
How to swap instructions midstream: An embedding algorithm
for program steganography

Ryan Gabrys

ryan.gabrys@navy.mil

Naval Information Warfare Center

San Diego, CA

Luis Martinez

luis.martinez@navy.mil

Naval Information Warfare Center

San Diego, CA

Sunny Fugate

fugate@spawar.navy.mil

Naval Information Warfare Center

San Diego, CA

ABSTRACT
In this work, we propose an encoding/decoding algorithm for pro-

gram executable steganography. Some salient features of our ap-

proach is that unlike previous work it does not require the intro-

duction of new instructions, which may be detectable. Furthermore,

our scheme does not require storing the locations of where changes

in the program executable are made.

CCS CONCEPTS
• Security and privacy → Database and storage security;

Data anonymization and sanitization.
KEYWORDS

steganography, information hiding

1 INTRODUCTION
Steganography is the process of embedding hidden information

into a cover object. One of the well-studied problems in the field

of steganography is to design an embedding scheme where the

cover object “appears” the same before and after the embedding has

taken place. There are many previous works that design embedding

schemes by modifying the redundant data in digital cover objects

such as images and videos. [3]

This work is concerned with the less studied problem of design-

ing embedding schemes for program executables. We note that this

problem is fundamentally different than the problem of designing

steganographic schemes for digital media. Modifying even a single

line of executable code can cause the program to perform drastically

different, and in some cases, even break. Previous works such as

Hydan and Stilo [1, 5] have proposed switching between semanti-

cally equivalent instructions in order to embed data into program

executables. The fundamental drawback to such an approach is

that, since these techniques often make use of unusual instructions,

detecting the presence of hidden information in cover objects after

these techniques have been applied is relatively straightforward

and several studies have shown that Hydan in particular is eas-

ily detectable [2]. Rather than substitute equivalent instruction

sequences, and in order to make detection more difficult, the ap-

proach taken here is to permute the order of instructions.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7561-0/20/04.

https://doi.org/10.1145/3384217.3384224

Our preliminary work [6] addressed the question of identifying

a large set of pairs of assembly-level instructions such that for any

pair, when the order of the two instructions in the pair is switched,

the functionality and performance of the program is unchanged.

These instruction pairs were termed interchangeable pairs, and the

main result in [6] was to illustrate the existence of large sets of

interchangeable pairs in across Linux programs.

As an illustration, suppose {i j , ik } is an interchangeable pair

of instructions where instruction i j is the j-th instruction in the

program and ik is the k-th instruction in the program. Then, for

simplicity and as a starting point, we restrict our attention to the

case where k = j + 1 and k is even. Therefore, under this setup, a

program with 6 lines contains at most 3 pairs of interchangeable

instructions.

One straightforward way to embed information into an exe-

cutable program provided a set of interchangeable pairs is the fol-

lowing. Suppose {i1, i2} are two instructions and that i1 < i2 so that
i1 is lexicographically smaller than i2. Then, we can embed a single

bit of information into this pair of interchangeable instructions by

changing the order of i1 and i2. For instance, if i1 appears before i2
in the program we can read this information as a 0 and otherwise

if i1 appears after i2 we can read this information as a 1.

The drawback to this approach is that in order to decode, one has

to know the locations of the interchangeable pairs of instructions. In

this work, we propose a scheme which does not require knowledge

of the set of interchangeable pairs of instructions. The gist of the

approach is to generate a small collection of randommatrices where

one matrix in this collection is used at a time for the embedding. To

enable unique decoding, one simply needs to store the index of the

matrix used from this collection during the encoding process. One

of the main results of this work which is stated in Corollary 3.2

is that the size of this collection is small so that we can store the

index using a small number of additional information bits. We note

that the main difference between the approach described here and

the one in [4] is that we rely on a collection of matrices for the

embedding whereas the goal in [4] was to identify one such matrix.

2 ENCODING AND DECODING ALGORITHM
We assume the executable program consists of 2n instructions.

We represent the instruction sequence using a binary vector x of

length n. The idea is that every adjacent pair of instructions will be

mapped to a bit in x that indicates the order of the instructions in

the pair. Let x = (x1, . . . ,xn) ∈ {0, 1}n be the binary vector which

corresponds to the first 2n instructions in the executable. Suppose

that Ij represents the j-th line of text in the assembly executable.

Formally, we define x so that

https://doi.org/10.1145/3384217.3384224

HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA Ryan Gabrys, Luis Martinez, and Sunny Fugate

x j = 0 if I2j ≥ I2j−1, x j = 1 else. (1)

Let J ⊆ [n] be the set of interchangeable pairs of instructions. In
particular, if j ∈ J , then it follows that we can swap the instructions

I2j and I2j−1 without affecting the functionality of the program.

The set J is only known to the encoder at the time of encoding and

our method works with any set J . Let F2 denote the Galois Field
of size 2. For a matrixM ∈ Fm×n

2
, letM J be a sub-matrix which is

composed of the columns ofM indexed by the set J . For example,

ifM =

[
0 0 1 1

0 1 0 1

]
, thenM {2,4} =

[
0 1

1 1

]
.

The procedure for encoding is the following. Suppose we want

to encode the information u ∈ F
| J |
2

. Let S be a set of random seeds

and we suppose that S = ∅ initially.

(1) Generate a |J | × n random matrix M over F2 using one of

the seeds from S . If all the seeds in S have been attempted

then randomly generate the matrixM using a new seed s ′.
(2) IfM J does not have full rank, then go back to step 1). Other-

wise, ifM J has full rank continue to the next step.

(3) If s ′ < S andM was generated using s ′, then add s ′ to S .

(4) Let z = M[n]\J · x[n]\J ∈ F
| J |
2

. Let ẑ = z + u. Then, let

y = M−1
J · ẑ ∈ F | J |

2
.

(5) Let x̂[n]\J = x[n]\J and let x̂J = y.
(6) For every j ∈ [n] where x j , x̂ j swap the instructions I2j

and I2j−1.
(7) Store the index of the seed used to generateM .

Next, we discuss the decoding algorithm.

(1) Recover the seed which was used to create the matrixM in

step 1) of the encoding algorithm. Next, recover the matrix

M using the seed.

(2) Let x be the vector which represents the first 2n instructions

of the assembly executable according to (1).

(3) Recover the vector û = M · x ∈ F
| J |
2

.

Now, we prove the correctness of our decoding algorithm.

Theorem 2.1. The vector û satisfies û = u.

Proof. First, note that step 5) is correct since the matrixM J by

construction has full rank. Furthermore,

M · x = M J · y +M[n]\J · x[n]\J = ẑ + z = (z + u) + z = u.

□

3 ANALYSIS AND RESULTS
Next, we turn to proving the efficiency of the algorithm. In particu-

lar, we bound the number of times the encoding algorithm executes

step 1).

Theorem 3.1. The probability step 1) of the encoding algorithm is
executed more than T times is (3

4
)T .

Proof. It can be shown that the probability that a |J | × |J | matrix

has full rank is

| J |∏
j=1

(1 − 2
−j) >

1

2

· (1 −

∞∑
j=2

2
−j) =

1

4

,

which implies that the probability a random matrix does not have

full rank is at most
3

4
. Since the event that the matrixM J has full

rank at each iteration i is independent of the event that the matrix

M J has full rank at iteration i + 1, the result follows. □

The next result follows from the previous theorem. The set S is

the set of random seeds after the algorithm has been executed.

Corollary 3.2. Suppose we encode N times using our algorithm.
Then, E[|S |] is at most O(logN).

We evaluated the performance of the decoding algorithm by

running 2
10

trials where at each trial, we kept generating random

binary matrices of dimensions 100 × 100 until we arrived at one

which was full rank. The results of these trials are displayed in

the histogram below. In the figure below, notice that most of the

time only 1 or 2 random matrices had to be generated. In fact, the

first bar shown below implies that in over 300 of the 1024 trials,

only a single random matrix had to be generated (so that this initial

random matrix had full rank).

Distribution of Random Matrices

0 5 10 15 20 25

Number of Random Matrices

0

50

100

150

200

250

300

350

T
ri

al
s

We note that according to our analysis, the expected size of the

set S is roughly 10. Our simulations required that |S | = 22 under

the setup used to generate the histogram above.

4 CONCLUSION
In this work, we proposed a new encoding/decoding algorithm

based upon random matrices for embedding information into pro-

gram executables. Future work involves extending the scheme to

handle more than a single type of program mutation.

REFERENCES
[1] B. Anckaert, B. De Sutter, D. Chanet, and Kan De Bosschere, “Steganography

for executables and code transformation signatures,” in Proceeding of the 7th
International Conference on Information Security and Cryptology, Beijing, China,
pp. 425-439, 2011.

[2] J. Blasco, J.C. Hernandez-Castro, J.M.E. Tapiador, A. Ribagorda, and M.A. Orellana-

Quiros, “Steganalysis of Hydan,” in Emerging Challenges for Security, Privacy, and
Trust, SpringerLink, pp. 132-144, 2009.

[3] J. Cazalas, T.R. Andel, and J.T. McDonald, “Analysis and categorical application of

LSB steganalysis techniques,” in the Journal of Information Warfare, 13(3), 2014.
[4] J. Fridrich and D. Soukal, “Matrix embedding for large payloads,” in IEEE Transac-

tions on Information Forensics and Security, vol. 1, no. 3, pp. 390-395, 2006.
[5] R. El-Khalil and A.D. Keromytis, “Hydan: hiding information in program binaries,”

in International Conference on Information and Communications Security (ICICS),
LNCS, Malaga, Spain, 2004, pp. 187-199, 2004.

[6] R. Gabrys and L. Martinez, “A change would do you good: GA-Based approach for

hiding data in program executables,” in The Genetic and Evolutionary Computation
Conference (GECCO), ACM, Prague, pp. 285-286, 2019.

[7] W. Mahoney, J. Franco, G. Hoff and J. T. McDonald, “Leave it to Weaver,” in Pro-
ceeding of the 8th Software, Security, Protection, and Reverse Engineering Workshop,
San Juan, Puerto Rico, pp. 1-9, 2018.

	Abstract
	1 Introduction
	2 Encoding and Decoding Algorithm
	3 Analysis and Results
	4 Conclusion
	References

