
Poster: Using Object Capabilities and Effects
to Build an Authority-Safe Module System∗

Darya Melicher
Carnegie Mellon University

Yangqingwei Shi
Carnegie Mellon University

Valerie Zhao
Wellesley College

Alex Potanin
Victoria University of Wellington

Jonathan Aldrich
Carnegie Mellon University

CCS CONCEPTS
• Security and privacy; • Software and its engineering→ Lan-
guage features; Modules / packages; Object oriented languages;

KEYWORDS
Language-based security, capabilities, authority, modules, effects

The principle of least authority states that each component of a
software system must have only the authority necessary for its
execution and nothing else. This principle is a cornerstone of the
security of software applications, but it is difficult to enforce in
practice. Current programming languages, as well as non-linguistic
approaches, do not provide adequate control over the authority of
untrusted modules [1, 5]. To fill this gap, we designed and imple-
mented a capability-basedmodule system that facilitates controlling
the security capabilities of software modules [2]. Furthermore, we
are currently working on augmenting our module system with
an effect system to make our design authority-safe. Our approach
simplifies the process of ensuring that a software system maintains
the principle of least authority, and also allows for attenuation of
module authority [3]. Our design is implemented as part of the
Wyvern programming language [4].

Modules in Wyvern are first-class, allowing us to model the
common case of dynamically loaded modules. We consider modules
representing or using system resources, such as the foreign function
interface, file system, and network, to be security-critical modules
and designate them as resource modules. References to resource
modules are capability-protected, i.e., to access a resource module,
the accessing module must have the appropriate capabilities.

Wyvern’s module system allows a software developer to verify
modules’ capabilities at compile time by looking only at modules’
interfaces and not at their code, thus significantly simplifying the
task of controlling the capabilities a module holds. In addition, from
a theoretical viewpoint, our capability analysis uses a novel, non-
transitive notion of capabilities.1 For example, suppose a third-party
extension module has access to a logging module, which in turn has
∗This poster abstract is partially based on the work presented at ECOOP 2017 [2].
1In the ECOOP 2017 paper [2], we called this “authority,” but the term “capability” is
more consistent with prior literature.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6455-3/18/04.
https://doi.org/10.1145/3190619.3191691

access to the file system. In a capability analysis with a transitive
notion of capabilities, the extension module is said to hold a capabil-
ity for accessing the file system, which is too conservative and leads
to an overapproximation of modules’ capabilities. In contrast, in
Wyvern, the extension module is said to hold a capability to access
the file system only if that capability is explicitly passed to it, and
otherwise, the extension module has only attenuated authority [3]
over the file system via the logging module.

Taking our work a step further, wewould like to provide software
developers with insight into what exactly a module can do with
an imported resource, i.e., the module’s authority. For example, for
a security expert analyzing the scenario above, it is important to
know exactly what effects the logging module has on the file system
and be able to verify that the logging module follows the principle
of least authority. Towards this step, we are currently working on
adding to Wyvern an effect system that can account for the effects
a module has on each resource.

In Wyvern, effects are capability-based, meaning that, in their
definitions, they refer to capabilities. For instance, the logging mod-
ule in the scenario above may have the fileIO.appendToFile effect,
where fileIO is the capability the logging module holds to access
the file system and appendToFile is a developer-chosen name for the
effect of appending to a file in the file system. Another distinct
feature of our effect system design is effect abstraction, which:
• gives software developers flexibility to choose a level of effect
abstraction based on the importance of various resources in
the application (e.g., using the higher-level, logging effects vs.
the lower-level, file-system effects);
• allows software developers to enforce what resource may be
used to implement certain functionality (e.g., the logging mod-
ule must be implemented using the file system resource and
not any other resource).

On the theory side, we are working on using our effect system to
formalize the notion of authority attenuation and prove Wyvern to
be authority-safe.

REFERENCES
[1] M. Maass. 2016. A Theory and Tools for Applying Sandboxes Effectively. Ph.D.

Dissertation. Carnegie Mellon University.
[2] D. Melicher, Y. Shi, A. Potanin, and J. Aldrich. 2017. A Capability-Based Mod-

ule System for Authority Control. In European Conference on Object-Oriented
Programming.

[3] M. S. Miller. 2006. Robust Composition: Towards a Unified Approach to Access
Control and Concurrency Control. Ph.D. Dissertation. Johns Hopkins University.

[4] L. Nistor, D. Kurilova, S. Balzer, B. Chung, A. Potanin, and J. Aldrich. 2013. Wyvern:
A Simple, Typed, and Pure Object-Oriented Language. InWorkshop on Mechanisms
for Specialization, Generalization and Inheritance.

[5] Z. C. Schreuders, T. Mcgill, and C. Payne. 2013. The State of the Art of Application
Restrictions and Sandboxes: A Survey of Application-oriented Access Controls
and Their Shortfalls. Computers and Security 32 (2013), 219–241.

https://doi.org/10.1145/3190619.3191691

	References

