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1 INTRODUCTION
In this paper, we propose memory-aware cache DoS attacks that
can induce more effective cache blocking by taking advantage of
information of the underlying memory hardware. Like prior cache
DoS attacks, our new attacks also generate lots of cache misses to
exhaust cache internal shared hardware resources. The difference
is that we carefully control those cache misses to target the same
DRAM bank to induce bank conflicts. Note that accesses to different
DRAM banks can occur in parallel, and are thus faster. However,
accesses to the same bank are serialized, and thus slower [5] and
as each memory access request takes longer to finish, it would
prolong the time it takes for the cache to become unblocked. We
further extend these attacks to exploit HugePage support in Linux
in order to directly control physical address bits and to avoid TLB
contention, while mounting the attacks from the userspace.

1.1 Cache DoS Attacks
Recent works have demonstrated that the internal hardware struc-
tures of a non-blocking cache can be exploited to mount denial-of-
service (DoS) attacks [3, 4]. Cache DoS attacks are software attacks
that target cache internal hardware structures of a shared non-
blocking cache. Generally, they are designed to generate as many
cache misses and/or write-backs as fast as possible to overflow the
cache internal hardware structures to induce cache blocking [3, 4].
When cache blocking occurs on a shared cache in a multicore pro-
cessor, it affects all cores and can be devastating. For example, it has
been shown that on a popular embedded multicore platform, the
Raspberry Pi 3, a cache DoS attack could cause over 300X slowdown
to a victim task [3].
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1.2 DRAM Bank-Aware Parallel Linked-List
Attack

Due to the sequential access patterns of previous cache DoS at-
tacks, they can be efficiently processed in memory which can result
in reduced cache blocking durations and, by proxy, less impact to
performance. To overcome these limitations, we propose a memory-
aware cache DoS attack that performs random accesses over mul-
tiple linked lists while controlling each list’s entries so that they
are all allocated in the same DRAM bank. The rational is that when
multiple accesses target the same bank, they will take longer to be
serviced at the DRAM because of increased DRAM bank conflicts
and frequent row switching.

1 int paddr_to_color(unsigned long mask, unsigned long paddr)
2 {
3 int color = 0;
4 int idx = 0;
5 int c;
6 for_each_set_bit(c, &mask, sizeof(unsigned long) ∗ 8) {
7 if ((paddr >> (c)) & 0x1)
8 color |= (1<<idx);
9 idx++;
10 }
11 return color;
12 }

Figure 1: Physical address coloring used for creating en-
hanced cache DoS attacks.

To create such linked lists, creates a user-defined number of
linked lists and populates them with addresses that map to the
same DRAM bank. Figure 1 shows the code snippet that is used
for finding such addresses. Specifically, it checks the value of each
bit in a given address that corresponds to the set of bits specified
in the mask bitmask, which is the platform’s physical address bits
that are mapped to DRAM banks. If the returned value is zero we
add the address to the linked list as a new entry, otherwise we
discard the address and continue. Since 2MB pages are used for
memory allocation, the attack code can control both the physical
and virtual addresses of the list entries. As a result, all of the linked
lists generated, and their entries, will be allocated to the same
memory bank and generate bank contention.

One notable shortcoming of the proposed memory-aware at-
tacks is that they do not support in-order processing cores because
they cannot concurrently traverse multiple linked lists. We instead
target out-of-order core architectures that are inherently capable of
generating multiple memory requests so that our attacks can still
successfully and effectively generate cache blocking.
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2 EVALUATION
In this section, we evaluate the effectiveness of the proposedmemory-
aware cache DoS attacks on two embedded multicore-based plat-
forms using both synthetic applications.

2.1 Embedded Multicore Platforms
We deploy our DoS attacks on two embedded multicore platforms:

Platform Odroid XU4 Raspberry Pi 4 Model B
SoC Exynos5422 BCM2711

CPU
4x Cortex-A7 4x Cortex-A15 4x Cortex-A72

in-order out-of-order out-of-order
1.4GHz 2.0GHz 1.5GHz

Private Cache 32/32KB 32/32KB 32K/32K
Shared Cache 512KB (16-way) 2MB (16-way) 512KB (16-way)
Local MLP 1 6 6
Global MLP 4 11 19
Memory 2GB LPDDR3 4GB LPDDR4
(Peak BW) (14.9GB/s) (25.6 GB/s)

DRAM bank bits 13, 14, 15, 16 8, 11, 12, 13, 14
(Bitmask) (0x1E000) (0x7900)
Table 1: Compared embedded multicore platforms.

an Odroid XU4 and a Raspberry Pi 4 Model B. The Odroid XU4 em-
ploys a big.LITTLE processor configuration comprised of a smaller
4xCortex-A7 [2] in-order core cluster and a larger 4xCortex-A15 [1]
out-of-order core cluster. Note that we do not use the Cortex-A7
cluster on the Odroid XU4 as we are primarily focused on out-of-
order architecture designs due to their inherent ability to generate
increased traffic at both the shared LLC and memory levels. The sec-
ond platformwe test, the Raspberry Pi 4, only equips a single cluster
of 4x Cortex-A72 out-of-order cores. All platform specifications can
be seen in Table 1.

2.2 Synthetic Workload
The experimental setup is as follows: we run each victim task

alone on a single core, Core 0, to measure its solo response time.
We then run the victim task alongside up to three instances of
each attacker, scheduled on Cores 1-3, and measure the response
times to determine the slowdown each attack caused on the victim
relative to the solo case. For the victim task, we use the latency-
mlp synthetic workload from the IsolBench suite [4]. Note that we
configure the victim to fit inside the LLC of each tested platform.

For the attackers, we employ three cache DoS attack types: (1) Bw,
a sequential access attack we’ve used in previous works [3, 4], (2)
Latency, a random access attack with no constraints on its linked list
entries, and (3) Bank, our proposed attacks described in Section 1.2.
Each attack can then be configured to perform reads or writes, so
we deploy a total of six attacking tasks. For all attacking processes,
we configure their working set sizes to fit inside of DRAM such
that they can effectively generate shared cache misses.

Figure 2 shows the impacts of cache DoS attacks to the latency-
mlp victim. As expected, the Bank attacks have noticeably more
impact compared to the older DoS attacks. On the Odroid-XU4,
BankRead and BankWrite attackers achieve up to ∼40X and ∼75X
slowdowns, respectively, to the latency-mlp victim task’s perfor-
mance. Likewise, they cause ∼17X and ∼34X slowdown, respec-
tively, when run on the Pi 4.
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Figure 2: Impacts of cache DoS attacks to the LatencyRead
victim on two multicore platforms. The victim (Laten-
cyRead) runs on Core 0 while the attackers (X-axis) run on
Core 1-3.

3 CONCLUSION
In this paper, we introduced memory-aware cache DoS attacks
that leverage a system’s memory address mapping information and
HugePage support to induce prolonged cache blocking by intention-
ally creating DRAM bank congestion. From experimental results
on two popular embedded multicore platforms, we show that our
new DoS attacks can generate significantly higher timing impact
to cross-core victim tasks compared to prior cache DoS attacks.
For future work, we plan to launch our attacks on platforms that
employ more sophisticated XOR address mapping schemes and
evaluate their feasibility on server and cloud-based platforms.
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