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ABSTRACT
In our modern data-driven society, the importance of leveraging
machine learning (ML) algorithms to make critical business and
government decisions continues to grow. To dramatically improve
performance, such algorithms are often outsourced to the cloud, but
within privacy and security sensitive domains, this presents several
challenges to data owners for ensuring that their data is protected
from malicious parties. One practical solution to these problems
comes from Trusted Execution Environments (TEEs), which utilize
several hardware technologies to isolate sensitive computations
from untrusted software. This paper investigates a new technique
utilizing a TEE to allow for the high performance training and
execution of Deep Neural Networks (DNNs), an ML algorithm that
has recently been used with great success in a variety of challenging
tasks, including face and speech recognition.

*All authors confirm that this manuscript is unpublished and revisions
can be incorporated into the manuscript prior to their next submission
for publication.
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1 BACKGROUND AND APPLICATIONS
Machine learning (ML) is increasingly used in a variety of data-
driven decision making settings where security is of paramount
importance. Given the growth in the popularity of cloud-based ML
frameworks, which hide the complexity of ML algorithms from
users, the number of attack points continues to grow. Trusted Exe-
cution Environments (TEEs), e.g, Intel SGX, ARM TrustZone, etc.,
offer a practical solution to this problem. TEEs use a variety of
hardware and software technologies to isolate potentially sensitive
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code from untrusted applications, while still providing users with
the functionality to attest their code was correctly executed without
any tampering from an adversary (Figure 1) [1].

Fig. 1 Diagram of SGX Enclave Creation
Our approach, inspired by the Slalom framework and verifiable

ASICs [6], is notably different fromML outsourcing based on purely
cryptographicmethods [2, 4, 5].With this framework, computations
are delegated between two co-located processors, which support
an outsourcing protocol with efficiency that is orders-of-magnitude
faster than existing work, while not requiring that the DNN be
executed or trained fully in a TEE. By utilizing Freivald’s algorithm
[3], an efficient verifiable scheme that allows for outsourced matrix
multiplication, we can support private ML training.

2 RELATEDWORK
Previous work introduced Chiron, a system for privacy-preserving
Machine Learning as a service (MLaaS) [4]. Note that the MLaaS
framework assumes that an individual data provider will train their
own ML model using hardware and algorithms owned by an un-
trusted party. Another similar work features a setup where several
data providers train a shared ML model [2]. This paper does not
focus on leveraging differential privacy to confront problems relat-
ing to model performance or data size, and instead is interested in
hiding memory access patterns for SGX based training to avoid side-
channel attacks. Our work is most similar to the Slalom framework
[6], which allows for efficient privacy-preserving NN inference
(but not training) using via a TEE. They leverage a cryptographic
blinding method along with Freivald’s algorithm [3], a method for
delegating matrix multiplication to an untrusted GPU that can be
verified for correctness after the computation is complete.
Contribution: Our work composes DL training in such a way
that the one-time pad scheme can be used in tandem with the
activation function so that training can be supported and delegated
in an iterative fashion to a co-located GPU. Our approach will
expedite private training and inference using a TEE by allowing
more computations to occur in an untrusted GPU without needing
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to frequently retrieve intermediate results for processing in the
TEE.

3 PROPOSED METHODOLOGY
For our inference method, the linear layers are outsourced and then
verified via Freivald’s algorithm [3]. Then, the inputs of the linear
layers are encrypted with a pre-computed pseudorandom stream
(base on the one-time pad scheme) to guarantee their privacy. Notice
that only two values are needed to continue the backpropagation
algorithm for a given layer of the neural network: (1) the cost 𝐶𝑜
where 𝐶𝑜 = 𝑎 (𝐿) − 𝑦)2 where 𝑎 (𝐿) is the activation at layer 𝐿 (𝐿 is
the total number of layers) and𝑦 is the output of the neural network,
and (2) the activation at layer 𝐿, denoted 𝑎 (𝐿) = 𝜎 (𝑤 (𝐿)𝑎 (𝐿−1)+𝑏 (𝐿)
where 𝑤 (𝐿) is the weight at layer 𝐿, 𝑎 (𝐿−1) is the activation at
layer 𝐿 − 1, and 𝑏 (𝐿) is the bias at layer 𝐿. For ease of notation we
represent the input of the activation function in future sections as
𝑧 (𝐿) = 𝑤 (𝐿)𝑎 (𝐿−1) + 𝑏 (𝐿) . We model the dependencies in Figure 2.

Fig. 2 Diagram of Backpropagation Dependencies
To compute backpropagation, we take the partial derivative of

𝐶𝑜 with respect to𝑤 (𝐿) , with respect to 𝑏 (𝐿) , and with respect to
𝑎 (𝐿−1) . More formally, we would compute theses three equations:

𝜕𝐶𝑜

𝜕𝑤 (𝐿)
=

𝜕𝑧 (𝐿)

𝜕𝑤 (𝐿)
𝜕𝑎 (𝐿)

𝜕𝑧 (𝐿)
𝜕𝐶𝑜

𝜕𝑎 (𝐿)
= 𝑎 (𝐿−1)𝜎′ (𝑧 (𝐿) )2(𝑎 (𝐿)−𝑦 ) (1)

𝜕𝐶𝑜

𝜕𝑏 (𝐿)
=

𝜕𝑧 (𝐿)

𝜕𝑏 (𝐿)
𝜕𝑎 (𝐿)

𝜕𝑧 (𝐿)
𝜕𝐶𝑜

𝜕𝑎 (𝐿)
= 𝜎′ (𝑧 (𝐿) )2(𝑎 (𝐿)−𝑦 ) (2)

𝜕𝐶𝑜

𝜕𝑎 (𝐿−1)
=

𝜕𝑧 (𝐿)

𝜕𝑎 (𝐿−1)
𝜕𝑎 (𝐿)

𝜕𝑧 (𝐿)
𝜕𝐶𝑜

𝜕𝑎 (𝐿)
= 𝑤 (𝐿)𝜎′ (𝑧 (𝐿) )2(𝑎 (𝐿)−𝑦 ) (3)

For our protocol we do the following:
(1) Initialize: The 𝑇𝐸𝐸 is initialized with the model F and the

input 𝑥1, and the untrusted server 𝑆 is initialized with F.
(2) Preprocess: For each element 𝑖 ∈ [1, 𝑛], the 𝑇𝐸𝐸 generates

random masking value 𝑟𝑖 by randomly sampling 𝑟𝑖 ←− 𝐹𝑚𝑖 ,
and then calculates the associated demasking value as 𝑢𝑖 =
𝑟𝑖𝑊𝑖 . They then mask the input 𝑥𝑖 as 𝑥𝑖 = 𝑥𝑖 + 𝑟𝑖

(3) Online: For each element 𝑖 ∈ [1, 𝑛], the𝑇𝐸𝐸 sends 𝑥𝑖 to the
untrusted server 𝑆 , who computes 𝑦𝑖 = 𝑥𝑖𝑊𝑖 , and sends 𝑦𝑖
back to the 𝑇𝐸𝐸.

(4) Verify: For each element 𝑖 ∈ [1, 𝑛], the 𝑇𝐸𝐸 checks that the
untrusted 𝑆 computed 𝑦𝑖 correctly by computing 𝑦𝑖 = 𝑦𝑖 −
𝑢𝑖 and calling Freivalds(𝑦𝑖 , 𝑥𝑖 ,𝑊𝑖 ). If Freivalds successfully
verifies that the 𝑦𝑖 is correct, we continue (otherwise we

know that 𝑆 behaved maliciously and may abort). The 𝑇𝐸𝐸
then computes the activation function as 𝑥𝑖+1 = 𝜎 (𝑦𝑖 ).

(5) Return: The algorithm then returns 𝑦𝑛 .
Notice that for the sigmoid function, which we write as 𝜎 (𝑘) =
1

1+𝑒−𝑘 and the derivative as 𝜎 ′(𝑘) = 1
1+𝑒−𝑘 (1 −

1
1+𝑒−𝑘 ) = 𝜎 (𝑘) (1 −

𝜎 (𝑘)), if we were to mask the input 𝑥 with an additive noise 𝑟 , for
the first layer of the network we would have𝑤 (0) (𝑥 + 𝑟 ) + 𝑏 (0) =
𝑤 (0)𝑥 +𝑤 (0)𝑟 +𝑏 (0) = 𝑎 (0) +𝑤 (0)𝑟 . If we input this into 𝜎 , we have
𝜎 (𝑎 (0) +𝑤 (0)𝑟 ) = 1

1+𝑒−(𝑎 (0) )+𝑤 (0) 𝑟
= 1

1+𝑒−(𝑎 (0) )𝑒𝑤 (0) 𝑟
. If we compute

the derivative 𝜎 ′ we have 𝜎 ′(𝑎 (0) +𝑤 (0)𝑟 ) = 1
1+𝑒−𝑎 (0) 𝑒 (𝑤 (0) 𝑟 )

(1 −
1

1+𝑒−𝑎 (0) 𝑒 (𝑤 (0) 𝑟 )
). This means that we would need to compute the

three equations described previously and somehow remove the
random masking value (a nontrivial task):

𝜕𝐶𝑜

𝜕𝑤 (𝐿)
= 𝑎 (𝐿−1)

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟 )

(1 − 1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟 )

)2(𝑎 (𝐿)−𝑦 )

(4)

𝜕𝐶𝑜

𝜕𝑏 (𝐿)
=

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟 )

(1 − 1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟 )

)2(𝑎 (𝐿)−𝑦 ) (5)

𝜕𝐶𝑜

𝜕𝑎 (𝐿−1)
= 𝑤 (𝐿)

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟 )

(1 − 1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟 )

)2(𝑎 (𝐿)−𝑦 )

(6)

Note the Arctan function is 𝜎 (𝑘) = 𝑡𝑎𝑛−1 (𝑘) and its derivative
is 𝜎 ′(𝑘) = 1

𝑘2+1 ), and we would need to remove the random mask
from the following equations:

𝜕𝐶𝑜

𝜕𝑤 (𝐿)
= 𝑎 (𝐿−1)

1
(𝑤 (𝐿)𝑟 + 𝑎 (𝐿) )2 + 1

2(𝑎 (𝐿)−𝑦 ) (7)

𝜕𝐶𝑜

𝜕𝑏 (𝐿)
=

1
(𝑤 (𝐿)𝑟 + 𝑎 (𝐿) )2 + 1

2(𝑎 (𝐿)−𝑦 ) (8)

𝜕𝐶𝑜

𝜕𝑎 (𝐿−1)
= 𝑤 (𝐿)

1
(𝑤 (𝐿)𝑟 + 𝑎 (𝐿) )2 + 1

2(𝑎 (𝐿)−𝑦 ) (9)

Note the SoftMax function is 𝜎 (𝑘) = 𝑙𝑜𝑔(1+𝑒𝑘 ) and its derivative
is 𝜎 ′(𝑘) = ( 1

1+𝑒−𝑥 ), so we would need to remove the random mask
from the following equations:

𝜕𝐶𝑜

𝜕𝑤 (𝐿)
= 𝑎 (𝐿−1)

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟 )

2(𝑎 (𝐿)−𝑦 ) (10)

𝜕𝐶𝑜

𝜕𝑏 (𝐿)
=

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟 )

2(𝑎 (𝐿)−𝑦 ) (11)

𝜕𝐶𝑜

𝜕𝑎 (𝐿−1)
= 𝑤 (𝐿)

1
1 + 𝑒−𝑎 (𝐿) 𝑒 (𝑤 (𝐿)𝑟 )

2(𝑎 (𝐿)−𝑦 ) (12)
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