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ABSTRACT
We proposed a novel risk assessment approach for quantifying

the security risk of lateral movement attacks, in which the attack
propagation is modeled as an uncertain graph and the attack impact
is a function of the set of compromised devices.We discussed several

risk-based security metrics, including the expected loss, survival

function, and conditional expectation – the last two measure the

low-probability but high-impact events in the right tail of the loss

distribution. The model is illustrated with a simple example and

several directions for further research are also discussed.

1 INTRODUCTION
Analysis of the risk to cyber-networks of an intruder gaining ac-

cess, moving laterally, and causing loss (e.g. physical damage or

financial loss due to exfiltration of data) is a challenging problem

for a number of reasons. One of these is that we cannot know with

any certainty of an intruder’s ability to find means of moving later-

ally through the network. That uncertainty can be due to lack of

knowledge about the existence of exploitable vulnerabilities, the

uncertainty may be due to lack of knowledge of the attacker’s ca-

pabilities. The addition of security controls such as firewalls can

change the underlying network structure. For example a single

new firewall rule could block one host from accessing a vulnerable

service on another host, changing an uncertain ability to use that

connection to move laterally to a certain inability to move laterally.

Important applications of risk models include assessing the degree

to which one set of controls reduces loss, or the sensitivity of that

loss to hardened protections of particular hosts. Even if the model

parameters and effective losses are not precisely known, risk mod-

els can provide some insight in recognizing when a system is at

high risk for loss, and the points in the system where protection or

lack of it have the greatest impact on loss.

2 MODELING APPROACH
2.1 Attack propagation
A cyber system is modeled as an uncertain graph G = (V, E, 𝑝)
where V = {𝑉1, . . . ,𝑉𝑛} is the set of vertices, E = {𝐸1, . . . , 𝐸𝑚}
the set of directed edges, and 𝑝 = (𝑝1, . . . , 𝑝𝑚) where 𝑝𝑖 is the

probability that edge 𝐸𝑖 exists (e.g., see Figure 1.) The vertices

of the graph represent networked devices; a directed edge from

𝑎 to 𝑏 with weight 𝑝 > 0 means the network’s networking and

access control infrastructure may allow an intruder resident on 𝑎

to reach 𝑏, exploit some vulnerability and occupy 𝑏 as well. The

vector 𝑝 encodes the probability that the vulnerability actually

exists and that the attacker is able to exploit it. A special vertex

𝑠 ∈ V represents the starting point of the attack, also known as

the “initial point of intrusion." The attacker’s goal is to propagate

from 𝑠 to devices in the targeted system and to use those already

compromised devices to launch a cyber-attack, causing a certain

amount of damage and/or financial loss to the targeted system.

Figure 1: Attack propagation model using uncertain graph.

2.2 Attack impact
The model as stated captures the lateral movement and its inherent

complexity but does not express the attack’s impact. In some cases,

the attack impact depends principally on the functionalities and

security ramifications of all the devices that have already been

compromised, denoted as V𝑐 ⊆ V . Moreover, with a static defense

one can assume that the attack impact is a non-decreasing function

ofV𝑐 – as the attacker compromises more and more devices, the

damage they can inflict on the targeted system remains the same if

not increases. (A counter-example might be an active defense which

is able to disconnect an attacker from previously acquired hosts.)

We use 𝐿(𝑉 ) to denote the loss, e.g. financial loss, suffered by host

𝑉 by being compromised, independent of any other hosts that may

be compromised. 𝐿(𝑉 ) might reflect only compromised data at𝑉 , it

might reflect that𝑉 gives the attacker access to a particular critical

network. Abusing notation slightly, we apply function 𝐿 to the set of

compromised hosts V𝑐 as 𝐿(V𝑐 ), and use this to give the total loss

of all hosts inV𝑐 being compromised. If 𝑉1 and 𝑉2 both reach the

same network we might have 𝐿(𝑉1) = 𝐿(𝑉2), but also 𝐿({𝑉1,𝑉2}) =
𝐿(𝑉1) = 𝐿(𝑉2) if there is no added value to compromising𝑉2 if𝑉1 is

already compromised. This observation leads to natural definitions

of 𝐿 being additive, i.e. 𝐿(V𝑐 ) =
∑
𝑉𝑖 ∈V𝑐

𝐿(𝑉𝑖 ), sub-additive, i.e.
𝐿(V𝑐1 ∪V𝑐2 ) ≤ 𝐿(V𝑐1 ) +𝐿(V𝑐2 ) for all disjointV𝑐1 ,V𝑐2 ⊆ V𝑐 , and

super-additive, i.e. 𝐿(V𝑐1 ∪V𝑐2 ) ≥ 𝐿(V𝑐1 ) + 𝐿(V𝑐2 ) for all disjoint
V𝑐1 ,V𝑐2 ⊆ V𝑐 . In general, additive loss functions are natural when

the losses are limited to hosts and the data on them.

3 RISK ASSESSMENT
3.1 Risk concepts
With that we can now define the three fundamental concepts in

risk [2], the realization (or scenario), the probability (or likelihood),

and the impact.

3.1.1 Realization. Let𝑋 = (𝑋1, . . . , 𝑋𝑚) be themultivariate Bernoulli

random variable where 𝑋𝑖 ∈ {0, 1} indicates the random event

that edge 𝐸𝑖 exists. A realization is simply defined as an element

𝑥 ∈ {0, 1}𝑚 def.

= X in the set of all possible outcomes of 𝑋 .

3.1.2 Probability. Assuming that 𝑋𝑖 ’s are mutually independent,

for each realization 𝑥 ∈ X, its probability can be computed as
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P(𝑋 = 𝑥) ≡ P(𝑋1 = 𝑥1, . . . , 𝑋𝑚 = 𝑥𝑚) =
𝑚∏
𝑖=1

(𝑥𝑖𝑝𝑖 + (1−𝑥𝑖 ) (1−𝑝𝑖 )).

Following the ideas of [4] we believe it is possible to extend the

model to one where edge probabilities may be correlated through

couple of stochastically independent Boolean random variables,

provided that the Boolean expressions on all edges are monotone.

3.1.3 Impact. Given a realization 𝑥 ∈ X, we denote 𝐺 (𝑥) def.

=

(V, E(𝑥)) to be the deterministic graph realized from G where

E(𝑥) def.

= {𝐸𝑖 ∈ 𝐸 : 𝑥𝑖 = 1}. Furthermore, we define V(𝑥) ⊆ V to

be the set containing all vertices in𝐺 (𝑥) that can be reached from 𝑠 ;

in other words,V(𝑥) is the set of compromised devices. The impact

of the attack under 𝑥 , which is denoted as 𝐿(𝑥), can be defined as

𝐿(𝑥) def.

=
∑
𝑉𝑖 ∈V(𝑥) 𝐿(𝑉𝑖 ). By definition, 𝐿(𝑋 ) is a function of 𝑋

and therefore is also a random variable. In the risk community, the

distribution of 𝐿(𝑋 ) is also known as the loss distribution and 𝐿(𝑥)
is the loss under realization 𝑥 for 𝑥 ∈ X.

3.2 Risk measures
3.2.1 Expected loss. The most intuitive measure that can be used

to quantity 𝐿(𝑋 ) is arguably the expected loss, defined as

E(𝐿(𝑋 )) =
∑
𝑥 ∈X

𝐿(𝑥)P(𝑋 = 𝑥) (1)

where E denotes the expectation of functions of 𝑋 when 𝑋 is dis-

tributed according to P. A common critic of this measure is that it

gives little insight about extreme events that show up in the tail

of the distribution. Those low-probability high-impact events can

be of significant interest to the risk analyst (e.g. most people are

not risk-neutral but rather risk-averse to large consequence events

[3].) Two risk measures related to extreme events are given below.

3.2.2 Survival function. This risk measure computes the probabil-

ity that the loss is greater than some given threshold 𝐶 . Let X ∈ X
be the event containing all realizations under which the loss is

greater than 𝐶 , i.e. X def.

= {𝑥 ∈ X | 𝐿(𝑥) > 𝐶}. The probability of

X is the sum of the probabilities of all realizations under X, which

can be expressed in a few different ways

P(𝑋 ∈ X) =
∑
𝑥 ∈X

1X (𝑥)P(𝑋 = 𝑥) = E(1X (𝑋 )) (2)

where 1 is the indicator function, i.e. 1X (𝑥) is equal to 1 if 𝑥 ∈ X
and 0 otherwise.

3.2.3 Conditional expectation. This risk measure computes the ex-

pected loss given that it is greater than some threshold 𝐶 , formally,

E(𝐿(𝑋 ) | 𝑋 ∈ X) =

∑
𝑥 ∈X

𝐿(𝑥)P(𝑋 = 𝑥)

P(𝑋 ∈ X) =
1

𝜇

∑
𝑥 ∈X

𝐿(𝑥)P(𝑋 = 𝑥)

(3)

This definition is a generalization of the expected loss in Equation

1. Note that by letting 𝐶 = VaR𝑝 (𝐿(𝑋 )) where VaR𝑝 (𝐿(𝑋 )) is the
value-at-risk [1] of the loss distribution, the conditional expectation

in Equation 3 is equivalent to another well-known risk measure

called the conditional tail expectation [1]. In plain text, the condi-

tional tail expectation measures the expected loss under the worst

(1 − 𝑝) × 100% of the cases, where 𝑝 is usually close to 1.

Figure 2: Loss distributions of the studied network without
and with two candidate cyber defense solutions.

4 EXAMPLE AND FUTURE RESEARCH
To illustrate the use of the proposed model, we apply it to the

network in Figure 1 with V = {𝑠, 𝑎, 𝑏, 𝑐}. Assuming that the loss

function 𝐿 is additive with 𝐿(𝑠) = 0, 𝐿(𝑎) = 1, 𝐿(𝑏) = 2, and

𝐿(𝑐) = 3, the model gives rise to a total of 2
5 = 32 different real-

izations with the possible losses ranging between [0, 6] (Figure 2)
and an expected loss of 1.009. Using a loss threshold of 𝐶 = 3, the

values of the survival function and the conditional expectation are

computed as 0.010 and 5.059, respectively. Suppose the network

administrator decides to harden the system by implementing one

of two candidate cyber defense solutions, one would result in the

removal of link (𝑠, 𝑏) and the other link (𝑎, 𝑏). In either case, the

attacker can still perform lateral movement from 𝑠 to any other

host inV . However, using the same computation, the values of the

expected loss, survival function, and conditional expectation now

become 0.618, 0.006, and 4.497 in the first case (i.e. where link (𝑠, 𝑏)
is removed), compared with 0.927, 0.009, and 4.886 in the second

case. These numbers imply that the first defense solution results in

better risk reduction and therefore should be selected.

One may use this model as the starting point to explore several

research directions. One direction is to study efficient methods

for estimating the proposed risk measures (recall that computing

the expected loss, survival function, or conditional expectation

can be reduced to the S-T CONNECTEDNESS problem [5], which

was proven #P-complete.) Another research direction is to see how

the model can be extended to express, including but not limited

to, (i) a richer class of the loss functions, particularly those that

are non-monotone or monotone but non-additive, (ii) correlations

between edge existences (e.g. see method in [4]), (iii) the attacker’s

preference and decision making process (e.g. repeating successfully

tested exploits rather than trying out new ones), and (iv) dynamic

interactions between the attacker, the defender, and the targeted

system. Lastly, obtaining meaningful and reliable quantitative data

that can be used in this model remains at large an open problem.
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