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JVM Security Mechanisms

♦ Protect HW/OS resources
files, memory, devices, …

♦Support secure applications
authentication, encryption, access control, …

♦Guarantee integrity of the JVM
JVM always works as expected



Achieving High Assurance

♦Assess that JVM design
has the intended properties
– precise description (spec) of the JVM
– analysis of the description to

• assess properties
• discover flaws and find fixes

♦ Implement JVM correctly
implementation code verifiably correct 
w.r.t. description above



Current Situation
♦ T. Lindholm, F. Yelling, “The Java Virtual 

Machine Specification” (2nd ed.) from Sun
– informal English prose
– well written but contains ambiguities
⇒ hard to assess properties

♦ Sun’s Java 2 SDK vers. 1.3
– reference implementation in C
– precise but not very readable
⇒ hard to assess properties

– no verifiable “connection” with spec above

No high assurance!
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JVM in Specware

♦ Precise, formal specs
Specify the JVM

♦Automated refinements to code
Derive provably-correct implementation

♦Composition of specs and refinements
♦Mechanical proofs of

– desired properties
– correctness of refinements



Benefits

♦ Description of the JVM that is
– precise (formal)
– readable

• structured, compositional
• multiple levels of abstraction

– easier to assess properties about
♦ Implementation of the JVM that is provably 

correct w.r.t. description above

High assurance!
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… Is Built Upon Type Safety

permissions
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encryption/decryption
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type safety

if type safety is broken…
…security is also broken



What is Type Safety?

Data are always manipulated
consistently with their type, e.g.

– method call o.m() requires
• m to be declared in or inherited by class of o
• caller to have access to m

– memory cannot be randomly accessed 
through pointers (unlike C/C++)

– array index i in a[i] must be within 
bounds (i.e., 0 <= i < a.length)



How Is Security Based on It?

♦ JVM security mechanisms
assume type safety, e.g.
– no buffer overflows (~50% of attacks)
– private byte[] secret_key

cannot be accessed outside its class (unlike C++)
– HW/OS only accessible through “controlled” 

fields/methods, not directly

♦ Flawed design or implementation of type 
safety mechanisms allows security 
mechanisms to be bypassed
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Where Is the Problem?

♦ There are very tricky points
♦ Bugs have been found in the JVM (design & 

implementation) that violate type safety
– Saraswat, 1997
– Tozawa & Hagiya, 1999
– Coglio & Goldberg, 2000

♦ Current release (SDK 1.3) is not type-safe
but applets cannot directly exploit these known bugs
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Our Achievement:
Complete BV in Specware
♦ Precise, readable, compositional spec

~3K loc in Metaslang (vs. Sun’s ~4K loc in C)
♦Refinement to running code
♦Successfully tested on 4K+ classes
♦Amenable to optimization

(via Specware refinements)
♦Manual type safety proofs
♦See demo tomorrow!



Highlights of Our BV

♦ Type inference via data flow analysis
– type t assigned to each local memory location x at 

each bytecode instruction i
– at run time, value in x at instruction i is t
– no consistent assignment ⇒ program rejected

♦ Instantiation of data flow analysis template
– data flow structure explicit
– in Sun’s BV data flow structure is buried in code



Instantiation of Data Flow 
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Leverage of Our BV

♦Re-usable components
– data flow analysis engine
– types
– …

♦Basis for other bytecode analyses
– vulnerability detection
– defect finding
– …



Main Difficulty in BV: 
Subroutines

♦Two bytecode instructions
– jsr jump to subroutine
– ret return from subroutine

♦Used by compilers to reduce code 
replication in bytecode
not visible at the Java source level



Problem with Subroutines

♦ For accurate type inference, flow of 
control of subroutines must be properly 
taken into account

♦However, subroutines
– … may not be textually delimited
– … may not have LIFO behavior
– … may be exited not through a ret

• branch
• exception



Sun’s Treatment of 
Subroutines
♦Spec

– complicated
– not completely defined
– includes unnecessary restrictions

♦ Implementation
– does not fit data flow analysis framework
⇒ harder to prove properties

– contradicts spec above (e.g., recursion)
– rejects some compiled programs



Our Treatment of Subroutines

♦ Two novel techniques to treat subroutines
– much simpler and clearer
⇒ higher assurance

– accept all compiled programs
– accept programs currently not produced by 

compilers (new possibilities for compilers)
– #1 accepts more programs,

#2 is more efficient and closer to Sun’s

♦ Useful contribution to other developers too
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Multiple Name Spaces

JVM
class “C”
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user-defined loaders)

class “D”

…C.m()…

classes reference
other classes

by names only
?

?

potential
class spoofing

attacks!



Enforcing Type Safety with 
Multiple Name Spaces

♦BV is not enough because it deals with 
class names only, not classes

♦Additional mechanisms are needed



Bugs Allowing Class Spoofing

♦ Saraswat, 1997
– deficiencies in loading mechanisms
– corrected by Sun’s introduction of loading 

constraints [Liang & Bracha, 1998]

♦ Tozawa & Hagiya, 1999
Coglio & Goldberg, 2000
– bugs in BV’s treatment of classes by names

and in interaction between BV and loading
– some “indirectly” corrected, others still there



Interaction BV ↔ Loading
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Our Achievement: Better 
Interaction BV ↔ Loading
♦BV uniformly uses names

– precise disambiguation of names
– does not load classes

♦BV posts subtype constraints
– lazily checked
– integrated with Sun’s loading constraints

♦BV is purely functional
component of the JVM

♦Employed by our BV in Specware



Our Achievement: Assessment 
of Type Safety Properties

♦Mathematical formalization of
– loading mechanisms
– interaction of class loading with BV

(according to our improved design)

♦Type safety theorem
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Smart Cards

♦ Security applications
– authentication
– encryption
– transactions
– …

♦ High assurance
is of paramount 
importance (also in 
commercial world)
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substrate



Java Card
Runtime Environment
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Java Card Security

♦Applet firewall
– isolation among applets
– controlled communication

♦ Libraries supporting
– encryption/decryption
– signatures
– authentication
– …



Our Ongoing Tasks

♦High-assurance Java Card Runtime 
Environment (JCRE) in Specware
– formal spec
– refinement to code
– can be later lifted to JVM

♦Applet generators
– provable correctness
– reduced development time



Questions?



Backup Slides



Java vs. Bytecode
class C {
int f;

int m(int i) {
return (f+i);

}

D n() {
return (new D());

}

}

class D { ... }

class C {
int f;

int m(int) {
aload 0
getfield C.f
iload 1
iadd
ireturn

}
D n() {
new D
dup
invokespecial D.<init>
areturn

}
}

class D { ... }

compile



Bytecode Verification
int
flt
flt
…

k: fadd

i: ifeq k

i+1: fsub

i+2: ...

k+1: goto i+2

types for
operand

stack
elements



Bytecode Verification
int
flt
flt
…

k: fadd

i: ifeq k

i+1: fsub

i+2: ...

k+1: goto i+2

flt
flt
…

flt
flt
…

flt
…

data flow
analysisx: int

y: C

x: int
y: C

x: int
y: C

x: int
y: C

x: int
y: C

flt
…



Polymorphic Subroutines

i: jsr s j: jsr s

s: ...

ret

y: int y: flt

y: unusable

y: unusable

y: unusable y: unusable
y: int y: flt

polymorphic
in variable y

BV must accept
this code because

compilers produce it



Spec: Semilattice

spec SEMILATTICE

sort L
op join : L * L -> L

axiom idempotence is
join(x,x) = x

axiom commutativity is
join(x,y) = join(y,x)

axiom associativity is
join(join(x,y),z) = join(x,join(y,z))

end-spec



Spec: Transfer Functions

spec TRANSFER-FUNCTIONS

import SEMILATTICE

sort TF
op apply : TF * L -> L

end-spec



Spec: Data Flow Analysis
spec DATA-FLOW

import TRANSFER-FUNCTIONS

sort Edge PP = { from : PP, tf : TF, to : PP }
sort Prb PP = { start : PP, init : L, edges : Set (Edge PP) }

sort Sol PP = Map (PP, L)

op solves? : Prb PP * Sol PP -> Boolean
…

op solve : Prb PP -> Sol PP
axiom solves?(solve(p),p)

end-spec
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