboration
Communications Security
Evaluation Tools

© 2011 Galois, Inc. All rights reserved.5

The problem

Daniel G. Wolf
Former director
Information Assurance Directorate
National Security Agency
January, 2006

“Of the 1.3 million
cryptographic devices
in the U.S. inventory,

73 percent will be
replaced over the next

15 years ...”
“… a severe lack of diagnostic

capabilities to evaluate
software products to detect

unintentional vulnerabilities
and maliciously implanted

functionality in a timely and
cost-effective manner.”

“Software
evaluation is very

manpower intensive
and doesn’t scale.”

© 2011 Galois, Inc. All rights reserved.6

Challenge: to support the correct of
implementations of crypto-algorithms

 Algorithm V&V is critical in crypto-modernization
• Must manage assurance in face of exploding complexity

and demands

 Not just the NSA / DoD
• 48% of crypto-modules, and 27% of crypto-algorithms

had flaws.
• Without evaluation, about 50-50 chance of buying

correct crypto
 NIST Computer Security Division, 2008 Annual report (page 15)

© 2011 Galois, Inc. All rights reserved.7

Contributing
factors

Validation is
complex and tediousVariety of

target architectures

Variety of
requirements

Creating a crypto algorithm requires
skills in math AND programming

© 2011 Galois, Inc. All rights reserved.8

We want to see software built
with the same diligence and analysis

as other engineers build bridges

A vision for software

• Let the software itself be trustworthy
– Software artifacts to speak for

themselves
– Rather than hoping to rely on the

process that created them

• Use mathematical models to enable
tractable analysis
– Executable models and formal

methods
– A model is an abstraction that

allows thought at a higher level

• Follow open standards
– Build components with high

internal integrity
– Maximize interoperability

© 2011 Galois, Inc. All rights reserved.9

Approach:
Specifications and formal methods

 Declarative specification language
• Language tailored to the crypto domain
• Designed with feedback from NSA

 Execution and Validation Tools
• Tool suite for different implementation and

verification applications
• In use by crypto-implementers

© 2011 Galois, Inc. All rights reserved.10

Cryptol Project Mission: To reduce the cost (in both time and
money) of developing and certifying cryptographic applications

Cryptol
Specification

A Domain Specific Specification Language
• Precise, Declarative Semantics
• High level design exploration

Automated Synthesis down to FPGA and VHDL verification
• Algebraic rewrite-based compilation
• Traceability back to specification
• Verifying generated and 3rd party VHDL

Property specification and verification
• SAT/SMT based property verification
• Push button assurance

© 2011 Galois, Inc. All rights reserved.11

Cryptol language design goals

 High-level domain-specific language (DSL) for cryptographic
algorithms
• Specify algorithms precisely and unambiguously
• But also be executable

 Use Cryptol specifications to guide and document crypto
implementations
• And even generate them

 Be neutral as to implementation platform
• Don’t bake in Von Neumann assumptions
• Same Cryptol specification can be compiled to multiple architectures

 Have a clean, unambiguous semantics
• Essential for any specification language
• Forms the basis for verification

© 2011 Galois, Inc. All rights reserved.12

One specification - Many uses

Design Validate

Build

Domain-specific design capture

w0=u-I*I modp + u-I*wl mod p
s=f * (w0 +pw2) (mod q)

Assured implementation

Verify crypto
implementations

Models and
test cases

Special purpose
processor

FPGA(s)

C

Target
HW code

Cryptol
tools

Cryptol
interpreter

© 2011 Galois, Inc. All rights reserved.13

Cryptol programs

 File of mathematical definitions
• Bit-precise type signatures
• Strong static typing, with size and shape polymorphism

 Definitions are computationally neutral
• Cryptol tools provide the computational content (interpreters,

compilers, code generators, verifiers)

x : [4][32];
x = [23 13 1 0];

F : ([16],[16]) -> [16];
F (x,y) = 2 * x + y;

© 2011 Galois, Inc. All rights reserved.14

Data types: Numbers and sequences

 Numbers, a.k.a. “words”
• 123, 0xF4, 0b11110100
• Types: 75 : [8]

 Homogeneous sequences
• [False True False True False False True]
• [[1 2 3 4] [5 6 7 8]]
• Can be finite or infinite

© 2011 Galois, Inc. All rights reserved.15

Data types: Collections

 Heterogenous data can be grouped together into tuples
• (13, “hello”, True)

 Or, into records: Tuples with named fields
• {x : [8]; y : [8]}

 Values can be arbitrarily nested:
• A sequence of records:

 [{x=12; y=5} {x=16; y=8}]�

 Functions can take/return arbitrary values
 What Cryptol doesn’t have:

• Pointers, null or any other kind
• Mutable objects, side effects
• Cryptol is “purely functional”

© 2011 Galois, Inc. All rights reserved.16

Sequences

 Sequence operators
• Concatenation (#), indexing (@)

[1..5] # [3 6 8] = [1 2 3 4 5 3 6 8]
[50 .. 99] @ 10 = 60

 Shifts and Rotations
• Shifts (<<, >>), Rotations (<<<, >>>)

[1 2 3 4] << 2 = [3 4 0 0]
[1 2 3 4] <<< 2 = [2 3 1 2]

© 2011 Galois, Inc. All rights reserved.17

Standard operations

 Arithmetic operators
• Result is modulo the word size of the arguments
• + - * / % **

 Boolean operators
• From bits, to arbitrarily nested matrices of the same shape
• & | ^ ~

 Comparison operators
• Equality, order
• == != < <= > >=
• returns a Bit

 Conditional operator
• Expression-level if-then-else

© 2011 Galois, Inc. All rights reserved.18

Cryptol types

 Types express size and shape of data

[[0x1FE 0x11] [0x132 0x183] [0x1B4 0x5C] [0x26 0x7A]]

has type [4][2][9]

 Type inference
• Use type declarations for active documentation
• All other types computed

 Parametric polymorphism
• Express size parameterization of algorithms

© 2011 Galois, Inc. All rights reserved.19

blockEncrypt : {k} (k >= 2, 4 >= k) => ([128], [64*k]) -> [128]

Cr
yp

to
l

Cryptol: Specify interfaces unambiguously

For all k …between
2 and 4

First input is a
sequence of

128 bits

Second input
is a sequence
of 128, 192,
or 256 bits

Output is a
sequence
of 128 bits

From the Advanced Encryption Standard definition†

†http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

© 2011 Galois, Inc. All rights reserved.20

Cryptol: Expressing data-flow dependencies

encrypt128 : ([4][32],[4][4][8]) -> [4][4][8];
encrypt128 (initialKey, plainText) = cipherText where {

roundKeys = [initialKey] # [| nextKey (round, prev)
roundKeys = [initialKey] # || round <- [1..10]
roundKeys = [initialKey] # || prev <- roundKeys
roundKeys = [initialKey] # |];
initialState = first(roundKeys) ^ plainText;
rounds = [initialState] # [| nextState (prev, roundKey, round)
rounds = [initialState] # || round <- [1..10]
rounds = [initialState] # || prev <- rounds
rounds = [initialState] # || roundKey <- drop (1, roundKeys)
rounds = [initialState] # |];
cipherText = last(rounds);

};

Cr
yp

to
l

© 2011 Galois, Inc. All rights reserved.21

AES/Rijndael API

keySchedule : [4*Nk][8] -> Xkey
encrypt : (Xkey, [4*Nb][8]) -> [4*Nb][8]
decrypt : (Xkey, [4*Nb][8]) -> [4*Nb][8]

type Xkey = ([4][Nb][8]
, [max(Nb,Nk)+5][4][Nb][8]
, [4][Nb][8])

Nb Nk

© 2011 Galois, Inc. All rights reserved.22

Splitting and joining sequences

0x99FAC6F975BABB3E

split

[0x99 0xFA 0xC6 0xF9 0x75 0xBA 0xBB 0x3E]

0x99FAC6F975BABB3E

join

Polymorphic operation:
use a type to resolve
how many terms in

the split list

© 2011 Galois, Inc. All rights reserved.23

Sequence comprehensions

 The comprehension notion borrowed from set
theory

 Applying an operation to each element

[| 2*x + 3 || x <- [1 2 3 4] |]

= [5 7 9 11]

© 2011 Galois, Inc. All rights reserved.24

Traversals

 Cartesian traversal

[| [x y] || x <- [0 1 2], y <- [3 4] |]

= [[0 3] [0 4]
[1 3] [1 4]
[2 3] [2 4]]

 Parallel traversal

[| x + y || x <- [1 2 3]
|| y <- [3 4 5 6 7] |]

= [4 6 8]

© 2011 Galois, Inc. All rights reserved.25

Row traversals in AES

ShiftRow : [4][Nb][8] -> [4][Nb][8];
ShiftRow(state)
= [| row <<< i || row <- state

|| i <- [0 1 2 3] |];

© 2011 Galois, Inc. All rights reserved.26

Column traversals

MixColumn : [4][Nb][8] -> [4][Nb][8];
MixColumn(state)
= transpose [| ptimes(col,cx)

|| col <- transpose(state)
|]

© 2011 Galois, Inc. All rights reserved.27

Nested traversals

ByteSub : [4][Nb][8] -> [4][Nb][8];
ByteSub(state) = [| [| sbox @ a || a <- row |]

|| row <- state
|];

© 2011 Galois, Inc. All rights reserved.28

Recurrence

 Textual description of shift circuits
• Follow mathematics: use stream-equations
• Stream-definitions can be recursive

 nats = [0] # [| y+1 || y <- nats |];

0nats

+1

© 2011 Galois, Inc. All rights reserved.29

More complex stream equations

as = [Ox3F OxE2 Ox65 OxCA] # new;
new = [| a ^ b ^ c || a <- as

|| b <- drop(1,as)
|| c <- drop(3,as) |];

3Fas E2

^

65 CA

^

new

© 2011 Galois, Inc. All rights reserved.30

AES rounds
Rounds(State,(initialKey,rndKeys,finalKey)) = final
where {

istate = State ^ initialKey;
rnds = [istate] # [| Round(state,key)

|| state <- rnds
|| key <- rndKeys |];

final = FinalRound(last(rnds),finalKey);
};

Round :([4][Nb][8],[4][Nb][8]) -> [4][Nb][8];
Round (State,RoundKey)
= MixColumn(ShiftRow(ByteSub(State))) ^ RoundKey

© 2011 Galois, Inc. All rights reserved.31

Modes: Electronic code book

 Modes are expressed in the same way as other
cycles

cts = [| encrypt (pt, key) || pt <- pts |]

enckey

© 2011 Galois, Inc. All rights reserved.32

Modes: Cipher block chaining

cts = [iv] # [| encrypt (pt^ct, key)
|| pt <- pts
|| ct <- cts

|]

^ iv

pt ct

enckey

© 2011 Galois, Inc. All rights reserved.33

Domain-specific design capture

rc6ks : {a} (w >= width a) =>
[a][8] -> [r+2][2][w];

rc6ks key = split (rs >>> (v - 3 * nk))
where {
c = max (1, (width key + 3) / (w / 8));
v = 3 * max (c, nk);
initS = [pw (pw+qw) ..]@@[0 .. (nk-1)];
padKey : [4*c][8];
padKey = key # zero;
initL : [c][w];
initL = split (join padKey);
ss = [| (s+a+b) <<< 3

|| s <- initS # ss
|| a <- [0] # ss
|| b <- [0] # ls |];

ls = [| (l+a+b) <<< (a+b)
|| l <- initL # ls
|| a <- ss
|| b <- [0] # ls |];

rs = ss @@ [(v-nk) .. (v-1)];
};

 Models crypto-algorithm
 Natural expression
 Clear and unambiguous

w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)

Design Validate

Build

Cryptol
interpreter

© 2011 Galois, Inc. All rights reserved.34

Test case generation

Cryptol
reference

specification

Hand-coded
implementation

Reference
test cases

Interpret and
validate

Validated
implementation

 Generates “known good
tests”

 Built-in capture of
intermediate vectors
simplifies debugging

 Easy to generate new
intermediate vectors as
needed

Models and
test cases

Cryptol
tools

© 2011 Galois, Inc. All rights reserved.35

Equivalence checking

 Given two Cryptol functions f, g
• Either prove they agree on all inputs:

 ∀x. f x == g x

• Or, provide a counter example x such that
 f x != g x

 Typically:
• f: Specification, written for clarity
• g: Implementation, optimized for speed/space/FPGA,

etc.

© 2011 Galois, Inc. All rights reserved.36

Simple equivalence checking example
f, g, h : [64] -> [64];
f x = 2*x;
g x = x << 1;
h x = x >> 1;

Cryptol> :eq f g
True

Cryptol> :eq f h
False
f 2

= 4
h 2

= 1

© 2011 Galois, Inc. All rights reserved.37

Other equivalence checking use-cases

 Actually, f and g don’t have to be written in Cryptol.
Our equivalence checker also supports:
• C code
• Java (via JVM byte code)
• Anything else that can be translated into And-Inverter

Graphs (our formal model notation)

 And in particular,
• Xilinx FPGA netlists
• This is the basis of our 3rd parth VHDL verification work

© 2011 Galois, Inc. All rights reserved.38

Cryptol Project Mission: To reduce the cost (in both time and
money) of developing and certifying cryptographic applications

Cryptol
Specification

A Domain Specific Specification Language
• Precise, Declarative Semantics
• High level design exploration

Automated Synthesis down to FPGA and VHDL verification
• Algebraic rewrite-based compilation
• Traceability back to specification
• Verifying generated and 3rd party VHDL

Property specification and verification
• SAT/SMT based property verification
• Push button assurance

© 2011 Galois, Inc. All rights reserved.39

Why implement crypto algorithms on FPGAs?

 Lack of trust in commodity hardware
• Evaluators can see as much of the solution as possible
• Do not have to ship designs off-shore
• FPGAs are more flexible than programmable custom

crypto processors
 Natural match between Cryptography and FPGAs

• Highly-parallel stream processing

 And FPGAs are fast…

© 2011 Galois, Inc. All rights reserved.40

Why use Cryptol to produce FPGAs?

Because Cryptol naturally models hardware
 No Von Neumann assumption

• Sequentialization comes only from data-dependency

 Sequences can be mapped over space or time
• Cryptol’s fixed-length sequences naturally model hardware bit-vectors

• The user can explore space-time tradeoffs without significantly changing the Cryptol source

Because Cryptol provides a low barrier-to-entry to FPGAs
 Standard libraries of Cryptol specifications

• FPGA implementation is a small delta for the user

 Cross-compilation development
• Develop specs on conventional hardware

• Execute on FPGA

© 2011 Galois, Inc. All rights reserved.41

Refine spec
for a specific

target

Strategy
Maintain functional equivalence with the reference specification

throughout the tool chain

Reference
Specification

Reference
Model

Target
Model

Crypto
Developer

Target
Specification

Create an FPGA
implementation from the

target specification

IP Core
Generator

VHDL

Equivalence
Checker

Equivalence
Evidence

Place and
Route

Netlist
Model

Synthesis

Place&Route
Model

Bit Gen

Bitfile
Model

BitfileNetlistNetlist

Key

Xilinx tools

Galois tools

Data files

Cryptol files

Input to tool

Input to designer

Formal Models

SPIR
Model

SPIR

© 2011 Galois, Inc. All rights reserved.42

System
Simulation

Cryptol
compiler

VHDL

C

Synthesis

Netlist

Cryptol
reference

specification
Test

Vectors

Symbolic
evaluator

Reference
model

Equivalence
checker

Symbolic
evaluator

Implementation
model

Cryptol
interpreter

Symbolic
simulator

Netlist
model

Equivalence
checker

Bitfile

Cryptol in the Development Process:
Automatically-generated VHDL

A Cryptol-FPGA engineer:
 Modifies the reference

specification to
emphasize particular
implementation choices

 Generates the VHDL
automatically

 Uses the equivalence
checker to confirm that
the implementation
remains equivalent to the
reference specification

FPGA Vendor tools

Galois tools

Data files produced by Cryptol tools

Data files produced by vendor toolsInput to tool

Feedback to designer

Specification

Source files

Cryptol
implementation

specification

It is easier to experiment in
Cryptol than in VHDL

© 2011 Galois, Inc. All rights reserved.43

FPGA Vendor tools

Galois tools

Data files produced by Cryptol tools

Data files produced by vendor toolsInput to tool

Feedback to designer

Specification

Source files

Cryptol in the Development Process:
Hand-written VHDL

A VHDL-FPGA engineer:
 Studies the reference

specification to gain
understanding

 Crafts a VHDL
implementation by hand

 Uses the equivalence
checker to debug the
implementation or confirm
that it is equivalent to the
reference specification

Cryptol
reference

specification

Symbolic
evaluator

Synthesis
Reference

model

handwritten
VHDL

implementation

Equivalence
checker

Symbolic
evaluator

Netlist
model

Netlist Bitfile

© 2011 Galois, Inc. All rights reserved.44

Cryptol use-case: Verify VHDL crypto cores

Cryptol
reference

specificationhandwritten
VHDL

implementation

FPGA vendor
tool chain

Verilog
netlist

Verilog
simulator

implementation
model

Cryptol
simulator

specification
model

Equivalence
checker

True or False
with

counter-example

© 2011 Galois, Inc. All rights reserved.45

SHA3: NIST Hash competition
 “NIST has opened a public competition to develop a new

cryptographic hash algorithm, which converts a variable length
message into a short “message digest” that can be used for digital
signatures, message authentication and other applications.”

 51 original submissions
 Recently, 5 candidates made it to the final round
 Galois has received requests to verify VHDL implementations for some
 We’ll look at Skein verification in detail:

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

© 2011 Galois, Inc. All rights reserved.46

Case Study: Verification process

 Develop a specification
 Understand the implementation
 Bring the implementation to “Cryptol” land

• via Cryptol’s foreign-function-interface

 Coerce the type signature of the implementation
and specification

 Use Cryptol verification tools to prove equivalence

© 2011 Galois, Inc. All rights reserved.47

Develop a specification
encrypt256 : ([32][8],[16][8],[32][8]) -> [4][64];

encrypt256 (key,tweak,pt) = vn + kn

where {

// Threefish-256 has 72 rounds:

nr = 72;

nw = 4;

…

key_words : [4][64];

key_words = split(join key);

tw_words : [2][64];

tw_words = split(join tweak);

pt_words : [nw][64];

pt_words = split(join pt);

};

http://www.galois.com/blog/2009/01/23/a-cryptol-implementation-of-skein/

© 2011 Galois, Inc. All rights reserved.48

Verification process

 Develop a specification
 Understand the implementation
 Coerce the type signature of the implementation

and specification
 Use Cryptol verification tools to prove equivalence

© 2011 Galois, Inc. All rights reserved.49

Understanding the implementation

© 2011 Galois, Inc. All rights reserved.50

extern vhdl("datatype.vhd”, "skein_mixcolumn.vhd", "skein_round.vhd”,

"skein_shiftrow.vhd“, "skein_add_round_key.vhd”, "skein.vhd“,

skein, clock=clk, reset=resetn, invertreset)

extern_skein : [inf](start:Bit, data_in_L:[256], hash_iv_L:[256],

tweak_L:[128]) ->

[inf](done:Bit, data_out_L:[256]);

vhdlSkein : [256] -> [256];

vhdlSkein inp = res

where { wait = (False, inp, zero, zero);

start = (True, inp, zero, zero);

rest = [wait] # rest;

(_, res) = extern_skein([wait start] # rest) @ 74;

};

Import the VHDL to Cryptol

© 2011 Galois, Inc. All rights reserved.51

Verification process

 Develop a specification
 Understand the implementation
 Coerce the type signature of the implementation

and specification
 Use Cryptol verification tools to prove equivalence

© 2011 Galois, Inc. All rights reserved.52

skeinRef : [256] -> [256];

skeinRef inp =

alignOut(encrypt256(zero, zero, reverse (split inp))) ^ inp

where { alignOut : [4][64] -> [256];

alignOut xs = join (reverse (split (join xs) : [32][8]));

};

vhdlSkein : [256] -> [256];

vhdlSkein inp = res

where { wait = (False, inp, zero, zero);

start = (True, inp, zero, zero);

rest = [wait] # rest;

(_, res) = extern_menLong([wait start] # rest) @ 74;

};

Coerce the type signatures

© 2011 Galois, Inc. All rights reserved.53

Verification Process

 Develop a specification
 Understand the implementation
 Coerce the type signature of the implementation

and specification
 Use Cryptol verification tools to prove equivalence

© 2011 Galois, Inc. All rights reserved.54

First verification

 Skein implementation by Men Long in VHDL
 Skein UBI Block AIG Sizes

• Cryptol Reference, 118156 nodes
• Men Long, 653963 nodes

 Ambiguity issue: Men Long’s concise cyclic
rotation was interpreted differently by GHDL,
Simili and Xilinx. Resolved by replacement by
call to standard library function.

 Used ABC (UC Berkeley) Equivalence Checker
 In ~1 hr VHDL code proved equivalent to spec

© 2011 Galois, Inc. All rights reserved.55

Second verification

 Full Skein VHDL Implementation
 Skein AIG Sizes (256 bits input/output)

• Cryptol Reference, 301342 nodes
• Stefan Tillich, 900496 nodes

 Used ABC (UC Berkeley) Equivalence Checker
 Time: ~17.5h
 VHDL code is equivalent to Cryptol spec.

http://www.iaik.tugraz.at/content/research/

© 2011 Galois, Inc. All rights reserved.56

Cryptol Project Mission:
To reduce the cost (in both time and money) of

developing and certifying cryptographic applications

Cryptol
Specification

A Domain Specific Specification Language
• Precise, Declarative Semantics
• High level design exploration

Automated Synthesis down to FPGA and VHDL verification
• Algebraic rewrite-based compilation
• Traceability back to specification
• Verifying generated and 3rd party VHDL

Property specification and verification
• SAT/SMT based property verification
• Push button assurance

© 2011 Galois, Inc. All rights reserved.57

Property verification
 Equivalence checking shows functional equivalence

• The input/output behaviors are “precisely the same”
• Or, they both have the exact same bugs..

 Property verification goes further
• Allows “correctness” properties to be specified and proved automatically

 Traditional examples:
• The algorithm works correctly
• The function defined is associative and commutative
• Value returned is the minimum..

 Classic crypto example:
• For all values of key and plain-text, encryption followed by the decryption using the

same key returns the plain-text
• In Cryptol:

theorem encDec: {key, pt}. dec (key, enc(key, pt)) == pt;

© 2011 Galois, Inc. All rights reserved.58

Example: Merge-sort
mergeSort : {a b} (fin a, fin b) => [a][b] -> [a][b];
mergeSort xs = take(width xs, unTag (taggedMrgSort (tag xs)));

taggedMrgSort xs = if v then combined else xs
where {
(_, v) = xs@1;
xsGrouped = groupBy (2, xs);
strm1 = [| x || [x _] <- xsGrouped |];
strm2 = [| y || [_ y] <- xsGrouped |];
sorted1 = taggedMrgSort strm1;
sorted2 = taggedMrgSort strm2;
combined = merge (sorted1, sorted2);

};

merge (xs, ys) = if ~vx then ys
else if ~vy then xs
else if x < y then xh # merge(xt, ys)
else yh # merge(xs, yt)

where { (x, vx) = xs @ 0;
(y, vy) = ys @ 0;
xh = take(1, xs);
xt = drop(1, xs);
yh = take(1, ys);
yt = drop(1, ys);

};

© 2011 Galois, Inc. All rights reserved.59

Test

mergeSortOK =
(mergeSort [] == [])

& (mergeSort [1 1] == [1 1])
& (mergeSort [1 0 3] == [0 1 3])
& (mergeSort [100 99 .. 0] == [0 .. 100])
& (mergeSort [1 3 1 1 4 5] == [1 1 1 3 4 5]);

But we’d like to do better!

© 2011 Galois, Inc. All rights reserved.60

Proof obligations

 To prove sorting correct, we need to show
• Output is in non-decreasing order
• Output is a permutation of the input

 Strategy:
• Define these as “predicates” in Cryptol
• Write a theorem to capture correctness

 Example: recognizing non-decreasing sequences:

 Recognizing permutations is similar

nonDecreasing : {a b} (fin a, fin b) => [a][b] -> Bit;
nonDecreasing xs = pairComps == ~zero

where pairComps = [| x <= x' || x <- [0] # xs
|| x' <- xs

|];

© 2011 Galois, Inc. All rights reserved.61

Putting it together

 Express correctness by combining the two:

 Theorem declarations are:
• First class citizens of Cryptol; coexists with the code

 No need to learn a separate “verification” language

• Not comments, or documentation
 Although they serve as great documentation

• Can be quick-checked for fast feedback
• Or, proved automatically using SAT/SMT based technologies
• External tool usage is all transparent to the user!

 Counter-examples are priceless!

theorem mergeSortIsCorrect: {xs}.
nonDecreasing(ys) & isPermutationOf(xs,

ys)
where ys = mergeSort(xs);

© 2011 Galois, Inc. All rights reserved.62

Other Cryptol assurance tools
 “Quickcheck” property-based testing

• User gives a property, Cryptol automatically tests it on random inputs.
 Safety checking

• Automatically checks that a Cryptol function will never raise an exception
• Some possible exceptions: Divide-by-zero, Out-of-bounds array access,

assertion failures

 Use of SMT-based property checkers
• SAT: Checks for satisfiability of large Boolean formulas
• SMT extends SAT with higher-level constraint solvers (linear arithmetic,

arrays, functions, etc.)
 Semi-automatic theorem proving

• Translator from Cryptol to Isabelle theorem prover
• User can specify arbitrary Cryptol properties, but proof may need human

guidance

© 2011 Galois, Inc. All rights reserved.63

Verification tools use cases

 Formal Verification
• Prove whether a low level implementation matches a high level

mathematical specification

 Verifying Compiler
• Confirm the correct functionality of generated code

 Regression verification
• Use previous implementations to maintain the correctness of future

implementations
• cf. Regression testing

© 2011 Galois, Inc. All rights reserved.64

Current Research Challenges

 Cryptol language
• Extension into other data-flow domains (like DSP)

• Other code generators (like ASIC, GPU, proprietary microcode)

 FPGA generation
• Improved type constraint simplifications and error messages

• If a Cryptol spec is not synthesizeable, communicating back to user why not

• Synthesizing circuits across multiple FPGAs

• Supporting vendor optimizations in Cryptol

 Equivalence checking
• End-to-end Xilinx tool flow support

• ECC and PKI algorithms, initial attempts quite promising

• Large bit vector sizes, deep semantic optimizations

• Equivalence checking for modes

© 2011 Galois, Inc. All rights reserved.65

Questions?

www.cryptol.net

Contact: cryptol@galois.com

http://www.cryptol.net/

	Slide Number 1
	About Galois
	Company facts
	Offering overview
	The problem
	Challenge: to support the correct of implementations of crypto-algorithms
	Contributing�factors
	A vision for software
	Approach:�Specifications and formal methods
	Cryptol Project Mission: To reduce the cost (in both time and money) of developing and certifying cryptographic applications
	Cryptol language design goals
	One specification - Many uses
	Cryptol programs
	Data types: Numbers and sequences
	Data types: Collections
	Sequences
	Standard operations
	Cryptol types
	Cryptol: Specify interfaces unambiguously
	Cryptol: Expressing data-flow dependencies
	AES/Rijndael API
	Splitting and joining sequences
	Sequence comprehensions
	Traversals
	Row traversals in AES
	Column traversals
	Nested traversals
	Recurrence
	More complex stream equations
	AES rounds
	Modes: Electronic code book
	Modes: Cipher block chaining
	Domain-specific design capture
	Test case generation
	 Equivalence checking
	Simple equivalence checking example
	Other equivalence checking use-cases
	Cryptol Project Mission: To reduce the cost (in both time and money) of developing and certifying cryptographic applications
	Why implement crypto algorithms on FPGAs?
	Why use Cryptol to produce FPGAs?
	Strategy� Maintain functional equivalence with the reference specification throughout the tool chain
	Cryptol in the Development Process: Automatically-generated VHDL
	Cryptol in the Development Process:�Hand-written VHDL
	Cryptol use-case: Verify VHDL crypto cores
	SHA3: NIST Hash competition
	Case Study: Verification process
	Develop a specification
	Verification process
	Understanding the implementation
	Import the VHDL to Cryptol
	Verification process
	Coerce the type signatures
	Verification Process
	First verification
	Second verification
	Cryptol Project Mission:�To reduce the cost (in both time and money) of developing and certifying cryptographic applications
	Property verification
	Example: Merge-sort
	Test
	Proof obligations
	Putting it together
	Other Cryptol assurance tools
	Verification tools use cases
	Current Research Challenges
	Questions?

