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ABSTRACT

To date, vulnerability research has focused on the binary classifica-
tion of code as vulnerable or not vulnerable. To better understand
the conditions in which vulnerabilities occur, researchers must
consider the severity of these vulnerabilities in addition to a bi-
nary classification system. To explore this issue, we mined 2,979
publicly disclosed vulnerabilities from Fedora 24 and 25. We then
found severity scores from the Common Vulnerability Scoring Sys-
tem (CVSS) and plotted the distribution of these vulnerabilities.
We found that publicly scored vulnerabilities skew high, with few
vulnerabilities rated lower than a 5. We then explore other poten-
tial issues with the use of CVSS in practice, such as imbalances in
Confidentiality, Availability, and Integrity scores.
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1 INTRODUCTION

Research into vulnerability prediction to assist practitioners in find-
ing vulnerabilities relies, as one might expect, on the quality of
vulnerability datasets used to validate the approaches. Previous
research in this space has focused on predicting vulnerabilities in
a binary fashion (something either has a vulnerability or it does
not) [1, 2]. However, vulnerabilities come in many different forms,
and different vulnerabilities can have drastically different conse-
quences if exposed and exploited by a malicious user. In this paper,
we present a distribution of 2,979 vulnerabilities mined for Fedora
24 and 25 and describe the distribution of the scores and subscores.
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Figure 1: Distribution of severity of vulnerabilities occur-
ring in Fedora 24 and 25.

2 POSTER CONTENT

In our poster, we describe the distribution of vulnerability severity
for the Fedora operating system. We also manually verify the secu-
rity vulnerabilities reported publicly as actual vulnerabilities, and
use keyword searches to identify bugs that should also be included
in vulnerability datasets. Our results can be found in Figure 1.
The distribution of subscores contributes to the overall skew of
CVSS. As an example, three of the subcomponents of the base score
for CVSS v3 are Confidentiality, Integrity, and Availability. For each
of these measures, users can mark their vulnerability as having
LOW impact or HIGH impact, if there is an impact to consider. For
our dataset, 87% , 87%, and 98% of the entries were marked as HIGH
impact for Confidentiality, Integrity, and Availability, respectively.
While there are guidelines on how to apply each of these measures,
a clearer distinction between LOW and HIGH, or a wider range
of options, may make vulnerability data easier to study. In addi-
tion, making scores contextual to the program in question is also
a possibility. For example, a vulnerability that is a “nine” for one
system may only be a “five” for another. Based on these results, we
recommend further work on the curation of validated vulnerability
datasets for researchers to evaluate prediction models with.
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