
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Do Configuration Management Tools Make Systems More
Secure? An Empirical Research Plan

Md Rayhanur Rahman
mrahman@ncsu.edu

North Carolina State University
Raleigh, NC, USA

William Enck
whenck@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Laurie Williams
lawilli3@ncsu.edu

North Carolina State University
Raleigh, NC, USA

ABSTRACT
Configuration Management Tools (CMT) help developers manage
the system and installed application in an automated and efficient
manner. However, misconfiguration in these tools can make a sys-
tem vulnerable to compromises. Whether the usage of these tools
makes the systems secure - this question can only be answered
through empirical evidence. Hence, we propose a empirical research
plan on the impact of CMT on systems where these tools have been
applied. As a case, we will investigate the case of Endpoint Linux
Management System managed by Puppet, a popular configuration
management tool.

CCS CONCEPTS
• Configuration Management Tools; • Static Analysis; • Secu-
rity Smells; • Puppet;
KEYWORDS
Configuration Management Tools, Puppet, Security Smells, Static
Analysis
ACM Reference Format:
Md Rayhanur Rahman, William Enck, and Laurie Williams. 2020. Do Con-
figuration Management Tools Make Systems More Secure? An Empiri-
cal Research Plan. In HotSoS 2020: Hot Topics in the Science of Security,
April 7-8, 2020, Lawrence, KS. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Configuration Management Tools (CMT) have gained popularity
in recent years, mainly in cloud computing domains [4]. A large
number of computing nodes are being managed by these tools such
as Puppet [7], Chef [3] or Ansible [10]. These languages facilitate
software practitioners and IT staff in the provisioning of the Cloud
infrastructure, deploying the application, and orchestrating the
overall system configuration behavior. These tools are also being
used to manage and automate software configurations, to enforce
their characteristics in computing nodes, and to provision the node
activities in distributed computing infrastructures. Without the
help of these tools, human intervention is needed for managing

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotSoS ’20, April 7-8, 2020, Lawrence, KS
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

every configuration changes in software, hosts, and overall systems
which is exhaustive, inefficient, and error-prone. CMT vendors
also claim that usage of their tools brings about more efficiency,
reliability, and security in systems that are previously managed by
human intervention [6].

Consequently, IT industries have switched to the use of CMT
for software development, deployment, and provisioning. How-
ever, switching to CMTs from a human operator-based workflow
requires rigorous documentation, training, and business process
changes which incur costs in terms of money and time. However,
these tools do not guarantee that the systems managed by these
tools will be secure. For example, NordVPN has suffered from a
leak of its cryptokeys due to a misconfiguration in their configura-
tion scripts [2]. Such occurrences necessitates the need for more
empirical evidence regarding the impact of CMT. As a case, we
will consider the Endpoint Linux Management System of North
Carolina State University (NCSU) where Puppet has been used as
the CMT for the past two years. We propose to run an empirical
analysis on how the usage of Puppet impacts the secureness of
Endpoint Linux Management System and other systems where the
subsequent effects can be propagated at scale.

Below we provide the goal of our study, the research questions,
and the tasks we need to perform to answer our research question.

The goal of this research is to aid information technology (IT)
professionals understand whether the usage of CMT leads to more
secure systems through an empirical study of a CMT managed system
and repository.

We empirically evaluate our goal statement by answering the
following research questions:

(1) Does the usage of CMT make the Endpoint Linux Manage-
ment System more secure?

(2) Does misconfiguration in CMT affect the security of the
system?

(3) What are the characteristics of the evolution of the CMT
repository in the case of breaches?

(4) Are the CMT scripts written according to the best practices
from a security point of view?

2 RESEARCH PLAN
Wewill perform an empirical study on the NC State Endpoint Linux
Management System [5] which is being managed by Puppet, one of
the popular CMT. Prior to the use of Puppet, the Linux hosts were
managed through a plethora of custom shell and bash scripts along
with human activities when system configuration needed to change
in response to some situations, for example, updating the Linux
kernel or installing patches to a vulnerable module. The endpoint

2020-01-24 22:09. Page 1 of 1–2.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

HotSoS ’20, April 7-8, 2020, Lawrence, KS Rahman, R and Williams, L, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Research Steps

systems is being managed by Puppet for last two years and hence,
this scenario is ideal for evaluating the impact of CMT from the
aspect of overall security in the system. We will perform the fol-
lowing analysis as shown in Figure 1 to answer the aforementioned
research questions.

• StepOne:Mining SourceRepository:Wewill gather source
code, commit logs, and other source control activities such
as pull requests, merge conflicts, feature branches from the
Github repository of NC State Endpoint Linux Management
Systems.

• Step Two: Identify Security Smells: We will apply static
analysis techniques to detect the presence of security smells
in the Puppet scripts. Security Smells are the occurrence
of insecure coding patterns in the sources which introduce
security weakness into the software and might lead to soft-
ware breaches [9]. Most prominent security smells that can
be found in Puppet scripts are hardcoded secrets, use of
HTTP without TLS, suspicious comments, admin by default
etc [1, 8].

• Step 3: Identify Security Best Practices Implementa-
tion: Wewill also apply static analysis techniques to identify
whether the best security practices have been thoroughly fol-
lowed. Puppet, like other CMT, can be complicated at times.
Hence developers should follow good, recommendable and
high-level best practices such as use of inventory, private
modules, dry runs before deployments [? ], otherwise scripts
will become difficult to extend and maintain, consequently
the system will be more prone to misconfiguration which
will lead to less secured system.

• Step 4: Survey Developers Agreement: After the identi-
fication of security smells and security best practices, we

will conduct a survey with the developers of the scripts. We
will study whether developers agree with the identified in-
stances of security smells and good practices or whether the
particular instance is a false alarm or whether the instance
is contextually irrelevant.

• Step 5: Analyze Repository Activities: We will analyze
the repository activities to study the behaviour of developer
activities in response to the event of a compromise. We will
analyze the reported bugs, issues, patches, pull requests, and
commit logs to understand the development activities and
nature of fixing the issues regarding the compromises in
hosts. We will also look for any testing activities that has
been performed to evaluate the effectiveness of fixes.

• Step 6: Analyze Host Compromise Data: We will gather
the data of host compromises and whether they have been
caused by misconfiguration or misuse in Puppet scripts or
security smells or vulnerable modules from Puppet or oper-
ating systems or other applications.

3 CONCLUSION
CMT have made developers more productive and efficient in man-
aging and provisioning the computing nodes and installed applica-
tions. However, these tools might make the systems susceptible to
software weakness through misconfiguration or vulnerable mod-
ules. We propose a research plan to empirically investigate the
impact of the usage of CMTs on systems and application in terms
of security of the systems. For the case study, we have chosen End-
point Linux Management system for NC State University. From
the preliminary findings of our work, we found out a hundred of
security smell occurrences which could pose a threat to the overall
security and rough edges of their tools.

REFERENCES
[1] [n.d.]. CWE: Common Security Weakness. https://cwe.mitre.org/. [ac-

cessed:1/6/19].
[2] Ars Technica. [n.d.]. Hackers steal secret crypto keys for NordVPN.

Here’s what we know so far. https://arstechnica.com/information-
technology/2019/10/hackers-steal-secret-crypto-keys-for-nordvpn-heres-
what-we-know-so-far/. [accessed:1/24/20].

[3] Chef. [n.d.]. Chef. https://www.chef.io/. [accessed:1/24/20].
[4] FLEX ERA Blog. [n.d.]. Cloud Computing Trends: 2016 State of the Cloud

Survey. https://www.flexera.com/blog/cloud/2016/02/cloud-computing-trends-
2016-state-of-the-cloud-survey/. [accessed:1/24/20].

[5] NC State University. [n.d.]. github:ncstate-linux/infrastructure.
https://github.ncsu.edu/ncstate-linux/infrastructure. [accessed:1/24/20].

[6] Puppet. [n.d.]. Maximizing IT Security with Configuration Manage-
ment. https://puppet.com/resources/whitepaper/maximizing-it-security-
configuration-management/. [accessed:1/24/20].

[7] Puppet Labs. [n.d.]. Puppet. https://puppet.com/. [accessed:1/24/20].
[8] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The seven sins: Security

smells in infrastructure as code scripts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 164–175.

[9] Rayhanur Rahman, Akond Rahman, and Laurie Williams. 2019. Share but Beware:
Security Smells in Python Gists. In Proceedings of the International Conference on
Software, Maintenance and Evolution (Ohio, USA) (ICSME ’19).

[10] Redhat. [n.d.]. Ansible. https://www.ansible.com/. [accessed:1/24/20].

2020-01-24 22:09. Page 2 of 1–2.

https://cwe.mitre.org/

	Abstract
	1 Introduction
	2 Research Plan
	3 Conclusion
	References

