
High-Assurance
Java Virtual Machine

Alessandro Coglio

Kestrel Institute

Summary

♦ Introduction and goals
♦Type safety and security
♦Bytecode verification
♦Class loading
♦ Java Card

Summary

♦ Introduction and goals
♦Type safety and security
♦Bytecode verification
♦Class loading
♦ Java Card

Java Virtual Machine (JVM)

Java
program

compiler

bytecode
program

OS

HW

Java Virtual
Machine (JVM)

execute

JVM Security Mechanisms

♦ Protect HW/OS resources
files, memory, devices, …

♦Support secure applications
authentication, encryption, access control, …

♦Guarantee integrity of the JVM
JVM always works as expected

Achieving High Assurance

♦Assess that JVM design
has the intended properties
– precise description (spec) of the JVM
– analysis of the description to

• assess properties
• discover flaws and find fixes

♦ Implement JVM correctly
implementation code verifiably correct
w.r.t. description above

Current Situation
♦ T. Lindholm, F. Yelling, “The Java Virtual

Machine Specification” (2nd ed.) from Sun
– informal English prose
– well written but contains ambiguities
⇒ hard to assess properties

♦ Sun’s Java 2 SDK vers. 1.3
– reference implementation in C
– precise but not very readable
⇒ hard to assess properties

– no verifiable “connection” with spec above

No high assurance!

JVM in Specware

♦ Precise, formal specs

♦Automated refinements to code

♦Composition of specs and refinements
♦Mechanical proofs of

– desired properties
– correctness of refinements

JVM in Specware

♦ Precise, formal specs

♦Automated refinements to code

♦Composition of specs and refinements
♦Mechanical proofs of

– desired properties
– correctness of refinements

JVM in Specware

♦ Precise, formal specs
Specify the JVM

♦Automated refinements to code

♦Composition of specs and refinements
♦Mechanical proofs of

– desired properties
– correctness of refinements

JVM in Specware

♦ Precise, formal specs
Specify the JVM

♦Automated refinements to code
Derive provably-correct implementation

♦Composition of specs and refinements
♦Mechanical proofs of

– desired properties
– correctness of refinements

Benefits

♦ Description of the JVM that is
– precise (formal)
– readable

• structured, compositional
• multiple levels of abstraction

– easier to assess properties about
♦ Implementation of the JVM that is provably

correct w.r.t. description above

High assurance!

Summary

♦ Introduction and goals
♦Type safety and security
♦Bytecode verification
♦Class loading
♦ Java Card

JVM Security…

permissions
protection domains

policies
encryption/decryption

signatures
…

… Is Built Upon Type Safety

permissions
protection domains

policies
encryption/decryption

signatures
…

type safety

if type safety is broken…
…security is also broken

What is Type Safety?

Data are always manipulated
consistently with their type, e.g.

– method call o.m() requires
• m to be declared in or inherited by class of o
• caller to have access to m

– memory cannot be randomly accessed
through pointers (unlike C/C++)

– array index i in a[i] must be within
bounds (i.e., 0 <= i < a.length)

How Is Security Based on It?

♦ JVM security mechanisms
assume type safety, e.g.
– no buffer overflows (~50% of attacks)
– private byte[] secret_key

cannot be accessed outside its class (unlike C++)
– HW/OS only accessible through “controlled”

fields/methods, not directly

♦ Flawed design or implementation of type
safety mechanisms allows security
mechanisms to be bypassed

Enforcing Type Safety

performs (most)
type safety checks

Java
program

compiler

bytecode
program

Enforcing Type Safety

Java
program

compiler

JVM

bytecode
program

Enforcing Type Safety

Java
program

compiler

JVM

bytecode
program

?

must independently
perform the checks

bytecode
program

from the
Internet

Where Is the Problem?

♦ There are very tricky points
♦ Bugs have been found in the JVM (design &

implementation) that violate type safety
– Saraswat, 1997
– Tozawa & Hagiya, 1999
– Coglio & Goldberg, 2000

♦ Current release (SDK 1.3) is not type-safe
but applets cannot directly exploit these known bugs

Summary

♦ Introduction and goals
♦Type safety and security
♦Bytecode verification
♦Class loading
♦ Java Card

Bytecode Verification

JVM

bytecode
verifierinterpreter

bytecode
program

static type safety checks
(~ equivalent to compiler’s)

bytecode
program

BV is a critical
component

Bytecode Verification

JVM

bytecode
verifierinterpreter

bytecode
program

static type safety checks
(~ equivalent to compiler’s)

bytecode
program

BV is a critical
component

Our Achievement:
Complete BV in Specware
♦ Precise, readable, compositional spec

~3K loc in Metaslang (vs. Sun’s ~4K loc in C)
♦Refinement to running code
♦Successfully tested on 4K+ classes
♦Amenable to optimization

(via Specware refinements)
♦Manual type safety proofs
♦See demo tomorrow!

Highlights of Our BV

♦ Type inference via data flow analysis
– type t assigned to each local memory location x at

each bytecode instruction i
– at run time, value in x at instruction i is t
– no consistent assignment ⇒ program rejected

♦ Instantiation of data flow analysis template
– data flow structure explicit
– in Sun’s BV data flow structure is buried in code

Instantiation of Data Flow
Analysis Template

data flow
analysis
template

semilattice &
transfer functions

pspec

BV-specific
semilattice &

transfer functions

BV-specific
data flow
analysis

pushout

parameter
passing

Leverage of Our BV

♦Re-usable components
– data flow analysis engine
– types
– …

♦Basis for other bytecode analyses
– vulnerability detection
– defect finding
– …

Main Difficulty in BV:
Subroutines

♦Two bytecode instructions
– jsr jump to subroutine
– ret return from subroutine

♦Used by compilers to reduce code
replication in bytecode
not visible at the Java source level

Problem with Subroutines

♦ For accurate type inference, flow of
control of subroutines must be properly
taken into account

♦However, subroutines
– … may not be textually delimited
– … may not have LIFO behavior
– … may be exited not through a ret

• branch
• exception

Sun’s Treatment of
Subroutines
♦Spec

– complicated
– not completely defined
– includes unnecessary restrictions

♦ Implementation
– does not fit data flow analysis framework
⇒ harder to prove properties

– contradicts spec above (e.g., recursion)
– rejects some compiled programs

Our Treatment of Subroutines

♦ Two novel techniques to treat subroutines
– much simpler and clearer
⇒ higher assurance

– accept all compiled programs
– accept programs currently not produced by

compilers (new possibilities for compilers)
– #1 accepts more programs,

#2 is more efficient and closer to Sun’s

♦ Useful contribution to other developers too

Summary

♦ Introduction and goals
♦Type safety and security
♦Bytecode verification
♦Class loading
♦ Java Card

Class Loading

Java
program

compiler

bytecode
program

class
files

class
files

class
files

Class Loading

Java
program

compiler

class
files

bytecode
program

JVM

dynamically,
lazily
loaded

Multiple Name Spaces

JVM
class “C”

class “C”

different classes
with the same name

can be loaded into the
JVM (by different,

user-defined loaders)

class “D”

…C.m()…

classes reference
other classes

by names only
?

?

potential
class spoofing

attacks!

Enforcing Type Safety with
Multiple Name Spaces

♦BV is not enough because it deals with
class names only, not classes

♦Additional mechanisms are needed

Bugs Allowing Class Spoofing

♦ Saraswat, 1997
– deficiencies in loading mechanisms
– corrected by Sun’s introduction of loading

constraints [Liang & Bracha, 1998]

♦ Tozawa & Hagiya, 1999
Coglio & Goldberg, 2000
– bugs in BV’s treatment of classes by names

and in interaction between BV and loading
– some “indirectly” corrected, others still there

Interaction BV ↔ Loading

rest of
the JVM

BV

verify class

• essentially
names only

• occasionally
loads classes

load class

premature
loading

Our Achievement: Better
Interaction BV ↔ Loading
♦BV uniformly uses names

– precise disambiguation of names
– does not load classes

♦BV posts subtype constraints
– lazily checked
– integrated with Sun’s loading constraints

♦BV is purely functional
component of the JVM

♦Employed by our BV in Specware

Our Achievement: Assessment
of Type Safety Properties

♦Mathematical formalization of
– loading mechanisms
– interaction of class loading with BV

(according to our improved design)

♦Type safety theorem

Summary

♦ Introduction and goals
♦Type safety and security
♦Bytecode verification
♦Class loading
♦ Java Card

Smart Cards

♦ Security applications
– authentication
– encryption
– transactions
– …

♦ High assurance
is of paramount
importance (also in
commercial world)

chip

plastic
substrate

Java Card
Runtime Environment

Java Card Technology
Java Card
program

interpreter native
libraries

smart card OS

smart card HW

• subset of Java
• different libraries

compiler class
files

class
files

class
files

class
files

converter

Java Card
applets

class
files

class
files

class
files
CAP
files

Java Card Security

♦Applet firewall
– isolation among applets
– controlled communication

♦ Libraries supporting
– encryption/decryption
– signatures
– authentication
– …

Our Ongoing Tasks

♦High-assurance Java Card Runtime
Environment (JCRE) in Specware
– formal spec
– refinement to code
– can be later lifted to JVM

♦Applet generators
– provable correctness
– reduced development time

Questions?

Backup Slides

Java vs. Bytecode
class C {
int f;

int m(int i) {
return (f+i);

}

D n() {
return (new D());

}

}

class D { ... }

class C {
int f;

int m(int) {
aload 0
getfield C.f
iload 1
iadd
ireturn

}
D n() {
new D
dup
invokespecial D.<init>
areturn

}
}

class D { ... }

compile

Bytecode Verification
int
flt
flt
…

k: fadd

i: ifeq k

i+1: fsub

i+2: ...

k+1: goto i+2

types for
operand

stack
elements

Bytecode Verification
int
flt
flt
…

k: fadd

i: ifeq k

i+1: fsub

i+2: ...

k+1: goto i+2

flt
flt
…

flt
flt
…

flt
…

data flow
analysisx: int

y: C

x: int
y: C

x: int
y: C

x: int
y: C

x: int
y: C

flt
…

Polymorphic Subroutines

i: jsr s j: jsr s

s: ...

ret

y: int y: flt

y: unusable

y: unusable

y: unusable y: unusable
y: int y: flt

polymorphic
in variable y

BV must accept
this code because

compilers produce it

Spec: Semilattice

spec SEMILATTICE

sort L
op join : L * L -> L

axiom idempotence is
join(x,x) = x

axiom commutativity is
join(x,y) = join(y,x)

axiom associativity is
join(join(x,y),z) = join(x,join(y,z))

end-spec

Spec: Transfer Functions

spec TRANSFER-FUNCTIONS

import SEMILATTICE

sort TF
op apply : TF * L -> L

end-spec

Spec: Data Flow Analysis
spec DATA-FLOW

import TRANSFER-FUNCTIONS

sort Edge PP = { from : PP, tf : TF, to : PP }
sort Prb PP = { start : PP, init : L, edges : Set (Edge PP) }

sort Sol PP = Map (PP, L)

op solves? : Prb PP * Sol PP -> Boolean
…

op solve : Prb PP -> Sol PP
axiom solves?(solve(p),p)

end-spec

	High-Assurance�Java Virtual Machine
	Summary
	Summary
	Java Virtual Machine (JVM)
	JVM Security Mechanisms
	Achieving High Assurance
	Current Situation
	JVM in Specware
	JVM in Specware
	JVM in Specware
	JVM in Specware
	Benefits
	Summary
	JVM Security…
	… Is Built Upon Type Safety
	What is Type Safety?
	How Is Security Based on It?
	Enforcing Type Safety
	Enforcing Type Safety
	Enforcing Type Safety
	Where Is the Problem?
	Summary
	Bytecode Verification
	Bytecode Verification
	Our Achievement:�Complete BV in Specware
	Highlights of Our BV
	Instantiation of Data Flow Analysis Template
	Leverage of Our BV
	Main Difficulty in BV: Subroutines
	Problem with Subroutines
	Sun’s Treatment of Subroutines
	Our Treatment of Subroutines
	Summary
	Class Loading
	Class Loading
	Multiple Name Spaces
	Enforcing Type Safety with Multiple Name Spaces
	Bugs Allowing Class Spoofing
	Interaction BV Loading
	Our Achievement: Better Interaction BV Loading
	Our Achievement: Assessment of Type Safety Properties
	Summary
	Smart Cards
	Java Card Technology
	Java Card Security
	Our Ongoing Tasks
	Questions?
	Backup Slides
		Java	vs.	Bytecode
	Bytecode Verification
	Bytecode Verification
	Polymorphic Subroutines
	Spec: Semilattice
	Spec: Transfer Functions
	Spec: Data Flow Analysis

