
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Using Intel SGX to Improve Private Neural Network Training
and Inference

Ryan Karl
University of Notre Dame

Notre Dame, Indiana, United States
rkarl@nd.edu

Jonathan Takeshita
University of Notre Dame

Notre Dame, Indiana, United States
jtakeshi@nd.edu

Taeho Jung
University of Notre Dame

Notre Dame, Indiana, United States
tjung@nd.edu

ABSTRACT
In our modern data-driven society, the importance of leveraging
machine learning (ML) algorithms to make critical business and
government decisions continues to grow. To dramatically improve
performance, such algorithms are often outsourced to the cloud, but
within privacy and security sensitive domains, this presents several
challenges to data owners for ensuring that their data is protected
from malicious parties. One practical solution to these problems
comes from Trusted Execution Environments (TEEs), which utilize
several hardware technologies to isolate sensitive computations
from untrusted software. This paper investigates a new technique
utilizing a TEE to allow for the high performance training and
execution of Deep Neural Networks (DNNs), an ML algorithm that
has recently been used with great success in a variety of challenging
tasks, including face and speech recognition.

*All authors confirm that this manuscript is unpublished and revisions
can be incorporated into the manuscript prior to their next submission
for publication.

KEYWORDS
Privacy-preserving Deep Learning, Intel SGX, Training and In-

ference

ACM Reference Format:
Ryan Karl, Jonathan Takeshita, and Taeho Jung. 2020. Using Intel SGX to
Improve Private Neural Network Training and Inference. In Symposium and
Bootcamp on the Science of Security, April 7–8, 2020, Lawrence, KS. ACM, New
York, NY, USA, 2 pages. https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

1 BACKGROUND AND APPLICATIONS
Machine learning (ML) is increasingly used in a variety of data-
driven decision making settings where security is of paramount
importance. Given the growth in the popularity of cloud-based ML
frameworks, which hide the complexity of ML algorithms from
users, the number of attack points continues to grow. Trusted Exe-
cution Environments (TEEs), e.g, Intel SGX, ARM TrustZone, etc.,
offer a practical solution to this problem. TEEs use a variety of
hardware and software technologies to isolate potentially sensitive

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotSos ’20, April 7–8, 2020, Lawrence, KS
© 2020 Association for Computing Machinery.
ACM ISBN XXX-X-XXXX-XXXX-X/XX/XX. . . $XX.00
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

code from untrusted applications, while still providing users with
the functionality to attest their code was correctly executed without
any tampering from an adversary (Figure 1) [1].

Fig. 1 Diagram of SGX Enclave Creation
Our approach, inspired by the Slalom framework and verifiable

ASICs [6], is notably different fromML outsourcing based on purely
cryptographicmethods [2, 4, 5].With this framework, computations
are delegated between two co-located processors, which support
an outsourcing protocol with efficiency that is orders-of-magnitude
faster than existing work, while not requiring that the DNN be
executed or trained fully in a TEE. By utilizing Freivald’s algorithm
[3], an efficient verifiable scheme that allows for outsourced matrix
multiplication, we can support private ML training.

2 RELATEDWORK
Previous work introduced Chiron, a system for privacy-preserving
Machine Learning as a service (MLaaS) [4]. Note that the MLaaS
framework assumes that an individual data provider will train their
own ML model using hardware and algorithms owned by an un-
trusted party. Another similar work features a setup where several
data providers train a shared ML model [2]. This paper does not
focus on leveraging differential privacy to confront problems relat-
ing to model performance or data size, and instead is interested in
hiding memory access patterns for SGX based training to avoid side-
channel attacks. Our work is most similar to the Slalom framework
[6], which allows for efficient privacy-preserving NN inference
(but not training) using via a TEE. They leverage a cryptographic
blinding method along with Freivald’s algorithm [3], a method for
delegating matrix multiplication to an untrusted GPU that can be
verified for correctness after the computation is complete.
Contribution: Our work composes DL training in such a way
that the one-time pad scheme can be used in tandem with the
activation function so that training can be supported and delegated
in an iterative fashion to a co-located GPU. Our approach will
expedite private training and inference using a TEE by allowing
more computations to occur in an untrusted GPU without needing

2020-02-29 18:51. Page 1 of 1–2.

https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

HotSos ’20, April 7–8, 2020, Lawrence, KS Karl et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

to frequently retrieve intermediate results for processing in the
TEE.

3 PROPOSED METHODOLOGY
For our inference method, the linear layers are outsourced and then
verified via Freivald’s algorithm [3]. Then, the inputs of the linear
layers are encrypted with a pre-computed pseudorandom stream
(base on the one-time pad scheme) to guarantee their privacy. Notice
that only two values are needed to continue the backpropagation
algorithm for a given layer of the neural network: (1) the cost 𝐶𝑜
where 𝐶𝑜 = 𝑎 (𝐿) − 𝑦)2 where 𝑎 (𝐿) is the activation at layer 𝐿 (𝐿 is
the total number of layers) and𝑦 is the output of the neural network,
and (2) the activation at layer 𝐿, denoted 𝑎 (𝐿) = 𝜎 (𝑤 (𝐿)𝑎 (𝐿−1)+𝑏 (𝐿)
where 𝑤 (𝐿) is the weight at layer 𝐿, 𝑎 (𝐿−1) is the activation at
layer 𝐿 − 1, and 𝑏 (𝐿) is the bias at layer 𝐿. For ease of notation we
represent the input of the activation function in future sections as
𝑧 (𝐿) = 𝑤 (𝐿)𝑎 (𝐿−1) + 𝑏 (𝐿) . We model the dependencies in Figure 2.

Fig. 2 Diagram of Backpropagation Dependencies
To compute backpropagation, we take the partial derivative of

𝐶𝑜 with respect to𝑤 (𝐿) , with respect to 𝑏 (𝐿) , and with respect to
𝑎 (𝐿−1) . More formally, we would compute theses three equations:

𝜕𝐶𝑜

𝜕𝑤 (𝐿)
=

𝜕𝑧 (𝐿)

𝜕𝑤 (𝐿)
𝜕𝑎 (𝐿)

𝜕𝑧 (𝐿)
𝜕𝐶𝑜

𝜕𝑎 (𝐿)
= 𝑎 (𝐿−1)𝜎′ (𝑧 (𝐿))2(𝑎 (𝐿)−𝑦) (1)

𝜕𝐶𝑜

𝜕𝑏 (𝐿)
=

𝜕𝑧 (𝐿)

𝜕𝑏 (𝐿)
𝜕𝑎 (𝐿)

𝜕𝑧 (𝐿)
𝜕𝐶𝑜

𝜕𝑎 (𝐿)
= 𝜎′ (𝑧 (𝐿))2(𝑎 (𝐿)−𝑦) (2)

𝜕𝐶𝑜

𝜕𝑎 (𝐿−1)
=

𝜕𝑧 (𝐿)

𝜕𝑎 (𝐿−1)
𝜕𝑎 (𝐿)

𝜕𝑧 (𝐿)
𝜕𝐶𝑜

𝜕𝑎 (𝐿)
= 𝑤 (𝐿)𝜎′ (𝑧 (𝐿))2(𝑎 (𝐿)−𝑦) (3)

For our protocol we do the following:
(1) Initialize: The 𝑇𝐸𝐸 is initialized with the model F and the

input 𝑥1, and the untrusted server 𝑆 is initialized with F.
(2) Preprocess: For each element 𝑖 ∈ [1, 𝑛], the 𝑇𝐸𝐸 generates

random masking value 𝑟𝑖 by randomly sampling 𝑟𝑖 ←− 𝐹𝑚𝑖 ,
and then calculates the associated demasking value as 𝑢𝑖 =
𝑟𝑖𝑊𝑖 . They then mask the input 𝑥𝑖 as 𝑥𝑖 = 𝑥𝑖 + 𝑟𝑖

(3) Online: For each element 𝑖 ∈ [1, 𝑛], the𝑇𝐸𝐸 sends 𝑥𝑖 to the
untrusted server 𝑆 , who computes 𝑦𝑖 = 𝑥𝑖𝑊𝑖 , and sends 𝑦𝑖
back to the 𝑇𝐸𝐸.

(4) Verify: For each element 𝑖 ∈ [1, 𝑛], the 𝑇𝐸𝐸 checks that the
untrusted 𝑆 computed 𝑦𝑖 correctly by computing 𝑦𝑖 = 𝑦𝑖 −
𝑢𝑖 and calling Freivalds(𝑦𝑖 , 𝑥𝑖 ,𝑊𝑖). If Freivalds successfully
verifies that the 𝑦𝑖 is correct, we continue (otherwise we

know that 𝑆 behaved maliciously and may abort). The 𝑇𝐸𝐸
then computes the activation function as 𝑥𝑖+1 = 𝜎 (𝑦𝑖).

(5) Return: The algorithm then returns 𝑦𝑛 .
Notice that for the sigmoid function, which we write as 𝜎 (𝑘) =
1

1+𝑒−𝑘 and the derivative as 𝜎 ′(𝑘) = 1
1+𝑒−𝑘 (1 −

1
1+𝑒−𝑘) = 𝜎 (𝑘) (1 −

𝜎 (𝑘)), if we were to mask the input 𝑥 with an additive noise 𝑟 , for
the first layer of the network we would have𝑤 (0) (𝑥 + 𝑟) + 𝑏 (0) =
𝑤 (0)𝑥 +𝑤 (0)𝑟 +𝑏 (0) = 𝑎 (0) +𝑤 (0)𝑟 . If we input this into 𝜎 , we have
𝜎 (𝑎 (0) +𝑤 (0)𝑟) = 1

1+𝑒−(𝑎 (0))+𝑤 (0) 𝑟
= 1

1+𝑒−(𝑎 (0))𝑒𝑤 (0) 𝑟
. If we compute

the derivative 𝜎 ′ we have 𝜎 ′(𝑎 (0) +𝑤 (0)𝑟) = 1
1+𝑒−𝑎 (0) 𝑒 (𝑤 (0) 𝑟)

(1 −
1

1+𝑒−𝑎 (0) 𝑒 (𝑤 (0) 𝑟)
). This means that we would need to compute the

three equations described previously and somehow remove the
random masking value (a nontrivial task):

𝜕𝐶𝑜

𝜕𝑤 (𝐿)
= 𝑎 (𝐿−1)

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟)

(1 − 1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟)

)2(𝑎 (𝐿)−𝑦)

(4)

𝜕𝐶𝑜

𝜕𝑏 (𝐿)
=

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟)

(1 − 1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟)

)2(𝑎 (𝐿)−𝑦) (5)

𝜕𝐶𝑜

𝜕𝑎 (𝐿−1)
= 𝑤 (𝐿)

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟)

(1 − 1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟)

)2(𝑎 (𝐿)−𝑦)

(6)

Note the Arctan function is 𝜎 (𝑘) = 𝑡𝑎𝑛−1 (𝑘) and its derivative
is 𝜎 ′(𝑘) = 1

𝑘2+1), and we would need to remove the random mask
from the following equations:

𝜕𝐶𝑜

𝜕𝑤 (𝐿)
= 𝑎 (𝐿−1)

1
(𝑤 (𝐿)𝑟 + 𝑎 (𝐿))2 + 1

2(𝑎 (𝐿)−𝑦) (7)

𝜕𝐶𝑜

𝜕𝑏 (𝐿)
=

1
(𝑤 (𝐿)𝑟 + 𝑎 (𝐿))2 + 1

2(𝑎 (𝐿)−𝑦) (8)

𝜕𝐶𝑜

𝜕𝑎 (𝐿−1)
= 𝑤 (𝐿)

1
(𝑤 (𝐿)𝑟 + 𝑎 (𝐿))2 + 1

2(𝑎 (𝐿)−𝑦) (9)

Note the SoftMax function is 𝜎 (𝑘) = 𝑙𝑜𝑔(1+𝑒𝑘) and its derivative
is 𝜎 ′(𝑘) = (1

1+𝑒−𝑥), so we would need to remove the random mask
from the following equations:

𝜕𝐶𝑜

𝜕𝑤 (𝐿)
= 𝑎 (𝐿−1)

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟)

2(𝑎 (𝐿)−𝑦) (10)

𝜕𝐶𝑜

𝜕𝑏 (𝐿)
=

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟)

2(𝑎 (𝐿)−𝑦) (11)

𝜕𝐶𝑜

𝜕𝑎 (𝐿−1)
= 𝑤 (𝐿)

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟)

2(𝑎 (𝐿)−𝑦) (12)

REFERENCES
[1] McKeen et al. 2013. Innovative instructions and software model for isolated

execution.
[2] Ohrimenko et al. 2016. Oblivious multi-party machine learning on trusted proces-

sors. , 619–636 pages.
[3] Rusins Freivalds. 1977. Probabilistic Machines Can Use Less Running Time. ,

842 pages.
[4] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel.

2018. Chiron: Privacy-preserving machine learning as a service.
[5] Nick Hynes, Raymond Cheng, and Dawn Song. 2018. Efficient deep learning on

multi-source private data.
[6] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private execution

of neural networks in trusted hardware.

2020-02-29 18:51. Page 2 of 1–2.

	Abstract
	1 Background and Applications
	2 Related Work
	3 Proposed Methodology
	References

