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ABSTRACT
We consider the problem of networked agents cooperating together
to perform a task of optimizing the parameters of a global cost
function. Agents receive linearly correlated noisy streaming data
that can be used to learn the target parameters via Least-Mean-
Squares (LMS) approaches. Diffusion scheme is incorporated such
that at each step after agents adapt the parameters by the current
received data, a combination step is included for agents to aggregate
the information coming from its one-hop neighbors. It has been
demonstrated that by introducing the aggregation step, diffusion
algorithms greatly improve the learning accuracy of the parameters
measured by the network Mean-Square-Deviation (MSD) [1].

However, the aggregation step is susceptible to attacks. In the
presence of Byzantine agents, the aggregation of Byzantine informa-
tion can easily disrupt the convergence of normal robots and even
one Byzantine agent can drive its normal neighbors to converge
to some point desired by the attacker [2]. To address this, we pro-
pose a resilient aggregation rule based on the notion of centerpoint
[3], which is a generalization of median in the higher dimensional
Euclidean space. We show that if a normal robot implements the
centerpoint based aggregation rule for distributed diffusion, then
it can guarantee the aggregated result to lie inside the convex
hull of its normal neighbors, given at most ⌈ 𝑛

𝑑+1 ⌉ − 1 neighbors
are Byzantine with 𝑛 total negihbors and 𝑑-dimensional state vec-
tors exchanged among agents. Further, we demonstrate all normal
robots implementing centerpoint based distributed diffusion con-
verge resiliently to the true target state. In addition, we demonstrate
that widely adopted aggregation rules such as coordinate-wise me-
dian [4] and geometric median [5] based are not resilient under
certain conditions. The main reason is that unlike centerpoint based
aggregation, these rules do not guarantee the aggregation result to
be inside the convex hull of the states of normal agents. We carried
out experiments on Robotarium, a multirobot testbed developed at
the Georgia Institute of Technology to demonstrate the cases where
diffusion with coordinate-wise median and geometric median based
aggregation rules fail to converge to the true target state, whereas
diffusion with centerpoint based rule resiliently converge to the
true target state in the same scenario.
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1 SYSTEM MODEL
We use distributed diffusion algorithm for a mobile adaptive net-
work [6] where 𝑁 agents move in a cooperative manner to pursue
a target located at 𝑤𝑜 ∈ R𝑑 . The location of agent 𝑘 at time 𝑖 is
denoted by 𝑥𝑘,𝑖 ∈ R𝑑 , and we can express the distance between
agent 𝑘 and target at time 𝑖 as

𝑑𝑜
𝑘
(𝑖) = 𝑢𝑜

𝑘,𝑖
(𝑤𝑜 − 𝑥𝑘,𝑖 ), (1)

where 𝑢𝑜
𝑘,𝑖

denotes the unit direction vector pointing from 𝑥𝑘,𝑖 to
𝑤𝑜 . We assume agents have only noisy observations {𝑑𝑘 (𝑖), 𝑢𝑘,𝑖 }
of the distance and the unit direction vector, i.e.,

𝑑𝑘 (𝑖) = 𝑑𝑜
𝑘
(𝑖) + 𝑛𝑑

𝑘
(𝑖), 𝑢𝑘,𝑖 = 𝑢𝑜

𝑘,𝑖
+ 𝑛𝑢

𝑘,𝑖
, (2)

where 𝑛𝑢
𝑘,𝑖

and 𝑛𝑑
𝑘
(𝑖) denote noise terms. Here, 𝑑𝑘 (𝑖) ∈ R and

𝑢𝑘,𝑖 ∈ R𝑑 . From (1) and (2), we have

𝑑𝑘 (𝑖) = 𝑢𝑘,𝑖 (𝑤𝑜 − 𝑥𝑘,𝑖 ) + 𝑛𝑘 (𝑖),

where 𝑛𝑘 (𝑖) ≜ −𝑛𝑢
𝑘,𝑖

(𝑤𝑜 −𝑥𝑘,𝑖 ) +𝑛𝑑𝑘 (𝑖). Let 𝑑𝑘 (𝑖) ≜ 𝑑𝑘 (𝑖) +𝑢𝑘,𝑖𝑥𝑘,𝑖 ,
then we can derive a linear model for variables {𝑑𝑘 (𝑖), 𝑢𝑘,𝑖 } as

𝑑𝑘 (𝑖) = 𝑢𝑘,𝑖𝑤
𝑜 + 𝑛𝑘 (𝑖).

Two agents are neighbors if they exchange information with
each other. At each iteration 𝑖 , agent 𝑘 knows its location 𝑥𝑘,𝑖 ∈ R𝑑
and velocity 𝑣𝑘,𝑖 ∈ R𝑑 , and it can observe its neighbors’ location 𝑥𝑙,𝑖
for 𝑙 ∈ N𝑘 (𝑖). Agents update the velocity according to the following
update rule in order to move towards the unknown target:

𝑣𝑘,𝑖+1 =

{
𝑤𝑘,𝑖 − 𝑥𝑘,𝑖 , if ∥𝑤𝑘,𝑖 − 𝑥𝑘,𝑖 ∥ ≤ 𝑠

𝑠 · 𝑤𝑘,𝑖−𝑥𝑘,𝑖
∥𝑤𝑘,𝑖−𝑥𝑘,𝑖 ∥ , otherwise (3)

where𝑤𝑘,𝑖 is the estimate of the target location by 𝑘 at time 𝑖 , and
the positive scaling factor 𝑠 is used to bound the speed in pursuing
the target.

Agents then update their location according to

𝑥𝑘,𝑖+1 = 𝑥𝑘,𝑖 + Δ𝑡 · 𝑣𝑘,𝑖+1,

where Δ𝑡 represents the time step.
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To obtain velocity, agents need to know the estimate of the
target location𝑤𝑘,𝑖 , which should be the unique minimizer of the
following cost function:

𝐽𝑔𝑙𝑜𝑏 (𝑤) =
∑

𝑘∈N+
E∥𝑑𝑘 (𝑖) − 𝑢𝑘,𝑖𝑤 ∥2,

whereN+ denotes the set of normal agents in the network. Agents
estimate the term by the diffusion algorithm and the adaptation
and combination steps take the following form:

𝜓𝑘,𝑖 = 𝑤𝑘,𝑖 + 𝜇𝑢∗
𝑘,𝑖

(𝑑𝑘 (𝑖) − 𝑢𝑘,𝑖𝑤𝑘,𝑖−1),

𝑤𝑘,𝑖 = Aggr𝑤 (𝜓1,𝑖 ,𝜓2,𝑖 , . . . ,𝜓 |N𝑘 |,𝑖 ), (4)
where 𝜇 is the step size, Aggr𝑤 represents certain aggregation rule
and |N𝑘 | denotes the size of N𝑘 .

2 EXPERIMENTS
Experiments are carried out on Robotarium [7], a multirobot testbed
developed at the Georgia Institute of Technology. The robots are
11 cm wide, 10 cm long, and operate on a 3m x 2m area. We denote
the bottom-left corner of the arena to be the original point with
coordinates [0, 0] and the upper-right corner to be [3, 2].

We evaluate the diffusion algorithm with three different aggre-
gation rules, including coordinate-wise median (CM), geometric
median (GM), and centerpoint based for the aggregation of𝑤𝑘,𝑖 in
(4). We consider a network of 11 normal robots that remain fully
connected throughout the simulation. Parameters are selected to be
𝑠 = 1,Δ𝑡 = 1𝑠 . The target location is set to be𝑤𝑜 = [2.4, 1.7]. The
regression vector 𝑢𝑘,𝑖 has uniform covariance matrix 𝑅𝑢,𝑘 = 𝜎2

𝑢,𝑘
𝐼2,

𝜎2
𝑢,𝑘

∈ [0.1, 0.5] where 𝐼2 is the identity matrix of size 2. The noise
variance of distance 𝜎2

𝑑,𝑘
∈ [0.5, 5.0]. Both 𝜎2

𝑑,𝑘
and 𝜎2

𝑢,𝑘
decrease

linearly as the distance to the target decreases. The step size 𝜇 = 0.2.
In the case of attack, 5 more Byzantine robots are introduced mak-
ing the total number of robots to be 16. Since centerpoint based
aggregation rule is resilient up to ⌈ 163 ⌉ − 1 = 5 Byzantine robots,
we expect it to be resilient in the experiment.

Figure 1 and Figure 2 show the initial and final network de-
ployments using CM/GM/centerpoint based diffusion without at-
tack/with attack. The Byzantine robots are indicated by the red
circle, and the target location is denoted by the blue star. Byzantine
robots stay stationary throughout the experiment and continuously
send wrong estimates of the target location [0, 0] and velocity
vector [0, 0] to normal robots. We adopt the collision avoidance
mechanism implemented by Robotarium and in our experiment, no
collision has been recorded.

We find that without attacks, robots adopting diffusion with
CM/GM/centerpoint aggregation all converge to the target. How-
ever, in the presence of Byzantine agents, only robots adopting the
centerpoint based diffusion converge to the target. At the same
time, robots implementing CM or GM based diffusion converge to
somewhere in the middle of the arena, showing that centerpoint
has better resilience properties than the other two rules under the
same scenario.
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Figure 1: Network deployment under no attack.
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Figure 2: Network deployment with five Byzantine robots.
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