
Quantifying the Security Effectiveness of Firewalls and DMZs
Huashan Chen

UT San Antonio

huashan.chen@utsa.edu

Jin-Hee Cho

US Army Research Lab

jin-hee.cho.civ@mail.mil

Shouhuai Xu

UT San Antonio

shxu@cs.utsa.edu

ABSTRACT
Firewalls and Demilitarized Zones (DMZs) are two mechanisms

that have been widely employed to secure enterprise networks. De-

spite this, their security effectiveness has not been systematically

quantified. In this paper, we make a first step towards filling this

void by presenting a representational framework for investigat-

ing their security effectiveness in protecting enterprise networks.

Through simulation experiments, we draw useful insights into the

security effectiveness of firewalls and DMZs. To the best of our

knowledge, these insights were not reported in the literature until

now.

CCS CONCEPTS
• Security and privacy → Distributed systems security; Net-
work security; Firewalls;

KEYWORDS
Firewalls, Demilitarized Zones, security metrics, security quantifi-

cation, cybersecurity dynamics, preventive dynamics

ACM Reference Format:
Huashan Chen, Jin-Hee Cho, and Shouhuai Xu. 2018. Quantifying the Secu-

rity Effectiveness of Firewalls and DMZs. In HoTSoS ’18: Hot Topics in the
Science of Security: Symposium and Bootcamp, April 10–11, 2018, Raleigh, NC,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3190619.

3190639

1 INTRODUCTION
Firewalls and DMZs are two widely employed security mechanisms.

On one hand, firewalls enforce security policies to filter or block

unauthorized communication traffic between the outside network

and an enterprise network or between the sub-networks within an

enterprise network. The filtering operation can be conducted at the

packet layer, the flow layer (i.e., examining flow-level content), and

the application layer (i.e., inspecting application-layer data) [1, 8].

For the purpose of the present study, we focus on the functionality

of firewalls in filtering unauthorized communication traffic, while

safely assuming away the implementation details (e.g., the layers at

which filtering is conducted). On the other hand, DMZs isolate the

external network from an enterprise network while providing the

external users with interfaces to access the enterprise’s Internet-

facing servers (e.g., websites and email servers). Intuitively, DMZs

may slow down, or even prevent, some attacks against enterprise

networks.

Despite the wide use of firewalls and DMZs, their security ef-

fectiveness has yet to be quantified and characterized. To the best

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor, or affiliate of the United States government. As such, the United States

government retains a nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for government purposes only.

HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6455-3/18/04. . . $15.00

https://doi.org/10.1145/3190619.3190639

of our knowledge, no prior studies have aimed at systematically

answering the following question: How much security is gained by
employing firewalls and/or DMZs? The void of this knowledge mo-

tivates the present study. The existence of the void is true despite

that quantifying security is one of the well-recognized open prob-

lems [15, 18, 20]. Indeed, the importance of quantifying security

has led to industrial efforts that focus on software vulnerabilities

(e.g., the Common Vulnerability Scoring System or CVSS [17]) and

academic investigations that treat an entire network as a whole

(e.g., [4, 11, 20, 24]). However, the aforementioned motivational

question remains unaddressed.

Our contributions. This work makes a first step towards quanti-

fying the security effectiveness of firewalls and DMZs, by making

two contributions. First, we propose a novel framework for model-

ing firewalls and DMZs in protecting enterprise networks, while

treating software components as “atoms” in describing enterprise

networks. Compared with the existing studies that aim to quan-

tify security by treating an entire network as a whole, the present

study have two salient features. (i) Existing studies often make the

independence assumption between the attack events. For example,

attacks against a victim (e.g., computer) are assumed to be indepen-

dently waged bymultiple compromised computers [2, 11, 24, 29, 30].

Although there have been some efforts to weaken the assumed in-

dependence [4, 26, 27], they can only accommodate some specific

kinds of dependence rather than completely eliminating the matter

of independence. The present study neither makes the indepen-

dence assumption (unlike [2, 24, 29, 30]) nor assumes any specific

kind of dependence (unlike [4, 26, 27]). We achieve this by devel-

oping a framework to allow for simulation studies, rather than for

analytic treatment. (ii) The present study accommodates the threat

models known as Lockheed Martin’s Cyber Kill Chain [9] and Man-

diant’s Attack Life Cycle [14]. These threat models accommodate

realistic attacks that are not considered in the existing studies men-

tioned above, which investigate epidemic spreading over arbitrary
network structures [2, 24, 29, 30] or the more general notion of

cybersecurity dynamics [7, 28, 31, 32].

Second, the framework guides us to conduct systematic simu-

lation experiments. Our preliminary experiments lead to the fol-

lowing findings. (i) When the applications and operating systems

(OSes) have few or too many vulnerabilities, firewalls and DMZ

do not have a significant impact on security. This is because in

the former case, the network cannot be attacked, with or without

employing firewalls and DMZs, and in the latter case, these defense

mechanisms cannot prevent attacks from succeeding. (ii) When the

OSes are not vulnerable but the applications are, security effective-

ness of firewalls and DMZs decreases as the fraction of vulnerable

applications increases. (iii) When effective, employing perimeter

firewalls alone has little impact on security, but further employing

DMZ and internal firewalls (to separate an enterprise network into

smaller ones) will substantially increase security. This justifies the

https://doi.org/10.1145/3190619.3190639
https://doi.org/10.1145/3190619.3190639
https://doi.org/10.1145/3190619.3190639

HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA Huashan Chen, Jin-Hee Cho, and Shouhuai Xu

practice of employing both DMZ and firewalls. (iv) When effective,

employing perimeter firewall and DMZ increases security of the

sever applications.

The rest of this paper is structured as follows. Section 2 describes

the proposed framework. Section 3 presents the simulation exper-

iments and the resulting insights. Section 4 reviews related prior

studies. Section 5 concludes the paper with open problems for future

research.

2 THE FRAMEWORK
The proposed framework consists of the following models to repre-

sent: (i) an enterprise network; (ii) vulnerabilities in the software

stacks and vulnerabilities of human users; (iii) defense mechanisms

to protect the network; and (iv) attacks against the network. The

framework also includes security metrics to measure the outcome

of attack-defense interactions. Due to space limit, we summarize

the notations in Table 1 of the Appendix.

2.1 Representation of Networks
An enterprise network consists of n computers (including user

computers and servers). The computers communicate with other

computers in or outside the enterprise network.

2.1.1 Representation of Software Stacks. A computer runs a soft-
ware stack, which has two layers: application andOS. AnOS contains
kernel functions and device drivers.

Representation of applications. An application consists of its

own program code and the code of the software components upon

which they depend (e.g., libraries). Each application is treated as an

“atomic” entity because of the following: (i) each user process is an

instance of an application; (ii) a vulnerable application can be an

entry-point for remotely penetrating into a computer (e.g., remote

code execution); (iii) an application is a privilege entity because if

any part of an application is compromised, the entire application is

compromised; and (iv) a system call from a malicious application

can compromise the OS.

Let APP denote the universe of applications running in an en-

terprise network of n computers. For computer i in the network,

we denote by appi,z the z-th application running on computer i ,
where 1 ≤ i ≤ n and appi,z ∈ APP.

We classify applications into two types: clients (e.g., browsers,

email clients) and servers (e.g., web servers, email servers, SQL

servers). Server applications can be further divided into Internet-
facing servers (i.e., accessible from the Internet) and internal servers
(i.e., accessible from computers in the network but not from the In-

ternet). We define the following mathematical function to represent

this attribute:

η : APP → {0, 1, 2} (1)

such that ‘0’ means client applications, ‘1’ means Internet-facing

server applications, and ‘2’ means internal server applications. This

classification is important because different kinds of applications

play different roles in security. For example, a client applicationmay

be vulnerable to social engineering attacks (because the user may be

less trained) while a server application may be not (because a server

administrator may be better trained); an external attacker may

directly compromise an Internet-facing server, but not an internal

server unless the attacker already penetrated into the network.

Representation of OSes. An OS runs in the kernel space to man-

age computer hardware and software resources. We propose treat-

ing each OS function, rather than the entire OS, as an “atomic”

entity because (i) applications often make system calls (syscalls)
to invoke OS functions; and (ii) an OS is not compromised unless

a vulnerable OS function is exploited (for example) by a syscall
incurred by a malicious application.

Let OS denote the universe of OSes running in an enterprise

network of n computers. For computer i in the network, 1 ≤ i ≤ n,
we denote by osi the OS it runs and by fi,z ∈ osi the z-th OS (kernel
or device driver) function in osi .

2.1.2 Representation of Computer i asGi = (Vi ,Ei). We propose

representing computer i as a graph

Gi = (Vi ,Ei), (2)

where Gi and Ei are defined below. For obtaining Vi , let Vi,app
denote the set of applications running on computer i and Vi,os
denote the OS of computer i . Then, we define

Vi = Vi,app ∪Vi,os . (3)

Vi,app

fi,1

appi,1 appi,2 appi,3

Vi,os

osi

appi,4

fi,2 fi,3 fi,4 fi,5 fi,6 fi,7 fi,8 fi,9 fi,10

Figure 1: A graph-theoretic representation of computer i,
Gi = (Vi ,Ei), in an enterprise network.

Fig. 1 shows a toy example of computer i , which runs four appli-

cations appi,1, appi,2, appi,3 and appi,4. The OS has 10 functions,
namely fi,1, . . . , fi,2. In this example, we have

Vi,app = {appi,1, appi,2, appi,3, appi,4}, (4)

Vi,os = osi = { fi,1, fi,2, fi,3, . . . , fi,9, fi,10}. (5)

For obtaining Ei , we need to accommodate the security-related

relations between the “atomic” entities mentioned above. We pro-

pose accommodating two kinds of relations, respectively dubbed

dependence relation and inter-application communication relation.

The dependence relation represents the caller-callee relation be-

tween two atomic software entities running on the same computer.

There are two kinds of such relations: the caller-callee relation be-

tween applications and OS functions, denoted by an arc set Ei,af ;
the caller-callee relation between two OS functions (e.g., an ap-

plication may make a syscall, which may further call another OS

function), denoted by an arc set Ei,f f . The dependence relation
should be accommodated because a vulnerability in an atomic en-

tity on a caller-callee sequence can cause a successful exploitation.

The inter-application communication relation, described by arc set

Ei,aa , represents the communications between two applications

running on the same computer. This relation should be accommo-

dated because it can be exploited to wage attacks. For example, if

one application is allowed to communicate with another applica-

tion, the compromise of the former can cause the compromise of

Quantifying the Security Effectiveness of Firewalls and DMZs HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA

the latter assuming the latter has a vulnerability. In summary, we

have:

• Ei,af represents the dependence relation between the appli-

cations and the OS functions running on computer i . For
example, in Fig. 1 we have Ei,af = {(appi,1, fi,1),
(appi,1, fi,3), (appi,2, fi,1), (appi,2, fi,5), (appi,3, fi,1),
(appi,3, fi,6), (appi,4, fi,4), (appi,4, fi,8), (appi,4, fi,10)}.

• Ei,f f represents the dependence relation between the OS

functions running on computer i . For example, in Fig. 1 we

have Ei,f f = {(fi,1, fi,2), (fi,10, fi,7)} because fi,1 calls fi,2
and fi,10 calls fi,7.

• Ei,aa represents the inter-application communication rela-

tion between the applications running on computer i . For
example, in Fig. 1 we have Ei,aa = {(appi,1, appi,2),
(appi,1, appi,4)} meaning that appi,1 can initiate communi-

cations with appi,2 and appi,4 and that the compromise of

appi,1 can cause the compromise of appi,2 and appi,4, as-
suming the latter have vulnerabilities that can be exploited

from appi,1.
Then, we define

Ei = Ei,af ∪ Ei,f f ∪ Ei,aa . (6)

2.1.3 Representation of the Inter-Computer Communication Re-
lation within an Enterprise Network as Arc Set E0. This relation
describes which applications running on one computer can com-

municate with which applications running on another computer

in the enterprise network. It should be accommodated because it

reflects how attacks may be waged from a compromised computer

to a vulnerable one, and because inter-computer communications

are often monitored by firewalls.

appi,1 appi,3

Vi, os

Computer i

appi,2

fi,1

osi

Vi, app

fi,2 fi,3 fi,4 fi,5 fi,6 fi,7 fi,8 fi,9 fi,10

appi,4 appj,1 appj,3

Vj, os

Computer j

appj,2

fj,1

osi

Vj, app

fj,2 fj,3 fj,4 fj,5 fj,6 fj,7 fj,8 fj,9 fj,10

Figure 2: Illustration of the inter-computer communication
relation E0 = {(appi,2, appj,1), (appj,1, appi,2)}.

Fig. 2 illustrates the inter-computer communication relation be-

tween computer i and computer j , which are respectively described

by Gi = (Vi ,Ei) and G j = (Vj ,Ej) as mentioned above. We use

an arc set E0 to represent the inter-computer communication re-

lation between the applications running on computer i and the

applications running on computer j, namely

E0 ⊆ {Vi,app ×Vj,app } ∪ {Vj,app ×Vi,app }, (7)

where 1 ≤ i, j ≤ n and i , j. In the example illustrated in Fig. 2,

suppose appi,2 is a browser and is allowed to communicate with

web server appj,1. Then, we have

E0 = {(appi,2, appj,1), (appj,1, appi,2)},

where arc (appi,2, appj,1) reflects that vulnerable web server appj,1
can be compromised by attacks that are waged from browser appi,2,
and arc (appj,1, appi,2) reflects that vulnerable browser appi,2 can

be compromised by malicious web server appj,1 via, for example,

the “drive by” download attack.

In general, we distinguish the aforementioned two kinds of at-

tacks by partitioning E0 into E00 and E01, such that E0 = E00 ∪ E01,
E00 represents the attacks against clients (including peers in peer-

to-peer application), and E01 represents the attacks against servers.
More specifically, we have:

• (appj,y , appi,x) ∈ E00 can be abused to launch attacks from

a server or client or peer application appj,y against a client

application appi,x , where η(appi,x) = 0.

• E01 = E0 \ E00: Any inter-computer communication other

than what are accommodated by E00.

We stress that e ∈ E0 often corresponds to a communication or

routing path, rather than a physical communication link.

2.1.4 Representation of the Internal-External Communication
Relation as Arc Set E∗. The computers in an enterprise network

often need to communicatewith computers outside of the enterprise

network. Similarly, computers outside of the network often need

to communicate with computers in an enterprise network. Since

these communications can be leveraged to wage attacks, we use the

internal-external communication relation to accommodate them.

We use arc set E∗,io = {(appi,z , ∗)} to denote the internal-
to-external communication relation from computer i to any ex-

ternal computer outside of the network, and use arc set E∗,oi =
{(∗, appj,z)} to denote the external-to-internal communication re-

lation from any computer outside of the network to computer j.
Then, we define

E∗ = E∗,io ∪ E∗,oi . (8)

We stress that e ∈ E∗ always corresponds to a communication path

going through a number of routers.

2.1.5 Representation of an Enterprise Network as G = (V ,E).
Putting together the pieces mentioned above, we represent a net-

work of n computers as G = (V ,E), where

V = V1 ∪ . . . ∪Vn and E = E1 ∪ . . . ∪ En ∪ E0 ∪ E∗. (9)

For convenience, we may use v ∈ V to indicate an arbitrary

node v , and use V(app) and V(os) to respectively denote the set of

applications and OSes running in the network, namely

V(app) = V1,app ∪ . . . ∪Vn,app , (10)

V(os) = V1,os ∪ . . . ∪Vn,os . (11)

2.2 Representation of Vulnerabilities
We consider two types of vulnerabilities [18]: software vulnerabili-
ties and human vulnerabilities.

2.2.1 Representation of Software Vulnerabilities. LetVUL denote
the set of software vulnerabilities in the software stacks of the

computers in an enterprise network. We define a mathematical

function

ϕ : V → 2
VUL

(12)

such that ϕ(v) represents the set of software vulnerabilities in node

v ∈ V (i.e., the software program running at node v). Note that
ϕ(v) = ∅ means that v is not vulnerable.

Since different kinds of software vulnerabilities can incur differ-

ent consequences, each vulnerability vul ∈ VUL has the following

attributes:

HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA Huashan Chen, Jin-Hee Cho, and Shouhuai Xu

• Access required: This attribute describes what kind of ac-

cess an attacker must have in order to exploit vul ∈ VUL,
namely whether or not the attacker has to have local access

for exploiting vul. This attribute of vulnerabilities can be

defined by predicate loc such that loc(vul) = 0 means that

exploitation of vul requires local access and loc(vul) = 1

otherwise.

• Zero-day: This attribute describes whether a vulnerability
vul ∈ VUL is zero-day or not. This is important because

the exploitation of a zero-day vulnerability often cannot be

detected. We define predicate zd such that zd(vul) = 0 refers

to known vul while zd(vul) = 1 indicates zero-day vul.
• Privilege escalation: This attribute describes the security

consequence that can be caused by exploiting a vulnera-

bility. We define priv such that priv(vul) = 0 means that

the exploitation of vul will not grant the attacker the root
privilege while priv(vul) = 1 means otherwise. This at-

tribute is important because remote-2-user attacks [5, 6]

exploit vul’s with loc(vul) = 1 and priv(vul) = 0, remote-
2-root attacks [10, 19, 21] exploit vul’s with loc(vul) = 1 and

priv(vul) = 1, and user-2-root attacks [6, 19, 23] exploit vul’s
with loc(vul) = 0 and priv(vul) = 1.

2.2.2 Representation of Human Vulnerabilities. Users of the com-

puters may be subject to social engineering attacks. To model hu-

man vulnerabilities to social engineering attacks, we define mathe-

matical function

ψ : V → [0, 1] (13)

such thatψ (v) for v ∈ Vi represents the probability that the user of

computer i is vulnerable to social engineering attacks.

2.3 Representation of Defenses
2.3.1 Representation of Firewalls. A firewall can monitor the

inbound and outbound traffic of an enterprise network or the traf-

fic between sub-networks of the enterprise network. A firewall

has multiple physical interfaces, each corresponding to an internal

sub-network or the external network [8]. If needed, multiple inter-

faces (e.g., multiple sub-networks) can be grouped into a security
zone such that the traffic within a security zone is not monitored

but the inbound and outbound traffic of a security zone is mon-

itored [13]; otherwise, each interface corresponds to a security

zone. The monitored traffic will be examined according to some

security policies or rules, which specify what kinds of traffic are

authorized (i.e., denial by default). For the purpose of the present

study, firewalls are configured to only permit communications over

the aforementioned inter-application communication relation E0
and the internal-external communication relation E∗, which reflect

the needs of the applications.

2.3.2 Representation of DMZs. DMZ is a security zone that

typically hosts Internet-facing servers [25]. DMZ can isolate an

enterprise network from the outside network by making external

computers have no legitimate reasons to directly communicate with

the computers in the enterprise network. For the purpose of the

present paper, the implementation details of DMZs can also be

safely assumed away. Nevertheless, we mention that a DMZ can

be attained by using a firewall, which may have three kinds of in-

terfaces: internal interfaces for connecting to the internal network,

external interface(s) for connecting to the external network, and

DMZ interface for connecting to a DMZ [22].

2.3.3 Representation of Other Defenses. We consider, in addition

to firewalls and DMZs, the following defenses, while deferring the

incorporation of others to future research.

HIPS. HIPS can enforce a tight or loose policy. A tight policy means

that HIPS running on computer i monitors Vi,app and Ei , which
specifies the legitimate applications as well as which program en-

tities are authorized to call which other entities. A loose policy
means that the HIPS does not operate as such (e.g., the HIPS does

not prevent an attacker with a user privilege (by compromising

an application) running an arbitrary malicious program or making

unauthorized calls to OS functions).

HIPS may be able to block privilege escalation attempts. Let ζ
denote the probability that privilege escalation attempts are blocked

by HIPS. It is realistic to assume that HIPS runs in the kernel space

(i.e., HIPS is compromised when the OS is compromised) and that

a compromised HIPS can behave arbitrarily (i.e., Byzantine). Since

tracking Vi,app and Ei for enforcing a tight policy is costly, we

will identify conditions under which the defender does not have to

make HIPS enforce a tight policy. This type of insights are useful

because more efficient defense can be achieved without sacrificing

security.

HIPS may also be able to block other attacks. Let α be the proba-

bility that any attack, other than privilege escalation, is blocked by

HIPS.

NIPS. NIPS may be able to prevent attacks that attempt to exploit

some known software vulnerabilities. Denote the number of appear-
ances of known vulnerabilities by K in an enterprise network (e.g.,

3 appearances of the same vulnerability in different computers lead-

ing to K = 3). In the ideal case, the defender should have patched

all known vulnerabilities, meaning K = 0; in practice, some known

vulnerabilities may not be patched. Suppose NIPS can block attacks

that attempt to exploit a k fraction of the known vulnerabilities

(i.e., k × K vulnerabilities cannot be exploited), where 0 ≤ k ≤ 1.

2.4 Representation of Attacks
We describe attacks via two aspects: the set of exploits available to
an attacker, and the strategy employed by the attacker. To describe

attack consequences, we define

state(v, t) : V ×T → {0, 1}

such that state(v, t) = 0 means v ∈ V is not compromised at time

t ∈ [0,T] and state(v, t) = 1 means v is compromised at time t ,
where T is the time horizon of interest.

2.4.1 Representation of Exploits. LetX denote the set of exploits

that are possessed by the attacker. We define

ρ : X × VUL → [0, 1] (14)

such that ρ(x , vul) represents the success probability when applying
exploit x ∈ X against vulnerability vul ∈ VUL.

In order to describe the exploitation capability of the attacker,

let us denote by A the number of appearances of zero-day vulnera-

bilities in an enterprise network, by B the number of appearances

of known vulnerabilities against which exploits can be blocked by

the defender where B = k ×K , and byC the number of appearances

of known vulnerabilities against which exploits cannot be blocked

Quantifying the Security Effectiveness of Firewalls and DMZs HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA

by the defender whereC = (1 − k) ×K . We represent the attacker’s

exploitation capability by (a,b, c), where a is the percentage of zero-
day vulnerabilities that can be exploited by the attacker (i.e., the

attacker has the exploits for a ×A zero-day vulnerabilities), b is the

percentage of known vulnerabilities that can be exploited by the

attacker but the exploitation attempts are blocked by the defender

(i.e., the exploitation of these b ×B vulnerabilities will result in vein

to the attacker), and c is the percentage of known vulnerabilities

that can be exploited by the attacker without being blocked by the

defender (i.e., the exploitation of these c × C vulnerabilities will

succeed). The higher the a and c , the more attacks will succeed; the

higher the b, the more attacks will be blocked.

2.4.2 Representation of Attack Strategy. For representing attack

strategies, we use the attack lifecycle model highlighted in Fig. 3,

which is adapted from Lockheed Martin’s Cyber Kill Chain [9] and

Mandiant’s Attack Life Cycle [14]. The model includes six phases

that are elaborated below.

Reconnaissance Weaponization
Initial

compromise
Further

reconnaissance
Privilege

escalation
Lateral

movement

Figure 3: An attack lifecycle model adapted from Lockheed
Martin’s Cyber Kill Chain [9] and Mandiant’s Attack Life
Cycle [14].

Phase 1: Reconnaissance. Recall that an enterprise network is

described by G = (V ,E), where V is the node set and E represents

that legitimate communication relations. Reconnaissance means

gathering information about a target enterprise network, including

the communication topologyG and the vulnerabilities in the soft-

ware stacks of the computers in the network. The outcome of an

reconnaissance process can be described by the attacker’s view of

the target network, denoted by G ′ = (V ′,E ′), where V ′ ⊆ V and

E ′ ⊆ E (i.e., G ′
is a sub-graph of G induced by the reconnaissance

process). For each v ∈ V ′
, the attacker may further obtain infor-

mation such as η(v), namely the type of the application running at

node v; ϕ(v), namely the set of software vulnerability v contains;

and ψ (v), namely the human factor vulnerability of v . Moreover,

for each vulnerability vul ∈ ϕ(v) where v ∈ V ′
, the attacker may

further obtain information such as loc(vul), namely whether the

vulnerability can be remotely exploited or not; zd(vul), whether
the vulnerability is zero-day or not; and priv(v), whether the ex-
ploitation of the vulnerability can lead to a privilege escalation or

not.

We propose using ω = |V ′ |/|V | to describe the attacker’s initial
reconnaissance capability. It is an interesting future study to investi-

gate its alternate definitions, such as |E ′ |/|E | or (|V ′ | + |E ′ |)/(|V | +

|E |).
Phase 2: Weaponization. Weaponization is for designing and de-

veloping a penetration plan according to the information gathered

from the reconnaissance phase and the exploits possessed by the

attacker. In particular, given the outcomeG ′ = (V ′,E ′) of the recon-
naissance phase and the attacker’s set of exploits X , the attacker
now determines the nodes v ∈ V ′

suitable for targets. Since initial

compromises are often geared towards applications and there are

two kinds of nodes in general (i.e., client application vs. server

application), a candidate node for initial compromise should satisfy

one of the following two conditions: one for client applications and

the other for server applications.

On one hand, a candidate client node for initial compromise

should satisfy the following conditions: (i) v ∈ Vi , where Vi ⊆ V ′
,

runs a client application app ∈ APP on computer i , namelyη(app) =
0; (ii) v is involved in some internal-external communication rela-

tion, meaning (v, ∗) ∈ E∗,io∩E
′
or (∗,v) ∈ E∗,oi∩E

′
; (iii) either app

contains a software vulnerability, namely ∃vul ∈ ϕ(v) = ϕ(app),
the app contains no vulnerability but an OS function called by the

app contains a software vulnerable (i.e., there existing an access

path from a secure app to a vulnerable OS function).

In order to precisely test the preceding condition (iii), we say

that there is a dependence path between two nodes v and u in

the same computer, say computer i or Vi , if there is, according

to the dependence relation defined above, a path of dependence

arcs starting from node v and ending at node u (i.e., the software

program running at nodeu can be called, or reached, by the software

program running at node v). We define the predicate

dep_path(v,u) : Vi ×Vi → {True, False} (15)

such that dep_path(v,u) = True if and only if there is a path of

dependence arcs from v to u. As a result, the preceding condition
(iii) can be formally described as

(∃vul ∈ ϕ(v),∃x ∈ X : ψ (v) = 1 ∧ ρ(x , vul) > 0) ∨

(∃vul ∈ ϕ(u),∃x ∈ X : (u ∈ Vi,os) ∧ (v ∈ Vi,app) ∧ (16)

dep_path(v,u) ∧ψ (u) = 1 ∧ ρ(x , vul) > 0)).

Putting the preceding discussion together, we define the set of

candidate client applications for initial compromise as:

Weapon
0
= {v ∈ (V ′ ∩Vi,app) : η(v) = 0 ∧

(((v, ∗) ∈ E∗,io ∩ E ′) ∨ ((∗,v) ∈ E∗,oi ∩ E ′)) ∧

condition (16) holds}. (17)

On the other hand, a candidate server node v ∈ Vi,app for initial

compromise should satisfy the following conditions: (i) v runs

an Internet-facing server application app ∈ APP on computer i ,
meaning η(app) = 1 and (∗, app) ∈ (E∗,oi ∩ E ′); (ii) either the
app contains a remotely-exploitable software vulnerability, namely

∃vul ∈ ϕ(app) such that loc(vul) = 1, or the app can call an OS

function that contains a remotely exploitable vulnerability. Similar

to the discussion above, the preceding condition (ii) can be precisely

described as

(∃vul ∈ ϕ(v),∃x ∈ X : loc(vul) = 1 ∧ ρ(x , vul) > 0) ∨

(∃vul ∈ ϕ(u),∃x ∈ X : (u ∈ Vi,os) ∧ (v ∈ Vi,app) ∧ (18)

dep_path(v,u) ∧ loc(vul) = 1 ∧ ρ(x , vul) > 0).

Therefore, we can define the set of candidate server applications

for initial compromise as:

Weapon
1
= {v ∈ V ′ ∩Vi,app : η(v) = 1 ∧

(∗,v) ∈ (E∗,oi ∩ E ′) ∧ condition (18) holds}. (19)

By combining the two kinds of initial compromises, we obtain

the set of candidates for initial compromise as:

Weapon =Weapon
0
∪Weapon

1
. (20)

HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA Huashan Chen, Jin-Hee Cho, and Shouhuai Xu

Phase 3: Initial compromise. After determiningWeapon accord-

ing to (20), the attacker selects a subset ofWeapon for initial com-

promise according to some strategy. An example strategy consid-

ered for our simulation study is:

• The attacker prefers using exploits against zero-day vulnera-

bilities to using exploits against known vulnerabilities. This

is because exploits against zero-day vulnerabilities cannot

be detected by the defense and using such exploits would

enhance the attacker’s chance in penetrating into the target

enterprise network.

• The attacker strives to compromise the OSes whenever pos-

sible. This is because the compromise of an OS automatically

causes the compromises of the applications running on top

of it. This can also reduce the chance that the attack is de-

tected when compared with the strategy that the attacker

first compromises the vulnerable applications and then com-

promises the vulnerable OS beneath them (in this case, the

attack against the applications may be detected by the de-

fense because the defense may be employed in the kernel

space).

• If the attacker cannot compromise the OS on computer i , then
the attacker will strive to compromise all of the vulnerable

applications on computer i .

According to this example strategy, the attacker can identify the

set of suitable nodes for initial compromise, denoted by

IniComp = {v ∈ Weapon : attacker selects v to attack}.

Phase 4: Further reconnaissance. Further reconnaissancemeans

that once the attacker compromises a computer in the enterprise

network, the attacker will attempt to obtain information about

the sub-graph G −G ′
, whereG = (V ,E) represents the enterprise

network as well as the application-induced dependence relation,

inter-application communication relation, and internal-external

communication relation, and G ′ = (V ′,E ′) is the sub-graph ob-

tained by the attacker at the initial reconnaissance phase. Since

further reconnaissance can be conducted recursively, we also use

G ′ = (V ′,E ′) to denote the outcome after further reconnaissance,

while noting that G ′ = (V ′,E ′) increases with further reconnais-

sance. This is so because, supposing appi,1 ∈ V ′
(i.e., the attacker

already knew obtained information about the node v at which ap-

plication appi,1 runs), arcs of the kind (appi,1, appj,2) ∈ (E0 ∩ E ′)

and the kind (appm,2, appi,1) ∈ (E0 ∩ E ′) will be discovered by the

attacker, and so are nodes appj,2 and appm,2, where j,m , i . There-
fore, the attacker will update its information about the enterprise

network as

V ′ = V ′ ∪ {appj,2, appm,2}

E ′ = E ′ ∪ {(appi,1, appj,2), (appm,2, appi,1)}.

Phase 5: Privilege escalation.After compromising an application

v ∈ Vi,app but not the underlying OS, the attacker would strive to

achieve privilege escalation to compromise the underlying OS based

on the outcome of further reconnaissance. This can be achieved by

compromising some vulnerable OS functions. Another important

factor affecting the success of privilege escalation is whether the

HIPS enforces the aforementioned tight or loose policy.
When the HIPS enforces a tight policy with respect to Ei , the

attacker cannot leverage a compromised application running at

v ∈ Vi,app to compromise the underlying OS via a vulnerable

function running at u ∈ Vi,os unless (v,u) ∈ Ei . More specifically,

a privilege escalation occurs under the following condition:

∃v ∈ Vi,app ,∃u ∈ Vi,os ,∃vul ∈ ϕ(u),∃x ∈ X :

state(v, t) = 1 ∧ dep_path(v,u) ∧ ρ(x , vul) > 0. (21)

When the HIPS enforces a loose policy, the attacker can leverage

a compromised application running at v ∈ Vi,app to compromise

the underlying OS via a vulnerable function running at u ∈ Vi,os
even if (v,u) ∈ Ei . More specifically, a privilege escalation occurs

under the following condition:

∃v ∈ Vi,app ,∃u ∈ Vi,os ,∃vul ∈ ϕ(u),∃x ∈ X :

state(v, t) = 1 ∧ ρ(x , vul) > 0. (22)

Phase 6: Lateral movement. Lateral movement means that after

penetrating into an enterprise network, the attacker can leverage

the inter-computer communication relation e ∈ E ′ to attack other

computers in the network. This can occur in one of the following

two scenarios, depending on the new victim is a client (including a

peer in peer-to-peer applications) or server application.

In the first scenario, the attacker has compromised a client or

server or peer application on computer i and attempts to use the

inter-computer communication relation e ∈ (E ′ ∩ E00) to compro-

mise a client application on computer j. This occurs under one of
the following two conditions:

(∃u ∈ Vj,app ,∃vul ∈ ϕ(u),∃x ∈ X : state(v, t) = 1 ∧

state(u, t) = 0 ∧ (v,u) ∈ (E ′ ∩ E00) ∧

ψ (u) = 1 ∧ ρ(x , vul) > 0); (23)

∨(∃u ∈ Vj,app ,∃w ∈ Vj,os ,∃vul ∈ ϕ(w),∃x ∈ X :

state(v, t) = 1 ∧ state(u, t) = 0 ∧

(v,u) ∈ (E ′ ∩ E00) ∧ψ (u) = 1 ∧

dep_path(u,w) ∧ ρ(x , vul) > 0). (24)

In the second scenario, the attacker has compromised a client

or server application on computer i and attempts to use the inter-

computer communication relation e ∈ (E ′ ∩ E01) to compromise

a server application on computer j. This occurs under one of the
following two conditions:

(∃u ∈ Vj,app ,∃vul ∈ ϕ(u),∃x ∈ X : state(v, t) = 1 ∧

state(u, t) = 0 ∧ (v,u) ∈ E ′ ∩ E01 ∧

ρ(x , vul) > 0 ∧ loc(vul) = 1); (25)

∨(∃u ∈ Vj,app ,∃w ∈ Vj,os ,∃vul ∈ ϕ(w),∃x ∈ X :

state(v, t) = 1 ∧ state(u, t) = 0 ∧ (v,u) ∈ E ′ ∩ E01 ∧

dep_path(u,w) ∧ ρ(x , vul) > 0 ∧ loc(vul) = 1). (26)

Note that Eqs. (23) and (25) say that an application app running

on computer j can be exploited from a compromised application

running on computer i when app contains a software vulnerability;

Eqs. (24) and (26) say that an application app running on computer

j can be exploited from a compromised application running on

computer i when app calls a vulnerable OS function.

2.5 Security Metrics
We define three metrics to describe the outcome of the attack-

defense interactions: percentage of compromised applications at time

Quantifying the Security Effectiveness of Firewalls and DMZs HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA

t or pca(t), percentage of compromised server applications at time t
or pcsa(t), and percentage of compromised OSes at time t or pcos(t).
Formally, we define:

pca(t) = |{v ∈ V(app) : state(v, t) = 1}|/|V(app) |,

pcsa(t) =
|{v ∈ V(app) ∧ η(v) , 0 : state(v, t) = 1}|

|{v ∈ V(app) ∧ η(v) , 0}|
,

pcos(t) = |{v ∈ V(os) : state(v, t) = 1}|/|V(os) |.

The security effectiveness of employing a specific combination

of firewalls and DMZs is defined as 1 − pca(t), 1 − pcsa(t), and
1−pcos(t), respectively. By comparing these metrics resulting from

multiple deployments of different combinations of firewalls and

DMZs, we can derive the relative security effectiveness between

the deployments.

3 SIMULATION EXPERIMENTS
3.1 Simulation Setting and Methodology

3.1.1 Obtaining Representation of an Enterprise Network. We

consider an enterprise network of 1,000 desktops and five servers.

For the experimental study, we need a concrete G = (V ,E) repre-
sentation of an enterprise network. As described in Section 2, we

obtain a concrete G = (V ,E) as follows.
Software stacks. Suppose the five servers respectively run one of

the following server applications: web server, email server, DNS

server, FTP server, and database server. Suppose each desktop runs

4 applications: web browser, email client, instant messaging (IM,

a peer-to-peer application), adobe reader. Suppose each desktop

may run a FTP client application with probability p1 and a database
client application with probability p2, where 0 ≤ p1,p2 ≤ 1. This

means that employees can use these applications.

For the OS layer, we assume the OS is Microsoft Windows with

three components: OS kernel, subsystem drivers, and the hardware

abstraction layer. We use this example scenario as we can obtain

realistic parameters, namely that there are 2,500, 1,300, and 130

functions respectively corresponding to these components [3, 12].

This means |Vi,os | = 3, 930.
Obtaining the representation of computers. Recall that com-

puter i is represented by Gi = (Vi ,Ei) for i = 1, . . . , 1, 005. In order

to obtain Ei , we assume there are no inter-application communi-
cations between the applications mentioned above. This is natural

in the present setting but may not be true in general. In order to

obtain the dependence relation within computer i , we assume for

simplicity that each OS function is called, directly or indirectly, by

each application with probability δ .
Obtaining the representation of inter-computer communi-
cation relation E0. In order to obtain E0, we make the following

assumptions: a web browser in the enterprise network needs to

communicate with the web server and the DNS server in the net-

work; an email client needs to communicate with the email server

to retrieve and send emails; a FTP client (if present) needs to com-

municate with the FTP server; a database client (if present) needs

to communicate with the database server; an IM application needs

to communicate with the other IM applications within the same

sub-network; the web server needs to communicate with the data-

base server. Since the email clients need to communicate with each

other, this communication relation is reflected in E0.

Obtaining the representation of internal-external communi-
cation relation E∗. In order to obtain E∗, we make the following

assumptions: a web browser needs to communicate with the web

servers that reside outside of the network; IM applications need to

communicate with their peers outside of the enterprise network;

email clients in the network need to send emails to, and receive

emails from, the external network; Adobe readers need to open PDF

files received from the external network; the Internet-facing servers

(i.e., web server, email server, and DNS server) can be accessed by

external computers.

3.1.2 Representation of Vulnerabilities. Suppose each applica-

tion or OS function has at most one vulnerability. Let N denote

the number of vulnerabilities that uniformly reside in N OS func-

tions. Let β be the probability that every application contains a

vulnerability. The attributes of a vulnerability vul ∈ VUL is set as

follows: If vul belongs to an OS function, we set priv(vul)=1; other-
wise, priv(vul)=0. Let ϑ (vul) be the probability vul can be exploited

remotely for any vul ∈ VUL, namely Pr(loc(vul) = 1), and τ (vul) be
the probability that vul ∈ VUL is zero-day, namely Pr(zd(vul) = 1).

For human vulnerabilities, we letψ (v) ∈ [0, 1] be the probability

that a client application is vulnerable to social engineering attacks

for every v ∈ Vi . Note that this holds for every v ∈ Vi because Vi
corresponds to computer i , meaning it is the user of computer i
who may be subject to social engineering attacks.

3.1.3 Representation of Defenses. Since we focus on quantify-

ing the security effectiveness of firewalls and DMZ, our simulation

considers the five example combinations of firewalls and DMZ illus-

trated in Fig.4, which are respectively represented byγ = 0, 1, . . . , 4.

The other parameters representing defenses are as described in the

framework and will be given in specific simulation scenarios.

Internet

Perimeter
firewall

Enterprise
network

Internet

Perimeter
firewall

DMZ

Internet

Enterprise
network

Internal
firewall

Perimeter
firewall

Subnet1

Subnet6

Internet

Internal
firewall

Perimeter
firewall

Subnet1

Subnet6

DMZ

Internet Enterprise
network

(b) γ = 1 (c) γ = 2

(d) γ = 3 (e) γ = 4

(a) γ = 0

Figure 4: Five combinations of firewalls and DMZ employ-
ment (identified by γ = 0, 1, 2, 3, 4 and elaborated in the text).

Fig.4(a) corresponds to γ = 0, meaning neither firewall nor DMZ

is employed. As a consequence, a communication not belonging to

E0 or E∗ will not be blocked.
Fig.4(b) corresponds to γ = 1, meaning there is only a perime-

ter firewall to separate the enterprise network from the external

network. That is, the firewall blocks any internal-external commu-

nication that does not belong to E∗.
Fig.4(c) corresponds to γ = 2, meaning that there is a perimeter

firewall and a DMZ for running the Internet-facing servers (i.e.,

web server, email server, and DNS server). This firewall enforces as

in the case of γ = 1 and further enforces that only the web server

HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA Huashan Chen, Jin-Hee Cho, and Shouhuai Xu

(both not the other two servers) in the DMZ can communicate with

the database server in the internal enterprise network.

Fig.4(d) corresponds to γ = 3, meaning that there is a perimeter

firewall and there are internal firewalls to separate the internal sub-

networks from each other. The 1,005 computers are divided into six

sub-networks, among which five sub-networks run 200 desktops

each and the other sub-network runs the five servers. The perimeter

firewall allows internal-external communications according to E∗
and the internal firewalls allow inter-computer communications

according to E0.
Fig.4(e) corresponds to γ = 4, meaning that there is the same as

in the case of γ = 3 except that the DMZ runs the Internet-facing

servers (i.e., web server, email server, and DNS server). As in the case

of γ = 2, the perimeter firewall enforces that only the web server

(both not the other two servers) in the DMZ can communicate with

the database server in the internal enterprise network.

3.1.4 Representation of Attacks. We consider an attacker out-

side of the network attempting to penetrate into the network and

compromise as many computers as possible. Attacks proceed ac-

cording to the strategy highlighted in Figure 3. The parameters

reflecting attacks, namely ρ, ω and (a,b, c), will be given in specific

simulation scenarios.

3.1.5 Simulation algorithm. The simulation algorithm executes

the attach strategy discussed above. Due to space limit, we defer

the pseudo-code of the simulation algorithm to the Appendix (Al-

gorithm 1). Each simulation run leads to a sequence state(v, t) for
v ∈ V and t = 1, . . . ,T . We conduct 200 independent simulation

runs with the given parameters specified below. From these se-

quences we derive the average values of metrics pca(t), pcsa(t) and
pcos(t) per data point.

3.2 Simulation Results and Analysis
In the present simulation experiments, we assume that OSes are not

vulnerable, but the HIPS and NIPS are not effective. This is because

we focus on measuring the effectiveness of firewalls and DMZs. (In

the extended paper, we will consider the other scenarios.) Because

the OSes are not vulnerable, we only consider metrics pca and pcsa.
The parameters are set as follows: p1 = 0.1 (the probability a

desktop runs a FTP client application), p2 = 0.1 (the probability a

desktop runs a database client application), δ = 0.1 (the probabil-

ity that an OS function is called by an application), N = 0 (OSes

are not vulnerable), ψ (v) = 0.5 (the probability v ∈ V is vulner-

able to social engineering attacks), ϑ (vul) = 0.5 (the probability

vul can be exploited remotely), τ (vul) = 0.5 (the probability vul is
zero-day), k = 0 (the probability an attack attempting to exploit a

known-but-unpatched vulnerability is blocked by the NIPS), α = 0

(the probability a social engineering attack is blocked by HIPS),

ζ = 0 (the probability a privilege escalation is blocked by HIPS),

(a,b, c) = (1, 1, 1), ρ(x , vul) = 1 (the probability that x ∈ X success-

fully exploits vulnerability vul ∈ VUL), ω = 1 (the fraction of nodes

that are discovered by the attacker’s initial reconnaissance), and

HIPS enforces the loose policy.

Note that the parameter setting implies the worst scenario in

which the attacker can obtain all of the exploits against the vul-

nerabilities in the network and can discover all of the nodes via an

initial reconnaissance. We consider k = 0 and α = 0 (i.e., both NIPS

and HIPS cannot block any attacks) because in the present paper

we focus on measuring the security effectiveness of firewalls and

DMZs.

Determining simulation time horizonT . Fig. 5 plots pca(t) and
pcsa(t) of different combinations of firewalls and DMZ (reflected

by γ = 0, 1, 2, 3, 4), where β = 0.5 (i.e., the probability that an appli-

cation is vulnerable). We observe that both pca(t) and pcsa(t) first
increase exponentially and then converge to a steady value. The

exponential increase is caused by communications between email

clients and/or between IM clients, namely that the compromise of

any of these clients can cause the compromise of the other vulnera-

ble clients. A similar phenomenon is observed for other values of β .
Therefore, we will set T = 100 as the simulation time horizon for

the simulation experiments reported below.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

pc
a(

t)
t

(a) pca(t)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

pc
sa

(t
)

t

(b) pcsa(t)

Figure 5: pca(t) and pcsa(t) of different combinations of fire-
walls and DMZ.

Security effectiveness of firewalls and DMZ. Fig.6 plots pca(T)
and pcsa(T) for T = 100 with respect to β under different combina-

tions of firewalls and DMZ (γ = 0, 1, 2, 3, 4). Fig.7 plots ∆pca(T ,γ)
and ∆pcsa(T ,γ) for T = 100 with respect to β , where ∆pca(T ,γ) =
pcaT ,γ=0 − pcaT ,γ , ∆pcsa(T ,γ) = pcsaT ,γ=0 − pcsaγ , and pcaT ,γ
and pcsaT ,γ respectively represent pca(T) and pcsa(T)with respect
to a specificγ value. Note that∆pca(T , 0) = 0 becauseγ = 0, namely

that neither firewall nor DMZ is employed, which is the baseline

case. The key findings are discussed below.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

pc
a(

T)

β

(a) pca(T)

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

pc
sa

(T
)

β

(b) pcsa(T)

Figure 6: pca(T) and pcsa(T) with T = 100 and different γ ’s
(i.e., combinations of firewalls and DMZ).

Finding 1: Fig. 6(a) shows that 1 − pca(100) with respect to a

fixed firewall and DMZ configuration (i.e., fixed γ) decreases as β
increases. This means that for a fixed defense strategy, the attack-

defense interaction outcome is dominated by the degree of vulnera-

bility of an enterprise network, namely the fraction of applications

that contain at least one vulnerability. A similar phenomenon is

also observed in Fig.6(b). This leads to:

Insight 1. WhenOSes are not vulnerable, the security effectiveness
of a fixed combination of firewalls and DMZ decreases as the fraction
of vulnerable applications increases.

Quantifying the Security Effectiveness of Firewalls and DMZs HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5

 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

∆
 pc

a(
T,

γ)

β

(a) ∆pca(T , γ)

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0
 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

∆
 pc

sa
(T

, γ
)

β

(b) ∆pcsa(T , γ)

Figure 7: ∆pca(T ,γ) and ∆pcsa(T ,γ)withT = 100 and different
γ ’s.

Finding 2: Fig.7 shows that ∆pca(T ,γ) and ∆pcsa(T ,γ) for a
fixed γ are large when β is neither too small nor too large, but

approaches zero when β tends to 0 or 1. That is, when few or most

applications are vulnerable, firewalls and DMZ are not effective be-

cause in the former case, few applications can be compromised and

in the latter case, most applications are eventually compromised.

Insight 2. Firewalls and DMZ are not effective when few or most
computers are vulnerable.

Finding 3: Fig.7(a) shows that ∆pca(T , 1) ≈ 0 or 1.08% when

averaged over β , meaning that the perimeter firewall is not effective.

This is because the attacker can penetrate into the network via

means that cannot be blocked by the perimeter firewall. When

averaged over β , the difference between ∆pca(T , 1) and ∆pca(T , 2)
is 8.71%, and the difference between ∆pca(T , 1) and ∆pca(T , 3) is
12.98%. Finally, we see that γ = 4 (i.e., enforcing comprehensive

firewalls and DMZ defense) leads to the highest security among

them, which justifies the real-world defense practice.

Insight 3. Employing the perimeter firewall lone has a little se-
curity impact, but a comprehensive use of firewalls and DMZ can
substantially increases security.

Finding 4: Fig.7(b) shows that the security effectiveness fire-

walls and DMZ in terms of pcsa. We observe that ∆pcsa(T , 1) ≈
∆pcsa(T , 3), meaning that employing perimeter firewall alone and

employing both perimeter firewall and internal firewalls lead to the

same security. This indicates that enforcing internal firewalls will

not protect the server applications. However, ∆pcsa(T , 2) = 11.47%

when averaged over β , which highlights the security effectiveness of
DMZ in protecting server applications. Nevertheless, ∆pcsa(T , 2) ≈
∆pcsa(T , 4) affirms that security of server applications is protected

by DMZ.

Insight 4. Employing perimeter firewall and DMZ can substan-
tially increase the security of sever applications.

4 RELATEDWORK
As discussed in the Introduction, quantifying security is one of the

most fundamental open problems [15, 18, 20]. The present paper

moves a further step beyond existing studies [4, 11, 24, 26–28] by

getting rid of the independence assumption and by accommodating

a new class of threats [9, 14]. To make the comparison fair, we

should note that these gains inmodeling capacity are obtained at the

price of using simulations to characterize the security effectiveness

of firewalls and DMZs. Nevertheless, the present study leads to new

insights, such as those mentioned above and those will be reported

in the full version of the present paper, that are not known until now.

This can be attributed to the following fact: existing studies often

use some parameters (e.g., probabilities) to abstract the capability

of defense mechanisms such as firewalls and DMZs; in contrast, we

aim to precisely quantify and characterize the security effectiveness

of firewalls and DMZs by treating an entire enterprise network as

a whole.

To the best of our knowledge, the present study initiates the

investigation of how to quantify the security effectiveness of fire-

walls and DMZs. This can be justified by the fact that based on

recent surveys [16, 18, 20], there are neither metrics nor models

for explicitly measuring the security effectiveness of firewalls and

DMZs by treating a network as a whole.

5 CONCLUSION
We presented a framework for quantifying the security effective-

ness of firewalls and DMZs. The framework led to novel and useful

insights. For example, when the applications and OSes have few

or too many vulnerabilities, firewalls and DMZ do not have a sig-

nificant impact on security; when the OSes are not vulnerable but

the applications are, security effectiveness of firewalls and DMZs

decreases as the fraction of vulnerable applications increases.

The present investigation can be extended in several directions,

such as: (i) extending the simulation study to consider broader

parameter regimes (e.g., the case of running multiple kinds of OS

in enterprise networks); (ii) conducting case study to derive the

structure G = (V ,E) of real-world enterprise networks; (iii) val-

idating the proposed framework using real-world datasets; and

(iv) examining more hostile scenarios in which firewalls can be

compromised.

6 ACKNOWLEDGEMENT*
We thank the reviewers for their useful comments. This research

was supported in part by the US Department of Defense (DoD)

through the office of the Assistant Secretary of Defense for Research

and Engineering (ASD (R&E)) and ARO Grant #W911NF-17-1-0566.

The views and opinions of the author(s) do not reflect those of the

DoD.

REFERENCES
[1] Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and Masum Hasan. 2005. Conflict

classification and analysis of distributed firewall policies. IEEE journal on selected
areas in communications 23, 10 (2005), 2069–2084.

[2] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. 2008. Epidemic

thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10, 4 (2008), 1–26.
[3] Geoff Chappell. [n. d.]. kernel-mode windows. https://www.geoffchappell.com/

studies/windows/km/index.htm?tx=10. ([n. d.]).

[4] Gaofeng Da, Maochao Xu, and Shouhuai Xu. 2014. A New Approach to Mod-

eling and Analyzing Security of Networked Systems. In Proceedings of the 2014
Symposium on the Science of Security (HotSoS’14). 6:1–6:12.

[5] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell Whitley. 2007. Opti-

mal security hardening using multi-objective optimization on attack tree models

of networks. In Proceedings of the 14th ACM conference on Computer and commu-
nications security. ACM, 204–213.

[6] Anup KGhosh, Aaron Schwartzbard, andMichael Schatz. 1999. Learning Program

Behavior Profiles for Intrusion Detection.. In Workshop on Intrusion Detection
and Network Monitoring, Vol. 51462. 1–13.

[7] Yujuan Han, Wnelian Lu, and Shouhuai Xu. 2014. Characterizing the Power of

Moving Target Defense via Cyber Epidemic Dynamics. In Proc. 2014 Symposium
on the Science of Security (HotSoS’14). 10:1–10:12.

[8] Ray Hunt. 1998. Internet/Intranet firewall security-policy, architecture and

transaction services. Computer Communications 21, 13 (1998), 1107–1123.
[9] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. 2011. Intelligence-

driven computer network defense informed by analysis of adversary campaigns

https://www.geoffchappell.com/studies/windows/km/index.htm?tx=10
https://www.geoffchappell.com/studies/windows/km/index.htm?tx=10

HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA Huashan Chen, Jin-Hee Cho, and Shouhuai Xu

and intrusion kill chains. Leading Issues in InformationWarfare & Security Research
1, 1 (2011), 80.

[10] Somesh Jha, Oleg Sheyner, and Jeannette Wing. 2002. Two formal analyses of

attack graphs. In Computer Security Foundations Workshop, 2002. Proceedings. 15th
IEEE. IEEE, 49–63.

[11] X. Li, P. Parker, and S. Xu. 2011. A Stochastic Model for Quantitative Security

Analysis of Networked Systems. IEEE Transactions on Dependable and Secure
Computing 8, 1 (2011), 28–43.

[12] Mateusz. [n. d.]. WindowsWIN32K.SYS System Call Table. http://j00ru.vexillium.

org/syscalls/win32k/32/. ([n. d.]).

[13] Alain Mayer, Avishai Wool, and Elisha Ziskind. 2000. Fang: A firewall analysis

engine. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium
on. IEEE, 177–187.

[14] Dan McWhorter. 2013. APT1: exposing one of China’s cyber espionage units.

Mandiant. com 18 (2013).

[15] David M. Nicol, William H. Sanders, and Kishor S. Trivedi. 2004. Model-Based

Evaluation: From Dependability to Security. IEEE Trans. Dependable Sec. Comput.
1, 1 (2004), 48–65.

[16] Steven Noel and Sushil Jajodia. 2017. A Suite of Metrics for Network Attack Graph
Analytics. Springer International Publishing, Cham, 141–176.

[17] The Forum of Incident Response and Security Teams FIRST. 2015. The Common

Vulnerability Scoring System (CVSS). (June 2015). https://www.first.org/cvss

[18] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai Xu. 2017.

A survey on systems security metrics. ACM Computing Surveys (CSUR) 49, 4
(2017), 62.

[19] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. 2012. Dynamic security risk

management using bayesian attack graphs. IEEE Transactions on Dependable and
Secure Computing 9, 1 (2012), 61–74.

[20] A. Ramos, M. Lazar, R. H. Filho, and J. J. P. C. Rodrigues. 2017. Model-Based

Quantitative Network Security Metrics: A Survey. IEEE Communications Surveys
Tutorials 19, 4 (2017), 2704–2734.

[21] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M

Wing. 2002. Automated generation and analysis of attack graphs. In Security and
privacy, 2002. Proceedings. 2002 IEEE Symposium on. IEEE, 273–284.

[22] Deb Shinder. [n. d.]. SolutionBase: Strengthen network de-

fenses by using a DMZ. https://www.techrepublic.com/article/

solutionbase-strengthen-network-defenses-by-using-a-dmz/. ([n. d.]).

[23] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. 2009. A

detailed analysis of the KDD CUP 99 data set. In Computational Intelligence for
Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on. IEEE,
1–6.

[24] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. 2003. Epidemic Spreading

in Real Networks: An Eigenvalue Viewpoint. In Proc. of the 22nd IEEE Symposium
on Reliable Distributed Systems (SRDS’03). 25–34.

[25] Avishai Wool. 2004. A quantitative study of firewall configuration errors. Com-
puter 37, 6 (2004), 62–67.

[26] Maochao Xu, Gaofeng Da, and Shouhuai Xu. 2015. Cyber Epidemic Models with

Dependences. Internet Mathematics 11, 1 (2015), 62–92.
[27] Maochao Xu and Shouhuai Xu. 2012. An Extended Stochastic Model for Quanti-

tative Security Analysis of Networked Systems. Internet Mathematics 8, 3 (2012),
288–320.

[28] Shouhuai Xu. 2014. Cybersecurity Dynamics. In Proc. Symposium on the Science
of Security (HotSoS’14). 14:1–14:2.

[29] Shouhuai Xu,Wenlian Lu, and Li Xu. 2012. Push- and Pull-based Epidemic Spread-

ing in Arbitrary Networks: Thresholds and Deeper Insights. ACM Transactions
on Autonomous and Adaptive Systems (ACM TAAS) 7, 3 (2012), 32:1–32:26.

[30] Shouhuai Xu, Wenlian Lu, Li Xu, and Zhenxin Zhan. 2014. Adaptive Epidemic Dy-

namics in Networks: Thresholds and Control. ACM Transactions on Autonomous
and Adaptive Systems (ACM TAAS) 8, 4 (2014), 19.

[31] Ren Zheng, Wenlian Lu, and Shouhuai Xu. 2015. Active Cyber Defense Dynamics

Exhibiting Rich Phenomena. In Proc. 2015 Symposium on the Science of Security
(HotSoS’15). 2:1–2:12.

[32] R. Zheng, W. Lu, and S. Xu. 2017. Preventive and Reactive Cyber Defense Dy-

namics Is Globally Stable. IEEE Transactions on Network Science and Engineering
PP, 99 (2017), 1–1.

APPENDICES
Table 1 summarizes the main notations used in the paper.

Algorithm 1 gives the pseudo-code of the simulation experiment.

APP the universe of applications

OS the universe of operating systems

η η : APP → {0, 1, 2} indicates the types of applications:

client (‘0’), Internet-facing server (‘1’), or internal server

(‘2’)

Gi Gi = (Vi , Ei) is a computer, where Vi = Vi,app ∪Vi,os
and Ei = Ei,aa ∪ Ei,af ∪ Ei, f f

G = (V , E) G is an enterprise network of n computers, where V =
V1 ∪ . . . ∪Vn and E = E1 ∪ . . . ∪ En ∪ E0 ∪ E∗

G′ = (V ′, E′) G′
is the attacker’s view of the target networkG = (V , E)

after reconnaissance process where V ′ ⊆ V and E′ ⊆ E
VUL the universe of software vulnerabilities

ϕ(v) the set of vulnerabilities contained in node v ∈ V
ψ (v) the probability that the user of computer i is vulnerable

to social engineering attacks where v ∈ Vi
loc(vul) whether the exploitation of vul ∈ VUL requires local

access (‘0’) or not (’1’)

zd(vul) whether vul ∈ VUL is known (‘0’) or zero-day (‘1’)

priv(vul) whether the exploitation of vul ∈ VUL causes the attacker
to get the root privilege (‘1’) or not (’0’)

A the number of zero-day vulnerabilities in G
K the number of known vulnerabilities in G
B the number of known vulnerabilities against which the

exploits can be detected and blocked in G
C the number of known vulnerabilities against which the

exploits cannot be blocked in G
k the fraction of known vulnerabilities can be prevented

from being exploited by NIPS

α the probability a social engineering attack is blocked

HIPS the employment policy of HIPS

ζ the probability privilege escalation attempts are blocked

by HIPS

X the set of exploits that are available to the attacker

ρ(x, vul) the probability x ∈ X successfully exploits vul ∈ VUL
(a, b, c) the percentage of vulnerabilities that can be exploited by

the attacker corresponding to (A, B, C)

ω ω = |V ′ |/ |V | is the fraction of nodes the attacker can

discover by initial reconnaissance

p1 the probability a desktop runs a FTP client application

p2 the probability a desktop runs a database client applica-

tion

δ the probability that each OS function is called by each

application

β the probability that each application contains a vulnera-

bility

N the number of vulnerabilities in the OSes

ϑ (vul) the probability vul ∈ VUL is remotely exploitable

τ (vul) the probability vul ∈ VUL is zero-day

γ the firewalls and DMZ employment

pca(t), pcos(t) % of compromised applications and operating systems at

time t , respectively

Table 1: Key notations and their meanings.

http://j00ru.vexillium.org/syscalls/win32k/32/
http://j00ru.vexillium.org/syscalls/win32k/32/
https://www.first.org/cvss
https://www.techrepublic.com/article/solutionbase-strengthen-network-defenses-by-using-a-dmz/
https://www.techrepublic.com/article/solutionbase-strengthen-network-defenses-by-using-a-dmz/

Quantifying the Security Effectiveness of Firewalls and DMZs HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA

Algorithm 1 Simulation algorithm.

Input: enterprise network with (APP, OS, p1, p2, δ); vulnerabilities
with (β, ϑ (vul), τ (vul), ψ); defense with (k, α, ζ , HIPS); attacks with
(a, b, c, ρ, ω); simulation stop time T
Output: state(v, t) for v ∈ V and t = 1, . . . , T

1: Generate simulation network G = (V , E) with η(v)
2: Assign model parameters ψ , α to v , HIPS to Vi ∈ V
3: Simulate the reconnaissance

4: Weapon = ∅

5: for v ∈ V ′ do
6: if Eq. (20) holds for v then
7: Weapon =Weapon ∪ {v }
8: Select IniComp according to Weapon
9: for v ∈ V do
10: state(v, 0) = 0

11: for v ∈ IniComp do
12: Simulate initial compromise

13: if v is compromised then
14: state(v, 1) = 1

15: for t ∈ {2, . . . , T } do
16: for each app ∈ V(app) with state(v, t − 1) = 1 do
17: Simulate further reconnaissance and update G′

18: Simulate privilege escalation wrt Eqs. (21) or (22)

19: Simulate lateral movement wrt Eqs. (23)-(26)

20: Return state(v, t) for v ∈ V and t = 1, . . . , T

	Abstract
	1 Introduction
	2 The Framework
	2.1 Representation of Networks
	2.2 Representation of Vulnerabilities
	2.3 Representation of Defenses
	2.4 Representation of Attacks
	2.5 Security Metrics

	3 Simulation Experiments
	3.1 Simulation Setting and Methodology
	3.2 Simulation Results and Analysis

	4 Related Work
	5 Conclusion
	6 Acknowledgement*
	References

