
Using Intel SGX to Improve Private
NN Training and Inference
Ryan Karl, Jonathan Takeshita, Taeho Jung
University of Notre Dame
{rkarl,jtakeshi,tjung}@nd.edu

Abstract
In our modern data-driven society, the importance of leveraging ma-

chine learning (ML) algorithms to make critical business and govern-
ment decisions continues to grow. To dramatically improve performance,
such algorithms are often outsourced to the cloud, but within privacy and
security sensitive domains, this presents several challenges to data own-
ers for ensuring that their data is protected from malicious parties. One
practical solution to these problems comes from Trusted Execution En-
vironments (TEEs), which utilize several hardware and software based
technologies to isolate sensitive computations from untrusted software.
This paper investigates a new technique utilizing a TEE to allow for
the high performance training and execution of Deep Neural Networks
(DNNs), an ML algorithm that has recently been used with great success
in a variety of challenging tasks, including face and speech recognition.

Background and Applications
Machine learning (ML) is increasingly used in a variety of data
driven decision making settings where security is of paramount
importance. However, given the explosive growth in the popular-
ity of cloud-based ML frameworks, which hide the complexity of
ML algorithms from users, the number of attack points continues
to grow. Such frameworks generally require that a data owner
trust the cloud provider with either direct access to their data or
to run computations over their data at a remote location, which
places the privacy of the data at risk [1].

Trusted Execution Environments (TEEs), e.g, Intel SGX, ARM
TrustZone, etc., offer a practical solution to this problem. TEEs
use a variety of hardware and software technologies to isolate
potentially sensitive code from untrusted applications, while still
providing users with the functionality to attest their code was cor-
rectly executed without any tampering from an adversary [8]. It
has been shown that within the context of outsourced ML compu-
tations, TEEs outperform pure cryptographic approaches by sev-
eral orders of magnitude [10].

Fig. 1 Diagram of SGX Enclave Creation
Our approach, inspired by the Slalom framework and verifiable

ASICs [10], is notably different from ML outsourcing based on
purely cryptographic methods [6, 9]. With this framework, com-
putations are delegated between two co-located processors, which
support an outsourcing protocol with efficiency that is orders-of-
magnitude faster than existing work, while not requiring that the
DNN be executed or trained fully in a TEE. By utilizing Freivald’s
algorithm [5], an efficient verifiable scheme that allows for out-
sourced matrix multiplication, we can support private ML train-
ing and inference. We intend to formally prove the correctness
and privacy of our scheme, and evaluate it on multiple canoni-
cal DNNs such as VGG19, ResNet, etc. It has been shown that
compared to running all computations in SGX, outsourcing lin-
ear layers to an untrusted GPU increases throughput by 4x to 11x
for verifiable and private inference [10], and we expect a similar
performance improvement when using this approach for training.

1 Related Work
Although trusted hardware enclaves have been shown in the past
to offer a powerful platform for data analysis [2], it is still chal-
lenging to effectively integrate their functionalities for machine
learning tasks. More specifically, it is difficult to manage the large
size of the data needed while processing the algorithms within
the space constraints of the enclave, and allowing for the efficient
training of the models within the enclaves while still allowing for
flexible updates to model architecture and hyperparameters con-
tinues to be difficult. Also, protecting against side-channel attacks
further complicates the use of TEEs for ML tasks [4].

Previous work introduced Chiron, a system for privacy-
preserving Machine Learning as a service (MLaaS) [6]. Note that
the MLaaS framework assumes that an individual data provider
will train their own ML model using hardware and algorithms
owned by an untrusted party. Chiron manages to increase process-
ing throughput by distributing the model training over multiple
enclaves, at the cost of a small decrease in model accuracy. An-
other similar work features a setup where several data providers
train a shared ML model [9]. This paper does not focus on lever-
aging differential privacy to confront problems relating to model
performance or data size, and instead is interested in hiding mem-
ory access patterns for SGX based training to avoid side-channel
attacks. A similar paper describes Myelin [7], a deep learning
framework which combines ideas from these privacy-preserving
techniques to build a system for fully private ML. This work must

protect multiple data providers from other malicious participants,
to ensure they cannot learn the details of other users’ data dur-
ing the training or inference phases. To maximize efficiency, their
system is constructed to support multi-threaded computation in-
side of enclaves. Myelin enclaves use their own optimized li-
braries built with the TVM complier for training data-oblivious
DL models via incrementally fetched data, and its modular nature
makes distributed training possible.

Our work is most similar to the Slalom framework [10], which
allows for efficient privacy-preserving NN inference (but not
training) using via a TEE. They leverage a cryptographic blinding
method along with Freivald’s algorithm [5], a method for delegat-
ing matrix multiplication to an untrusted GPU that can be verified
for correctness after the computation is complete. This technique
allows for improved performance over a single-threaded enclave.
Contribution: Our work composes DL training in such a way
that the one-time pad scheme can be used in tandem with the ac-
tivation function so that training can be supported and delegated
in an iterative fashion to a co-located GPU, and efficiency can be
further enhanced by utilizing the TVM complier [3] to optimize
a DL library to fit within the TEE. Our approach will expedite
the private training and inference using a TEE by allowing more
computations to occur in untrusted GPU without needing to fre-
quently retrieve intermediate results for processing in the TEE.

2 Our Protocol
For our inference method, inputs and weights are first quantized
and embedded in a field F . Following this, the linear layers are
outsourced and then verified via Freivald’s algorithm [5]. Finally,
the inputs of the linear layers are encrypted with a pre-computed
pseudorandom stream (base on the one-time pad scheme) to guar-
antee their privacy. To simplify notation, we assume there is only
one node per layer in the given neural network, but this could
be easily extended to architectures with multiple nodes per layer.
Notice that only two values are needed to continue the backprop-
agation algorithm for a given layer of the neural network: (1)
the cost Co where Co = a(L) − y)2 where a(L) is the activation
at layer L (L is the total number of layers) and y is the output
of the neural network, and (2) the activation at layer L, denoted
a(L) = σ(w(L)a(L−1) + b(L) where w(L) is the weight at layer
L, a(L−1) is the activation at layer L − 1, and b(L) is the bias at
layer L. For ease of notation we represent the input of the acti-
vation function in future sections as z(L) = w(L)a(L−1) + b(L).
We model the dependencies of the values needed to compute the
backpropagation algorithm as shown in Figure 1.

Fig. 2 Diagram of Backpropagation Dependencies
To compute backpropagation, we take the partial derivative of
Co with respect to w(L), with respect to b(L), and with respect to
a(L−1). More formally, we would compute theses three equations:

∂Co

∂w(L)
=
∂z(L)

∂w(L)

∂a(L)

∂z(L)
∂Co

∂a(L)
= a(L−1)σ′(z(L))2(a(L)−y) (1)

∂Co

∂b(L)
=
∂z(L)

∂b(L)
∂a(L)

∂z(L)
∂Co

∂a(L)
= σ′(z(L))2(a(L)−y) (2)

∂Co

∂a(L−1)
=

∂z(L)

∂a(L−1)
∂a(L)

∂z(L)
∂Co

∂a(L)
= w(L)σ′(z(L))2(a(L)−y) (3)

Now with many activation functions, such as the sigmoid func-
tion, it is not immediately clear how to build an additive masking
scheme as described above to recover the values after delegating
the computations to an untrusted cloud. For example, notice that
for the sigmoid function, which we write as σ(k) = 1

1+e−k
and

the derivative as σ′(k) = 1
1+e−k

(1 − 1
1+e−k

) = σ(k)(1 − σ(k)),
if we were to mask the input x with an additive noise r, for the
first layer of the network we would have w(0)(x + r) + b(0) =

w(0)x + w(0)r + b(0) = a(0) + w(0)r. If we input this into
σ, we have σ(a(0) + w(0)r) = 1

1+e−(a
(0))+w(0)r

= 1

1+e−(a
(0))ew

(0)r
.

If we compute the derivative σ′ we have σ′(a(0) + w(0)r) =
1

1+e−a
(0)
e(w

(0)r)
(1− 1

1+e−a
(0)
e(w

(0)r)
). This means that we would need

to compute the three equations described previously and some-
how remove the random masking value from (a nontrivial task):

∂Co

∂w(L)
= a(L−1)

1

1 + e−a(L)e(w(L)r)
(1− 1

1 + e−a(L)e(w(L)r)
)2(a(L)−y)

(4)

∂Co

∂b(L)
=

1

1 + e−a(L)e(w(L)r)
(1− 1

1 + e−a(L)e(w(L)r)
)2(a(L)−y) (5)

∂Co

∂a(L−1)
= w(L) 1

1 + e−a(L)e(w(L)r)
(1− 1

1 + e−a(L)e(w(L)r)
)2(a(L)−y)

(6)
Note the Arctan function is σ(k) = tan−1(k) and its derivative

is σ′(k) = 1
k2+1

), and we would need to remove the random mask
from the following equations (which is possible if r is known):

∂Co

∂w(L)
= a(L−1)

1

(w(L)r + a(L))2 + 1
2(a(L)−y) (7)

∂Co

∂b(L)
=

1

(w(L)r + a(L))2 + 1
2(a(L)−y) (8)

∂Co

∂a(L−1)
= w(L) 1

(w(L)r + a(L))2 + 1
2(a(L)−y) (9)

Note the SoftMax function is σ(k) = log(1 + ek) and its deriva-
tive is σ′(k) = (1

1+e−x). This means that we would need to remove
the random mask from the following equations:

∂Co

∂w(L)
= a(L−1)

1

1 + e−a(L)e(w(L)r)
2(a(L)−y) (10)

∂Co

∂b(L)
=

1

1 + e−a(L)e(w(L)r)
2(a(L)−y) (11)

∂Co

∂a(L−1)
= w(L) 1

1 + e−a(L)e(w(L)r)
2(a(L)−y) (12)

Although further work is needed to prove the correctness and
privacy of this method for delegating computation between the
SGX and an untrusted processor, this discussion presents what
we hope is an intuitive introduction to how we intend to support
private NN training via SGX.

1. Initialize: The TEE is initialized with the model F and the
input x1, and the untrusted server S is initialized with F.

2. Preprocess: For each element i ∈ [1, n], the TEE generates
random masking value ri by randomly sampling ri ←− Fmi,
and then calculates the associated demasking value as ui =
riWi. They then mask the input xi as x̃i = xi + ri

3. Online: For each element i ∈ [1, n], the TEE sends x̃i to the
untrusted server S, who computes ỹi = x̃iW̃i, and sends ỹi
back to the TEE.

4. Verify: For each element i ∈ [1, n], the TEE checks that the
untrusted S computed ỹi correctly by computing yi = ỹi − ui
and calling Freivalds(yi, xi,Wi). If Freivalds successfully veri-
fies that the ỹi is correct, we continue (otherwise we know that
S behaved maliciously and may abort). The TEE then com-
putes the activation function as xi+1 = σ(yi).

5. Return: The algorithm then returns yn.

Note the TEE outsources computation of n layers of a model
F to the untrusted server S. Each layer is defined by a matrix
Wi of size mi × ni, followed by activation σ. All operations are
over a field F . The Freivalds(yi, xi, wi), function performs k rep-
etitions of Freivalds’ check. The pseudorandom elements ri and
precomputed values ui are only used once.

References
[1] Bae, H., Jang, J., Jung, D., Jang, H., Ha, H., Yoon, S.: Secu-

rity and privacy issues in deep learning (2018)

[2] Chen, F., Wang, C., Dai, W., Jiang, X., Mohammed, N.,
Al Aziz, M.M., Sadat, M.N., Sahinalp, C., Lauter, K., Wang,
S.: Presage: privacy-preserving genetic testing via software
guard extension (2017)

[3] Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E., Wang,
L., Hu, Y., Ceze, L., Guestrin, C., Krishnamurthy, A.: Tvm:
end-to-end optimization stack for deep learning (2018)

[4] Costan, V., Devadas, S.: Intel sgx explained. (2016)

[5] Freivalds, R.: Probabilistic machines can use less running
time. (1977)

[6] Hunt, T., Song, C., Shokri, R., Shmatikov, V., Witchel, E.:
Chiron: Privacy-preserving machine learning as a service
(2018)

[7] Hynes, N., Cheng, R., Song, D.: Efficient deep learning on
multi-source private data (2018)

[8] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V.,
Shafi, H., Shanbhogue, V., Savagaonkar, U.R.: Innovative in-
structions and software model for isolated execution. (2013)

[9] Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A.,
Nowozin, S., Vaswani, K., Costa, M.: Oblivious multi-party
machine learning on trusted processors (2016)

[10] Tramer, F., Boneh, D.: Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware (2018)

