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Ensuring the security of the power grid is critical for national
interests and necessitates new ways to detect power anomalies and
respond to potential failures. In this poster, we describe our efforts
to develop and optimize analysis methodologies for a 1000 : 1 scale
emulated smart grid at the United States Military Academy [2]. In
contrast to previous work [3, 4], we explore historical analysis using
Apache Spark [5] and integrate a Raspberry Pi into our testbed
for real-time anomaly detection. We also implement a software
controlled physical event and fault generator to induce and measure
faults. Figure 1 gives an overview of our system.

Test Bed: USMA’s smart grid test bed emulates a large-scale
power grid using a controllable load to alter the resistance and
inductance of the grid, solar micro-inverters to simulate the power
generated from solar panels, and a capacitor bank to correct the re-
active power of the load. Our IEEE-compliant Phasor Measurement
Units (PMUs) include GPS satellite clocks to ensure measurement
data is time synchronized. The test bed includes a fault generator
that enables users to create indicators of a grid failure. Data col-
lected by the PMUs is sent to a server running OpenPDC which
aggregates the data, time-aligns the measurements, and stores them
in a MySQL database.

Web-Based User Interface: To make historical data human
readable to grid operators, we develop user interface that combines
a jQuery date picker module with Highcharts [1] (an interactive
JavaScript charting library) to enable the grid operator to visualize
data in a defined time interval. A date interval is specified using a
calendar interface which is fed into a SQL request to the database
to query the first 1, 000 readings within that time interval. The data
is visualized on a derivative module of Highcharts, High Stocks [1]
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Figure 1: Overview of hardware and software components.

which enables a user to visualize the data as a whole and “zoom"
into a selected interval for more detailed analysis of the data.

AnomalyDetection: To detect anomalies in historical grid data,
we develop a novel MapReduce algorithm that leverages the clus-
ter computing framework Apache Spark [5]. At a high level, the
algorithm checks a sliding “window” of data for power fluctuations
that meet the criteria of constraint and temporal anomalies (as de-
scribed in [3]). Experimentation is performed on a 36-core compute
node belonging to the DOD Supercomputer Topaz, and a dataset
consisting of 1 million real measurements collected from our test
bed. Our preliminary results show that our algorithm is capable of
detecting constraint and temporal anomalies simultaneously.
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