Accelerating Block Propagation in PoW Blockchain Networks
with Pipelining and Chunking (PiChu)

Kaushik Ayinala
kapnb@mail.umkc.edu
University of Missouri - Kansas City
Kansas City, MO, USA

ABSTRACT

Blockchain is an open, verifiable, and distributed consensus of
transactions among different parties, relying on P2P technology
for connectivity between nodes. However, the long time of block
propagation limits inceptions of another consensus. We propose a
novel method that accelerates block propagation in PoW blockchain
networks by pipelining message transaction and verifications in
parallel over a network with chunks of a block (PiChu). We have
conducted extensive evaluations to present the significance of the
network pipelining with many parallel chunk connections. Various
simulation results exhibit that the proposed method achieves signif-
icantly less latency of block propagation than traditional method
as the size of a P2P network increases.

KEYWORDS

blockchain networks, scalability, block propagation, chunking, pipelin-

ing

1 INTRODUCTION

Blockchain allows a group of nodes to come to an agreement by
using consensus. All the nodes in the network follow the consensus
to add a block to the chain. The chain acts as ledger for transac-
tions. Proof of Work (PoW) is one of the commonly used consensus
algorithms introduced in bitcoin [8]. In PoW consensus, miner has
to solve a hash with specific requirements. As a node propagates
a winning block over a network, its performance is limited by the
underlying P2P layer, which causes the scalability problems in
blockchain [4, 5, 7]. By accelerating block propagation, it can mini-
mize the time gap for the inception of another consensus. Therefore,
it improves the scalability of the blockchain.

In this work, we propose a Pipelining and Chunking scheme
for blockchain networks, named PiChu that is to expedite a block
propagation by verifying PoW with a block header and forwarding
body of the block as small chunks incrementally over the P2P
network, instead of a whole block after PoW is completed. After
receiving a chunk, a node will verify and forward the chunk. Our
experimental results with varied sizes of P2P networks demonstrate
significant less latency of block propagation than the traditional
method.

2 RELATED WORK

There are a number of studies to improve the scalability of the
blockchain network by using multiple chains [9], sharding [7] and
faster block propagation [3, 6]. These studies does not use the
chunking and pipelining scheme. To the best of our knowledge,

Baek-Young Choi
choiby@umbkec.edu
University of Missouri - Kansas City
Kansas City, MO, USA

Sejun Song
sjsong@umkc.edu
University of Missouri - Kansas City
Kansas City, MO, USA

] Mine or verify

' | anew block

I

1 Send a block invitation ms
I

I‘_\g‘
!]Check block
: Send a block request msg absence

J

I

|
|
I
I
I
|
|
I
I
|
:
| Send a block i
! Verify a block :
;\ﬂ] and PoW :
|
|
I
|
|
1
I
I
|
I
I
|

Send a block invitation msg

|]Check block
I send a block request msg absence

i Send a block
| Verify a block
d and PoW

Figure 1: Block propagation sequence in traditional
blockchains

this is the first that employs such a scheme for PoW blockchain net-
works. Furthermore, the proposed scheme can be used along with
existing scaling and acceleration techniques in a complementary
manner.

3 PICHU: PROPOSED PIPELINING AND
CHUNKING SCHEME

In a traditional blockchain networks, when a node mines or receives
a block, it sends an invitation to all the neighboring peers, as shown
in Figure 1. The node received a block invitation message sends a
block request message back to the original node, if it does not have
the block. When it receives the complete block, it verifies a block
and PoW. After adding the new block, it sends a block invitation
message to its neighbor nodes. As presented in Equation (1), it takes
the entire block to verify the PoW.

Hash(Block) < Target_Dif ficulty (1)

The proposed PiChu (Pipelining and Chunking) scheme is to
expedite the block propagation by verifying PoW with a block
header and forwarding as chunks instead of the whole block. PiChu
modifies the traditional block structure into a PiChu header that
contains fields to validate chunks, identify the position of the block
and verify the PoW. A miner signs each chunk and his public key
is included in header. As illustrated in Figure 2, when a node mines

Conference’17, July 2017, Washington, DC, USA

I

I

Mine or verify a new block I

I

le I
|

I

I

Y T—
endan Invitation(Pichy Header) | Check block absence
I

S—

and verify PoW
Send a chunk request |_

|
|
|
I
!
I
I
!
I
|
: Check block absence

-

: ; and verify PoW
\;‘ Send a chunk request |“
% Verify chunks :

I
Verify chunks
<
Verify a block

Figure 2: Block propagation in PiChu blockchain

or receives a block, it sends an invitation to all the connected nodes
with the PiChu header. The node received an invitation message
sends a chunk request message back to the original node, if it does
not have the block and can verify PoW. As shown in Equation (2),
it takes only a small header to verify the PoW.

Hash(PiChuBlockHeader) < Target_Dif ficulty 2)

Besides, it sends an invitation message to its neighbor nodes
by using the PiChu header. When it receives chunks, it verifies
the signature each chunk by using the public key of the miner.
Although an additional 64 bytes as a signature is required for each
chunk, the overhead is trivial. As long as a whole chunk is verified,
it forwards the chunk to its neighbor nodes, which sent a chunk
request. Finally, each node verifies a complete block.

4 EXPERIMENT RESULTS

In order to validate the effectiveness of the PiChu scheme in a very
large network with varied parameters, we have developed an in-
house blockchain simulator. Though there is an existing blockchain
simulator called Simblock [2], it is not optimized for evaluations
with a large number of nodes. Our simulator is developed in java,
and the source code is available in github [1]. We used the average
bandwidth of nodes, average latency between nodes, block size,
chain length, number of nodes and maximum connections for a
node (Cps) as input parameters. For a given number of nodes, the
simulator generates a random graph topology based on the number
of maximum connections per node. We first assessed how the block
propagation times vary depending on the number of nodes and
size of the block in general blockchain. We then assess the block
propagation times with the varied number of nodes and the size
of the block in the blockchain using PiChu propagation technique.
Both experiments are conducted under the same constraints. As
shown in Figure 3, PiChu achieves less latency in block propagation

Kaushik Ayinala, Baek-Young Choi, and Sejun Song

2000 T T

—#%— Regular
1800 |- [—#*—PiChu 4
1600 - 1

o N) N
=] =] o
o o o

®
=]
S

Propagation time in seconds
(=2}
o
o
T

400

200

0 10 20 30 40 50 60 70
Blocksize in MB

Figure 3: Block propagation time comparison: Regular vs.
PiChu (with chunk size of 128 KB, in a 65536 node network)

than the traditional method, and the gain significantly increases
with large size of blockchain networks.

5 CONCLUSION

We proposed a pipelining and chucking scheme for a block propaga-
tion to accelerate the consensus of blockchain networks. Through
various simulations, we have shown that the proposed scheme can
greatly reduce the propagation time, thus increase throughput and
capacity of a blockchain, making it scalable for a large number of
nodes in a blockchain network.

REFERENCES

[1] [nd.]. PiBhu Blockchain Simulator.
BlockchainSimulator.

[2] Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo. 2019. SimBlock: A
Blockchain Network Simulator. In IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 325-329. https:
//doi.org/10.1109/INFCOMW.2019.8845253

[3] Wei Bi, Huawei Yang, and Maolin Zheng. 2018. An Accelerated Method for
Message Propagation in Blockchain Networks. CoRR abs/1809.00455 (2018).
arXiv:1809.00455 http://arxiv.org/abs/1809.00455

[4] Joan Donet, Cristina Pérez-Sola, and Jordi Herrera-Joancomarti. 2014. The Bitcoin
P2P Network, Vol. 8438. https://doi.org/10.1007/978-3-662-44774-1_7

[5] Arthur Gervais, Ghassan O. Karame, Karl Wiist, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. 2016. On the Security and Performance of Proof of
Work Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 3-16. https:
//doi.org/10.1145/2976749.2978341

[6] Jia Kan, Lingyi Zou, Bella Liu, and Xin Huang. 2018. Boost Blockchain Broadcast
Propagation with Tree Routing. CoRR abs/1810.12795 (2018). arXiv:1810.12795
http://arxiv.org/abs/1810.12795

[7] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. 2016. A Secure Sharding Protocol For Open Blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). ACM, New York, NY, USA, 17-30. https://doi.org/10.1145/
2976749.2978389

[8] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. (03
2009). https://bitcoin.org/bitcoin.pdf

[9] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out Blockchains with Asyn-
chronous Consensus Zones. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 95-112.
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping

http://github.com/dans-lab/

http://github.com/dans-lab/BlockchainSimulator
http://github.com/dans-lab/BlockchainSimulator
https://doi.org/10.1109/INFCOMW.2019.8845253
https://doi.org/10.1109/INFCOMW.2019.8845253
http://arxiv.org/abs/1809.00455
http://arxiv.org/abs/1809.00455
https://doi.org/10.1007/978-3-662-44774-1_7
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/2976749.2978341
http://arxiv.org/abs/1810.12795
http://arxiv.org/abs/1810.12795
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978389
https://bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping

	Abstract
	1 Introduction
	2 Related Work
	3 PiChu: Proposed Pipelining and Chunking Scheme
	4 Experiment Results
	5 Conclusion
	References

