SecureMR: Secure MapReduce Computation Using
Homomorphic Encryption and Program Partitioning

Yao Dong Ana Milanova Julian Dolby
Rensselaer Polytechnic Institute Rensselaer Polytechnic Institute IBM Thomas J. Watson Research
dongy6@rpi.edu milanova@cs.rpi.edu Center
dolby@us.ibm.com

ABSTRACT

In cloud computing customers upload data and computation to
cloud providers. As they upload their data to the cloud provider,
they typically give up data confidentiality. We develop SecureMR,
a system that analyzes and transforms MapReduce programs to
operate over encrypted data. SecureMR makes use of partially ho-
momorphic encryption and a trusted client. We evaluate SecureMR
on a set of complex computation-intensive MapReduce benchmarks.

CCS CONCEPTS

« Security and privacy — Domain-specific security and pri-
vacy architectures; Management and querying of encrypted data;

KEYWORDS

cloud computing, homomorphic encryption, MapReduce

1 INTRODUCTION

Cloud service providers such as Google Cloud Platform (GCP) and
Amazon Web Service (AWS) offer a wide range of data storage and
computation products. Customers increasingly outsource data and
computation to such third-party cloud providers. Unfortunately,
when customers upload their data to the cloud provider, they typ-
ically give up data confidentiality. The problem is, can one take
advantage of inexpensive, efficient, and convenient cloud services,
while preserving (to an extent) the confidentiality of their data?

One approach towards this problem, is to use homomorphic
encryption. Customers encrypt their data using homomorphic en-
cryption, which allows computation on ciphertext. They upload
encrypted data, and programs that operate on ciphertext, thus pre-
serving data confidentiality.

There are two categories of homomorphic encryption. Fully Ho-
momorphic Encryption (FHE) [7] supports arbitrary computation
on ciphertext. This is an important theoretical achievement [19],
however, the existing implementations of FHE are still prohibitively
expensive [4, 8, 9]. Partially Homomorphic Encryption (PHE) is
relatively efficient, however, it is limited in the sense that each
PHE cryptosystem supports a single operation on ciphertext. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HoTSoS ’18, April 10-11, 2018, Raleigh, NC, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6455-3/18/04...$15.00
https://doi.org/10.1145/3190619.3190638

example, the Pailler [15] cryptosystem, which we refer to as AH,
supports addition, but does not support comparison. To make use of
PHE, one must combine different schemes. The principal problem
is data conversion — when data is computed using one encryption
scheme (e.g., AH) but requires an operation that is not supported
(e.g., comparison), data must be converted into a new scheme that
supports the operation.

Partially homomorphic encryption has been recognized as a
promising direction [6, 18, 23-25]. One way to address the prob-
lem of conversion is to maintain a trusted client [6, 22, 25]. The
client stores the cryptographic keys. It can perform conversion,
i.e., receive data in one encryption scheme (e.g., AH), decrypt it,
encrypt it into the new scheme, then send it back to the untrusted
cloud server that runs the program. It can also run segments of the
program to alleviate conversion cost, or compute operations not
supported by current encryption schemes. Clearly, this approach
entails communication between the server and the trusted client.

This paper presents SecureMR, a system that enables secure
MapReduce computation on untrusted cloud servers using par-
tially homomorphic encryption and a trusted client. It makes the
following contributions:

e We develop novel static analysis that infers necessary en-
cryption schemes for input data.

e We formalize the problem of conversion placement as an
instance of the classical Min-cut problem. Min-cut ensures
optimal conversion placement.

e We propose a cost model that captures two conflicting goals:
(1) maximize the amount of computation running on the
cloud server, while in the same time (2) minimize commu-
nication between the server and the client. This cost model
guides a heuristic refactoring that partitions the MapReduce
program into server and client partitions.

e We evaluate the system on Google Cloud clusters of up to
64 nodes, using standard MapReduce benchmark suites [1,
16, 17]. We are the first to report on complex computation-
intensive MapReduce applications such as K-Means clus-
tering. The slowdown of transformed programs relative to
original programs ranges from 1.4x to 3.9x on applications
that require communication between server and client.

MrCrypt [22],

MapReduce [SecureMR SecureMR
CryptDB [17],)
DBMS/SQL MrCrypt, Monomi [24],
SecureMR SecureMR
Search (==,<) Computation (==, <, +, ¥)

The graph above positions our work in the context of exist-
ing work on PHE for cloud computing. There are two dimensions:

https://doi.org/10.1145/3190619.3190638

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

DBMS/SQL vs. MapReduce, and search-intensive vs. computation-
intensive applications. Search-intensive applications make use of
equality and comparison operations, which entail inexpensive en-
cryption schemes. CryptDB [18] and MrCrypt [23] evaluate search-
intensive applications, respectively in the database and MapReduce
domain. Computation-intensive applications perform arithmetic
operations (e.g., +), which entail substantially more expensive en-
cryption schemes, and often require conversion from one scheme
to another. CryptDB and MrCrypt cannot handle applications that
require conversion. Monomi [25] evaluates computation-intensive
SQL queries. Similarly to SecureMR, it makes use of a trusted client
that can perform conversion and computation. To the best of our
knowledge, SecureMR is the first system that handles and evalu-
ates computation-intensive MapReduce applications. It covers the
largest set of MapReduce programs, assesses conversion and com-
munication cost on a real cloud platform, and sets directions for
future work in this important problem domain. (The graph includes
MrCrypt and SecureMR in the database domain, because the SQL
queries can be easily translated into MapReduce.)

The rest of the paper is organized as follows. Sect. 2 presents
an overview of MapReduce. Sects. 3 and 4 give, respectively, an
informal and formal account of SecureMR. Sect. 5 details our ex-
periments and results. Sect. 6 discusses related work, and Sect. 7
concludes.

2 OVERVIEW OF MAPREDUCE

The MapReduce paradigm supports large-scale parallel data analy-
sis. At a high-level, a MapReduce program takes as input large files
of rows, where, just as in a database table, each row is composed of
columns.

Map Reduce

R B

N\

E N
A .
— A \
npu / \
Data | ’m /\\ I / ’M ~—>_ Result
Files ' / >
>

s
AN

Key-value Pairs
Figure 1: Overview of MapReduce.

Fig. 1 shows an overview of MapReduce. The map function takes
as input an individual row r;, and produces one or more key-value
pairs, where the key and value are computed from columns of 7;.
MapReduce breaks the original input file into N parts. It runs N
processes in parallel, each process running map sequentially on
each row from its input file. Each process produces a sequence of
key-value pairs corresponding to the portion of the original file.
Typically, map is highly parallel. MapReduce then shuffles outputs
based on the output keys, and groups them into per-key “reducer”
groups. There are as many “reducer” groups as there are distinct
keys. The reduce function aggregates the values in each reducer
group.

Fig. 2 shows Histogram Movies, a MapReduce program from the
classical PUMA benchmark set [1]. (We reference Fig. 2 extensively

Yao Dong, Ana Milanova, and Julian Dolby

throughout the paper. We copy the figure in the last page, Appen-
dix B. Reviewers may rip the last page and reference the figure.) As
the name suggests, Histogram Movies takes as input a sequence
of movie ratings (from 1 to 5), and computes a histogram of the
number of movies rated 1.5, 2, 2.5, etc. on average. Each input row
has (1) a movie title column, and (2) a ratings column, for example:

Movieq : 3,5,4,5
Moviey : 1,2,1,1,1,2

Function map extracts the ratings column (line 6) of each row. It
computes the average rating per movie (row), and subsequently
rounds it down to the nearest 0.5. The result is a key-value pair
(rounded_avg, 1) per row:

(4.5,1)
(1.5,1)

The framework shuffles the above key-value pairs into 8 reducer
groups. Each reducer receives an iterator of 1 values, which it sums
up, thus completing the ratings histogram.

We observe that MapReduce applications are particularly amenable
to static analysis. Firstly, memory references tend to be easily re-
solved. Aliasing is essentially non-existent. Memory references are
local variables (see map in Fig. 2), and even expressions that de-
note heap locations can be resolved uniquely. Secondly, map and
reduce are short (about 100 LOC), and exhibit predictable control
flow. For example, map may have if-then-else statements that
distinguish between distinct database tables and/or select certain
rows by column values; reduce has a while statement that iterates
over the values in the reducer group. There are few calls to Java
libraries other than Math. Method calls to local libraries are rare as
well, and typically they can be inlined.

Therefore, MapReduce programs are particularly amenable to
precise static analysis. We apply Reaching definitions, a classical
static analysis [13] adapting it to MapReduce.

3 OVERVIEW OF SECUREMR

We assume an architecture that includes two basic components, an
untrusted cluster, called server, and a trusted client. The server is a
cluster on the cloud (e.g., Google cloud, AWS, etc.), where users can
upload and run MapReduce applications. We assume that the server
provides inexpensive but untrusted computation. We assume that
server administrators are passive adversaries — that is, they can
observe the data and code uploaded on the server, but would not
modify that data or code. The client is a trusted machine where
users store original input data and private keys.

We make use of five cryptosystems to encrypt input data, and
perform computation on encrypted data. They are randomized
encryption (RND), additively homomorphic encryption (AH), mul-
tiplicatively homomorphic encryption (MH), deterministic encryp-
tion (DET) and order-preserving encryption (OPE). RND supports
no operations on ciphertext. The rest support a single operation:
addition/subtraction (AH), multiplication/division (MH), equality
checking (DET) and comparison (OPE). RND is useful for MapRe-
duce programs because often entire columns of input data are not
involved in any operation. RND provides the strongest security,
while OPE, which reveals order, provides the weakest security.

SecureMR: Secure MapReduce Computation

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

1 map(LongWritable key, Text value) {
2 int totalReviews = 0, sumRatings = 0;
3 float avgReview, absReview, fraction, outValue = 0.0f;
4 String line = value.toString();
5
6 String reviews = line.substring(line.indexOf(":") + 1);
7 StringTokenizer token = new StringTokenizer(reviews, "' [10: sumRatings = sumRatings + rating
8 while (token.hasMoreTokens()) { fem
9 int rating = Integer.parselnt(token.nextToken()); // rating is encrypted source
10 sumRatings = sumRatings + rating; ‘ 14: avgReview = sumRatings/totalReviews
11 totalReviews = totalReviews + 1;
12 } [15: absReview = Math-floor iew) |
13
14 avgReview = sumRatings/totalReviews; [26:fraction - avgReview - absReview |
15 absReview = Math.floor(avgReview);
16 fraction = avgReview — absReview;
17 int limit = 1.0f/division; // division = 0.5f.
18 inti=1;
19 while (i <= limit) {
20 float x = i*division;
21 if (x — division <= fraction && fraction < x) {
22 outValue = absReview + x; 22: outValue = absReview +x
23 }
24 izi+
25 } 27: output.collect(outValue, 1) I(f
26
27 output.collect(outValue, 1);
28}
1 reduce(FloatWritable key, Iterator<...> values) {
2 int sum = 0;
3 while (values.hasNext()) {
4 int value = values.next();
5 sum += value;
6
7 output.collect(key, sum);
8

Figure 2: Histogram Movies from the PUMA benchmark set, and its Control-flow Graph (CFG). Nodes 8-14 (shown in red)
comprise the flow network for def-use chain (10,14); edge (8,14), cut with a green dotted line, is the Min-cut.

Necessary encryption inference. First, we infer the encryption
schemes for each column of input data, based on the operations run
on column data. We make use of Reaching definitions analysis. We
start by annotating variable definitions that are read directly from
input data. We assume that all input columns are sensitive, and
must be sent to the server in encrypted form. Reaching definitions
analysis links the definition of a variable to the uses of that variable.
There must be an encryption for the operation at each use. For
example in Fig. 2, we annotate the definition of rating in line 9, as
rating is read directly from the input file. There is a single use of
rating, in the addition in line 10, which entails that it is encrypted
with AH. The other column of data, “movie title”, is not involved
in any operation, so it is encrypted with RND. Note that there are
multiple encryptions per column if different uses demand different
encryptions.

Optimal conversion placement. Unfortunately, encrypting input
columns, even with multiple encryptions, is not enough. When the
same data is involved in different operations, the program needs
conversion from one encryption scheme to another. For instance
in Fig. 2, the ciphertext in sumRatings at line 10 is encrypted with
AH because it is the result of an addition. Reaching definition

analysis links the definition in line 10 to the use in line 14 and
determines that there is need for conversion from AH to MH in
order to carry out the division in line 14. Reaching definitions
analysis computes the set of statements that depend on sensitive
input data and therefore must be carried out in encrypted form. In
information-flow terms, it tracks explicit flow from input data to
the rest of the MapReduce program.

Conversion entails communication with the trusted client during
program execution. Specifically, a conversion of a variable consists
of the following steps: (1) the server sends the ciphertext (e.g., AH)
to the client, (2) the client decrypts it, and encrypts it into the new
scheme (e.g., MH), (3) the client sends the new ciphertext back to
the server. Clearly, communication is costly, and we must mini-
mize its impact. One key insight of our work is that conversion
placement matters. When there is a definition-and-use pair that
requires conversion, the conversion can be placed at many different
edges. Consider 10-and-14. The conversion of sumRatings from
AH to MH can be placed at edges (10,11), (11,8), or at (8,14), that is,
immediately before line 14, outside the loop. Clearly, the first two
choices are worse because they redundantly convert all intermedi-
ate values of sumRatings; the conversion may be executed many

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

s u=s;s

[x=y

| x =yaopz

| while (x bopy) { s}

| if (xbopy) {s}else {s } statement
aopu=+|— ||/ arithmetic operator
comparison operator

Figure 3: Syntax. s represents a sequence of statements. x, y,
and z denote locations, including constants, local variables,
parameters, and expressions referring to heap locations.

times, depending on the loop bound. Converting right before line
14 presents the best choice — conversion runs only once.

A key contribution of our work is the formalization of conversion
placement. We frame the problem in terms of the classical Min-
cut/Max-flow problem. We first assign weights on the edges of the
program control-flow graph, which statically estimate the number
of times each edge executes. Then, given a definition-and-use pair
(d, u) that requires conversion, we place conversions at the Min-cut
edges on the graph from d to u. This achieves two purposes: (1)
it covers all control-flow paths from d to u, and (2) it guarantees
minimal number of executions of the required conversion.

Cost model and heuristic refactoring. The previous phase places
conversions at the appropriate control-flow-graph edges. The pro-
gram can run on the server initiating communication with the
client at each conversion edge. However, this approach may turn
prohibitively expensive. It would be more efficient to extract a short
segment with high conversion density, and run the entire segment
on the client in plaintext form. For example, the code segment 14-25
in Fig. 2 demands a conversion at each statement (roughly). It is
substantially more efficient to extract this segment into a method
that runs on the client. The server sends the AH-encrypted sumRat-
ings (and plaintext numRatings) to the client, the client decrypts it,
computes outValue, encrypts it into DET, and sends the ciphertext
back to the server.

Another contribution of our work is a cost model using Integer
programming. The cost model guides our heuristic solution, which
is simple, but effective for MapReduce programs: intuitively, we
extract the minimal segment that contains all conversions to run
on the client.

4 FORMAL ACCOUNT OF SECUREMR

Sect. 4.1 formalizes the syntax of MapReduce programs, and the
notion of the control flow graph (CFG) with weights on nodes and
edges. It also introduces the classical Reaching definitions analysis,
which is the foundation for our transformation. Sect. 4.2 explains
the inference of encryption schemes using def-use chains. Sect. 4.3
describes the optimal placement of conversions. Sect. 4.4 discusses
the cost model and the heuristic for program partitioning.

4.1 Preliminaries

4.1.1 Syntax and Control-flow Graph. Fig. 3 abstracts the syntax
of the map and reduce methods. Map and reduce are sequences of
statements, where each statement is either (1) a copy propagation
assignment, (2) a three-address assignment, (3) a while statement,

Yao Dong, Ana Milanova, and Julian Dolby

or (4) an if — then — else statement. The grammar gives rise to the
Control-flow Graph (CFG) of the program.! (We elide the actual
construction of the CFG as it is standard [2, 21].) We assume that
each CFG represents a single procedure, either map or reduce, and
perform standard intraprocedural analysis. The CFGs for map and
reduce of Histogram Movies are shown adjacent to the code in Fig. 2.

4.1.2 Weights on CFG Nodes and Edges. We assign weights to
CFG nodes and edges to approximate the number of times a node
or edge executes. These weights serve two purposes: (1) we use
weights on nodes and edges to determine the optimal placement
of conversions; we discuss this in more detail in Sect. 4.3, and (2)
we use weights in the cost model, e.g., a conversion in a while-loop
with input-dependent bounds in mayp, is substantially more costly
than a conversion at the end of a reduce, when the number of reduce
groups is 1; we discuss this in Sect. 4.4.

S = 5158 = S;.W=S.wW=s.Ww
s == while (x bop y) { s1 } = s;.w=k-s.w
su=if (xbopy) {s1 }else {s2} = sp.w=s3.w=2%2

Figure 4: A top-down attribute grammar that assigns
weights to CFG nodes. Attribute w approximates the num-
ber of times a construct executes: (1) in a sequence, s; and s,
inherit the weight of their parent in the parse tree, (2) loop
body s; executes k times s’s weight, where k is the number
of loop iterations, and (3) assuming the two branches of an
if-statement are of equal-probability, each branch executes
half the times s does.

Fig. 4 defines an attribute grammar over the syntax in Fig. 3. This
is a standard top-down grammar [2, Chapter 5], [21, Chapter 4].
Weight s.w of start symbol s in map is initialized to a large constant
m, to reflect a large number of executions of map, and to account for
parallelism. Constant m propagates as multiplier towards individual
statements in map. Similarly, there is weight s.w of start symbol
s in reduce. We set s.w of reduce to the number of reduce keys
whenever this number is known statically; we set it to % otherwise.
(Many benchmarks have either 1 or a small constant number of
reduce input groups. For example, Histogram Movies has 8.) Loop
bounds that are known statically carry the corresponding multiplier.
For example, the while loop in lines 19-25 in Fig. 2 iterates only
twice, and therefore carries multiplier 2. Loops that are unknown
statically, i.e., are input-dependent, carry a multiplier k. E.g., loops
8-12 in map, and 3-6 in reduce are input-dependent. Both m and k
are parameters that may be set at the discretion of analysis designer.

Let us return to Fig. 2. The weight of statement 10: sumRatings
= sumRatings + rating is m - k, the weights propagating down
from map, and then while-loop 8-12. The weight accounts for an
input-dependent (i.e., unknown, and potentially large) number of
movie rows in the input file, and subsequently, an input-dependent
number of ratings per movie row. The weight of statement 22:
outValue = absReview + x is m, which is derived from m - 2 - %,
i.e., m propagating down from map, 2 propagating from while loop
19-25, which has a static bound of 2, and % from the if statement.

! The grammar is ambiguous due to the first production, however the ambiguity has
no influence on our analysis.

SecureMR: Secure MapReduce Computation

In addition, we must assign weights to CFG edges. This is neces-
sary because we place conversions based on Min-cut, which takes
a directed graph with edge weights. Assignment is straightforward
given the weights on grammar constructs assigned by Fig. 4. For
example, the edge that originates at an assignment node, has the
weight of that assignment (e.g., edge (14,15) in Fig. 2 has the weight
of node 14). The True branch edge of a while statement executes k
times the compound while statement s (e.g., edge (8,9) has weight
km). Finally, the weights of edges originating at the if condition,
are 1/2 the weights of the compound if statement (e.g., edge (21,22)
is m).

4.1.3 Reaching Definitions. Reaching definitions (RD) is a clas-
sical data-flow analysis [2, 13]. It computes def-use chains (d, u)
where d is a definition of a variable x: e.g., x = y + z, and u is a use
of x: e.g.,z=x "y, or x > y. Reaching definitions is defined over a
CFG where d and u are nodes in the CFG. A def-use chain (d, u)
entails that there is a definition-free path from d to u, or in other
words, the definition of x at d may reach the use of x at u. RD is
standard, and we do not elaborate on it. As mentioned earlier, the
nature of MapReduce programs lends well to this classical precise
analysis.

Examples of def-use chains in Fig. 2 are (9,10) (a definition of
rating at 9, and use of rating at 10), (16,21), and (24,19). We augment
standard RD to account for the connection and data flow from
map to reduce. In our example, we introduce a def-use chain from
outValue at 27 in map, to key in reduce, and from 1 at 27 in map, to
value at line 4 in reduce.

Let DU denote the set of def-use chains computed by Reaching
definitions. Without loss of generality we assume that for each
(d,u) € DU, u is either a computation x = y aop z, or a comparison
x bop vy, i.e., it is not a propagation x = y. One can easily augment
standard RD analysis to accommodate this requirement.

4.2 Necessary Encryption Inference and Row
Precomputation

Given def-use chains, determining the necessary encryptions is
straightforward. First, our analysis requires that the user annotates
as sources definitions that are read directly from input columns in
map. In Fig. 2, rating in line 9 is a source. Let ¢ denote a source,
9 in our example. For each def-use chain (c,u) € DU, nodes u
give rise to the set of necessary encryptions for c: if u contains an
addition/subtraction, then c is encrypted with AH, if u contains
a multiplication/division, then ¢ is MH, if u contains an inequal-
ity comparison (e.g., <), then c is OPE, and finally, if u contains
an equality comparison, then ¢ is DET. Note that there may be
multiple def-use chains (c, u) and each one may demand different
encryption. We include all encryptions in the input, transforming
each use to refer to the corresponding encryption. In the running
example, there is a single def-use chain for rating, (9,10). Since 10
is an addition, rating must be encrypted with AH. Fig. 5 shows
an example that requires multiple encryptions for the same input
column. The example comes from MapReduce program L16 from
the PIGMIX2 benchmark suite [17].

Reaching definitions enables row precomputation, an optimiza-
tion technique similar to the one in [25], that reduces the need
for conversion. We consider all uses u in map, such that u is an

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

reduce(Text key, Iterator<...> iter) {

Set<Double> hash = new HashSet<Double>();

while (iter.hasNext()) {
Double value = iter.next(); // value is encrypted source
hash.add(value);

}

Double rev = new Double(0);

for (Double d : hash)
rev += d;

output.collect(key, rev);

}

= O 0 00NNV R W =

_

Figure 5: Reduce of L16 from PIGMIX2. Map selects two in-
put columns and passes them to reduce. There is no compu-
tation in map, therefore, value in line 4 stores the encrypted
input source. There are two def-use pairs for value: (4,5) and
(4,9). The use at 5 requires that value is encrypted with DET
due to the inherent equality test in HashSet. The use at 9 re-
quires that value is encrypted with AH. (We elide containers
and copy propagation, as mentioned earlier, and link 4 di-
rectly to 9.) Thus, value must be encrypted with both DET
and AH. We include the two distinct ciphertexts in the in-
put.

arithmetic operation, where one operand is directly read from the
input file (i.e., it has exactly one def-use chain (c,u) € DU), and the
other operand is either a constant, or is also read from the input file.
In such cases, one can precompute the expression at u and encrypt
it in the input file according to subsequent uses of u.

Consider the following code snippet from K-Means:

1 map(LongWritable Key, Text value) {

2 String line = value.toString();

3 String reviews = line.substring(line.indexOf(":") + 1);

4 StringTokenizer token = new StringTokenizer(reviews, ",");
5 while (token.hasMoreTokens()) {

6 int review = token.nextToken(); // review is encrypted

7 int r = review * review;

8 intsq_a=sq_a+r;

12}

The multiplication in line 7 meets the above condition, as it
takes review, which is directly read from the input file. The result
of the multiplication is used in the addition in line 8. Therefore,
we precompute the value review * review, encrypt it using AH
encryption, and add it to the input file. The while loop becomes

1 while (token.hasMoreTokens()) {

2 int review = token.nextToken(); // review is encrypted
3 int r = token.nextToken(); // AH—encrypted review?

4 intsq_a=sq_a+r;

5

6 }

Without row precomputation the def-use chain from (7,8) re-
quires conversion from MH to AH. Since this conversion happens
in an input-dependent while loop, i.e., there are potentially many
executions, it would be costly. Row precomputation eliminates the
need for conversion in input-dependent loops in map. In contrast
to this case, the use of rating at line 10 in Fig. 2 does not meet the

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

1 int ged(int a, int b) {

2 while (a!=b) {

3 if (a>b)

4 a=a-—b;

5 else

6 b=b-a;

7}

8 return a;

'

Figure 6: GCD program and the CFG. The green dotted lines
show the Min-cuts for the def-use chains (4,3) and (6,3).

condition for row precomputation because operand sum_rating
does not come from the input file.

4.3 Optimal Conversion Placement using
Min-cut

Let ¢ be a source as defined in Sect. 4.2. Closure(c) is the set of all

def-use chains reachable from c:

1. Every (c,u) € DU is in Closure(c).
2. For every (u,v) € Closure(c) A (v,w) € DU,
(v, w) is in Closure(c).

Roughly, Closure(c) is the forward slice of c, i.e., it includes all
CFG nodes that are data-dependent on the value of ¢. Therefore,
the computation at these nodes must be carried out on encrypted
values.

A def-use chain (d, u) € Closure(c) requires conversion if the def-
inition d produces an encrypted value incompatible with the use in
u. For example, def-use chain (16,21) in Fig. 2 requires conversion,
because the subtraction in line 16 produces fraction in AH, how-
ever, the comparison in 21 requires OPE. Therefore, we must add
conversion(s) on the paths from d to u. We must add conversion(s)
so that:

(1) Every path from d to u in the CFG is “covered”, i.e., regardless
of which path the execution takes, the value is available at u
properly encrypted, and

(2) Conversion placement is optimal, i.e., the total number of
conversion executions is minimal.

We observe that the conversion placement problem can be cast
as a Min-cut problem [5]. The Min-cut problem takes a directed
graph with weights on the edges, a source node s and a sink node ¢.
The goal is to partition the nodes into S and T such thats € S,t € T,
and the sum of the weights of edges from S to T is minimal.

In our setting, d is s and u is . Let G(4 ,,) € CFG be the flow
network with source d and target u. As it is customary for Min-
cut, G(g,) contains all CFG nodes n, and edges between them,
such that (1) n lies on some path from d to u and (2) d reaches n.
The Min-cut on G(4) gives an optimal conversion placement that
covers def-use chain (d, u). Consider Fig. 2 again. Def-use chain
(10, 14) € Closure(rating) requires conversion. G(qq, 14) consists of
nodes 8,9,10,11 and 14, and the edges between them. The Min-cut is
loop exit edge (8,14) with weight m, which entails that conversion
is placed right above statement 14.

To appreciate Min-cut placement, consider the naive (and most
obvious) approach, which places conversion right at node u for
each (d, u) chain that requires conversion. In the above example

Yao Dong, Ana Milanova, and Julian Dolby

this turns out to be the optimal placement, however, one can easily
see this is not the case in general. Fig. 6 shows the Euclidian algo-
rithm for computing the greatest common divisor of two integers.
Suppose a and b are encrypted sources. Consider def-use chain (4,3).
It requires conversion from AH to OPE since 4 computes a in AH
but 3 performs comparison on a. The graph on which we compute
Min-cut consists of nodes 2, 3, 4, 6 and 7, and the edges between
them. Clearly, edge (4,7) yields the least costly cut. Under our equal
probability assumption, edge (4,7) executes half as many times as
edges (7,2) and (2,3). Therefore, the optimal placement is after the
assignment at 4.

In contrast, the naive approach places the conversion at the use
at 3. Conversions of variable a run at the beginning of each loop
iteration, even though only one of the assignments, either to a or b
takes place in the previous loop iteration.

We extend this reasoning to multiple definitions and/or multi-
ple uses of a variable as follows. Let Sg' —“* be the set of all def-
use chains on variable v that require conversion from encryption
scheme e to encryption scheme ey. Intuitively, these def-use chains
can “share” conversions. Let G % be the graph that corresponds
to those def-use chains. It is formally defined as follows:

Gy % = U G(d,u)

(d,u)eSg ™

To compute the Min-cut set of edges, we extend G5 % with super-

sources and supersinks in the standard way [5]. There is a super-
source s, and edges (s, d) with infinite weight for each definition d.
Similarly, there is supersink t, and edges (u, t) with infinite weight
for each use u.

4.4 Cost Model and Heuristic Refactoring

We develop a cost model using integer programming. It takes into
account execution cost (on the client and on the server), and con-
version and communication cost. Due to space constrains we have
transferred the details to Appendix A.

The cost model guides our heuristic refactoring. Under certain
assumptions about the model parameters, detailed in Appendix A,
the objective function achieves minimum when all targets of con-
version edges are on the client. To balance server placement (which
we aim to maximize) and communication/messaging cost (which
we aim to minimize), we use the following heuristic. We extract
the minimal construct s (recall the grammar in Fig. 3) in each of
map and/or reduce, that contains all targets of conversion edges. In-
tuitively, extracting a contiguous chunk of statements, rather than
multiple disconnected chunks, works towards the goal of minimiz-
ing communication cost — there are message sends at the start when
the server sends the arguments, and at the end, when the client
sends the result to the server. On the other hand, the minimality of
s works towards the goal of maximizing server placement.

Importantly, the analysis suggests a contiguous region (start
line to end line). Programmers can extract the method by using
the Extract Method refactoring in Eclipse (for example) fitting the
extracted method into a template that includes socket program-
ming. As mentioned earlier the analysis works top-down over the
grammar in Fig. 3. It selects the minimal non-terminal s, such that
s contains all conversion targets. At the top level, let there be a

SecureMR: Secure MapReduce Computation

sequence si;52;...;Sg (Where each s; is either an assignment, an
IF-THEN-ELSE, or a while loop). The suggested region starts at the
first s; containing conversion target and ends with the last. If just a
single s; contains conversion, the analysis considers the three cases,
as expected:

e if s5; is an assignment, the segment starts and ends with s;.

e if s; is IF-THEN-ELSE, and all targets are either in the THEN
part or in the ELSE part, the algorithm breaks that part into
a sequence and proceeds recursively. Otherwise, i.e., if some
targets are in the THEN part, and others are in the ELSE part,
the algorithm selects the entire s;.

o if 5; is a WHILE statement, the algorithm allows for two
choices, 1) the programmer selects the entire s;, or 2) de-
scends recursively into the body of the WHILE loop.

The heuristic captures well the nature of MapReduce programs. In
all cases we have seen, the suggested regions is the trailing sequence
of assignments at the top level. It is easy to extend the heuristic to
suggest multiple segments.

In the example of Fig. 2, the conversion edges include (10,14)
(for definition sumRatings at line 10), (14,15), (15,16), (16,21) and
(22,27) (for definition outValue at line 22). The algorithm suggests
the segment from 14 to 25. This places all targets of conversion
edges on the client. 2:

1 int m_client(sumRatings, totalReviews) {

2 float avgReview = sumRatings/totalReviews;
3 float absReview = Math.floor(avgReview);

4 float fraction = avgReview — absReview;

5 int limit = 1.0f/division; // division = 0.5f.

6 inti=1;

7 float outValue = 0.0f;

8 while (i <= limit) {

9 float x = ixdivision;
10 if (x — division <= fraction && fraction < x) {
11 outValue = absReview + x;
12 }
13 =i+
14}
15 return outValue;
16}

The extracted method m_client runs on the client where the
computation is done over plaintext. The server sends the ciphertext
of sumRatings and totalReviews through the socket. The client de-
crypts them and passes the plaintext to m_client. After the method
execution, the client encrypts the result outValue and sends it back
to the server. The mapper on the server takes the encrypted value
to continue the rest of the program. This partitioning entails only
two message sends between server and client.

Communication has significant impact on performance. In our
current setting, there is a single client machine, hence communica-
tion between multiple mappers/reducers and the single client can
have significant negative impact. The impact depends on where
the extracted method s takes place. There are three cases: (1) s is
enclosed into an input-dependent while loop, or it contains an input

ZStrictly, the heuristic determines that 27 be placed on the client. However, it references
a special heap object, outValue, which resides on the server, and therefore, 27 must
remain on the server. In general, the heuristic fails if the extracted method includes
heap references that cannot be moved. It does work successfully in our benchmarks
with minor modification as the above.

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

dependent while loop, (2) s is a short segment of code in map, and
(3) s is a short segment in reduce.

Case (1) is the worst case. It would lead to either running the
entire map on the client, which would defeat the parallelism of map,
or to frequent communication, which would create bottleneck at
the client. Recall the original K-Means:

—_

map(LongWritable Key, Text value) {
String line = value.toString();
String reviews = line.substring(line.indexOf(":") + 1);
StringTokenizer token = new StringTokenizer(reviews, ",");
while (token.hasMoreTokens()) {
int review = token.nextToken(); // review is encrypted
int sq_a += review » review;

_= O 0 00NN W

[Erg—

}

The while loop 5-9 is clearly input-dependent and may execute
many times per input row. There is conversion from MH to AH at
line 7. If the code outside the loop (this code is elided at line 10),
contains conversion, then our heuristic refactoring would extract
the entire method to execute on the client, which would clearly
defeat parallelism. If there is no conversion outside the loop, then
the huristic would extract line 7. That would be problematic as well,
because it would entail frequent communication. Fortunately, row
precomputation, which we detailed at the end of Sect. 4.2 eliminates
conversions in input-dependent loops.

Case (2) is when s is a short segment (a short straight line of
statements) in map, and s falls outside of input-dependent loops.
Our running example, Histogram Movies, illustrates this case. Each
invocation of map processes one row of input. Thus, each s entails
one round-trip network communication. MapReduce typically pro-
cesses very large datasets and communication at each row could
incur significant slowdown. In order to decrease this overhead, we
leverage a technique we call “piggybacking communication”. The
key idea is that instead of initiating communication at the end of
each input row, we store results for N rows, and initiate communi-
cation when N rows have been processed, transferring N values at
once. Piggybacking reduces the number of sockets, but increases
the size of each message.

Case (3) is when s is a short segment of code in reduce that
falls outside of input-dependent loops. Typically, the number of
reduce input groups is small. For example, there are 8 reduce input
groups in Fig. 2 and 16 in K-Means. In many MapReduce bench-
marks, we observed a single reduce input group. Therefore, if a
conversion happens in reduce, there is a relatively small overhead
of the communication cost. The impact of case (2) is substantially
more pronounced because MapReduce benchmarks tend to exhibit
substantially higher parallelism in the map phase than in the reduce
phase.

5 EXPERIMENTS

We have implemented the Reaching definitions and program trans-
formation using Soot [14, 26]. Reaching definitions determines how
to encrypt the input columns (encryption is automated with scripts).
Next, we compute the optimal placement of conversions. Once we
have the placement, we apply the heuristic refactoring, which gives
the client-server partitioning. Transformation of benchmarks that

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

X Input size (GB) .
Benchmark (suite) - - Conversions| Category
Plaintext | Ciphertext
Word Count (PUMA) 20 53 no search-
Inverted Index (PUMA) 20 53 no intensive
K-Means (PUMA) 20 198.7| inmap
Classification (PUMA) 20 198.7(inmap
Histogram Movies (PUMA) 20 112.7| inmap
Aggregate Task (Brown) 18.7 46.8 no
Aggregate Task Variant (Brown) 18.7 46.8 no
Join Task (Brown) 19.6 43.5(inreduce .
computation-
L3 (PIGMIX2) 20.5 44.8 no . .
intensive
L6 (PIGMIX2) 20.5 44.9 no
L8 (PIGMIX2) 20.5 45.1 no
L12 (PIGMIX2) 20.5 4.8 no
L15 (PIGMIX2) 20.5 455 no
L16 (PIGMIX2) 20.5 45 no
L17 (PIGMIX2) 21.5 47.8 no

Figure 7: Benchmarks.

do not require conversion is fully automatic. For benchmarks that
do require conversion, the algorithm suggests the segment, but the
actual Extract Method refactoring including fitting into boilerplate
socket communication is done manually. It is standard that Extract
Method is not fully automated (e.g., Eclipse requires confirmation
from the user before performing Extract Method).

5.1 Execution Environment

We ran all experiments on the Google Cloud Platform [10]. The
big data processing platform provides an Apache Hadoop service
to create managed clusters. We created 4 separate clusters, with
8, 16, 32 and 64 nodes, and ran the MapReduce programs on them
separately. Each cluster contains one master node and the remaining
nodes serve as worker nodes. All 4 clusters have access to 4096
GB of disk in total. Each node is a Linux machine with 1 virtual
CPU (Intel® Xeon® CPU @ 2.60GHz) and 3.75 GB of memory. The
trusted client is a local Ubuntu machine (Intel® Core™2 Duo CPU
@ 2.33GHz) with 4 GB of memory. The local machine is used to
encrypt the input files and transform the programs into server and
client partitions. It also stores the public/private keys (necessary
for decryption/encryption) and the client partition (extracted from
the original program to run over plaintext). We upload to the cloud
the encrypted input, the server partition and the necessary public
keys for homomorphic computations.

5.2 Benchmarks

We use three MapReduce benchmark suites, PUMA [1] (13 pro-
grams), Brown [16] (6 programs) and PIGMIX2 [17] (17 programs),
a total of 36 programs. These suites are established in the litera-
ture, and have been used in the previous work on PHE for MapRe-
duce [6, 23].

Based on the results of our RD analysis (Sect. 4.1.3), 4 benchmarks
require conversion. Thus, 88.9% can run without communication
with the client. This is a larger percentage than the one reported
by MrCrypt [23] because our RD analysis allows for duplicate
ciphertexts of input columns (recall example in Fig. 5). In the 4
benchmarks, 3 conversions happen in map and 1 happens in reduce,
representing cases (2) and (3) from Sect. 4.4, respectively.

We classify the benchmarks into computation-intensive and search-
intensive. Computation-intensive benchmarks are those that require

Yao Dong, Ana Milanova, and Julian Dolby

AH and/or MH encryption according to RD. In contrast, search-
intensive benchmarks require DET and/or OPE only. The overhead
of AH and MH is significantly higher than the overhead of DET
and OPE. Tetali et al. [23] cite specific slowdowns: 2X for DET, 4x
for OP, 500 for AH, and 75X for MH. (We have confirmed these in
experiments of our own.)

We focus our experiments on computation-intensive bench-
marks. This is because overhead in search-intensive applications
has been reported on — Tetali et. al. [23] report median slowdown
of 1.57x on, essentially, the search-intensive subset of PUMA. In
contrast, overhead in computation-intensive program has not been
studied, to the best of our knowledge. Moreover, computation-
intensive benchmarks without conversion (i.e., without communica-
tion) provide a baseline for benchmarks with conversion — roughly
speaking, the true overhead of communication is the increase over
a computation-intensive benchmark without conversion.

There are 13 computation-intensive benchmarks according to
our RD analysis, out of 36. 4 of those require conversion as men-
tioned earlier. We run all 13 programs. In addition, we run 2 search-
intensive programs in order to compare our overhead with that
reported by MrCrypt [23]. Fig. 7 summarizes the benchmarks.

5.3 Results

Figs. 8,9, 10 and 11 present the results. Each benchmark result is
shown in a subfigure, reporting (1) the running time of the orig-
inal program running on plaintext, (2) the running time of the
transformed program running on ciphertext, and (3) the overhead
percentage, on the 8, 16, and 32-node clusters. To better understand
the impact of client communication, Fig. 8 includes results on the
64-node cluster. We use separate figures to better position our work
in the context of the most related work, MrCrypt [23].

In Fig. 8, the maximal overhead is 285%, or slowdown of 3.85x,
and the minimal overhead is 39%. In Figs. 8a, 8b, and 8c, conversion
happens in map, while in 8d, it happens in reduce. Map in the first
three benchmarks is called 540 times the reduce function in the
fourth benchmark, and each function call is bound to one round
trip communication with the client. Thus, we observe significantly
larger overhead in Figs. 8a, 8b, and 8c than in Fig. 8d. In Fig. 8, the
overhead remains relatively stable as the number of cluster nodes
increases from 8 to 64. In theory, the centralized model (single
client node communicates with multiple server nodes) introduces
a sequential bottleneck as the number of server nodes increases.
However, the overhead dose not rise on 64 nodes in the figures.
The reason is that the extracted code segment running on the
client is short and simple, i.e., the execution time is small. The
client machine is capable of feeding the cluster with large enough
number of communication requests (i.e., socket connections and
plaintext computation). In other words, the time intervals between
the requests are large enough for the client machine to digest the
communication. This indicates the potential of scalability of our
approach, that is, the overhead is low even for large number of
server nodes, and the communication requests from larger number
of server nodes can be handled with a very small number of client
nodes (e.g., 64:1).

In Figs. 9 and 10, which show computation-intensive benchmarks
without conversion, the overhead is generally smaller compared to

SecureMR: Secure MapReduce Computation

—A-original -@-transformed -# overhead

—A-original -@-transformed —¢ overhead

285%
1400 141% 30000
124% 127% »
114% A S 212% 221%_ -7 ~~ 220%
1200 T e - 325000 b e %
21000
° 789 S 20000
E 800 E
= £ 15000
'tEw o0 %‘J 10000
£ 400 g
500 & 5000
0 0 98
8 16 32 64 8 16 32 64
Number of Nodes Number of Nodes
(a) Histogram Movies (b) K-Means

HoTSoS ’1

~A-original -@-transformed ~¢ overhead

8, April 10-11, 2018, Raleigh, NC, USA

—A-original -®@-transformed ~® overhead

250% 268% 1200 75%
.l 223% -4~ 222% . 53
520000 17939 "~ R 51000 39%.-" T e
g A S 22%
-
-E 15000 E 650
= = 600
10000 2
‘g ‘g 400
g El
2 5000 € 200
0 0
8 16 32 64 8 16 32 64
Number of Nodes Number of Nodes
(c) Classification (d) Join Task

Figure 8: Running time of benchmarks with conversion.

—A—original -®-transformed -# overhead
130%

1000 139" 123%

=== -
_ 789 el s
g 800 S . °
g 600
&
2400
E 229
s 200
= 132

0
8 16 32
Number of Nodes
(a) L15

~A-original -®-transformed -4 overhead

1000 121%
*
S~ 90%
3800 4 Ty
2 600 T 21%
=} *
P00 B8
=
=} 178
=1
200
= 147
0
8 16 32
Number of Nodes
(b) L16

—A-original -@-transformed ¢ overhead

1400 b mm 191%
1200 112 .
2
21000
o
£ 800
S 483
on
2 600 - 443
£ 400 1 s
= 200
0
8 16 32
Number of Nodes
(c) L17

Figure 9: Benchmarks without conversion that MrCrypt’s analysis cannot handle.

~A—original *Iransformcod -# overhead
217% ’

P
* - o
52000 .
) 1925 TN 113%
“E’ 1500 K3
£
01000
£ 607
] 433
2 500
203
0
8 16 32
Number of Nodes
(a) Aggregate Task
—A—original -@-transformed ¢ overhead
000 124% 123%
*
3 800
Zz
2 600
£
2 400
S
S
2 200
0
8 16 32
Number of Nodes
@ L6

~A-original -®-transformed -4 overhead

—A-original -®-transformed -4 overhead
1400 205%

1200

1000

167% __--*.
* N

Running Time (sec)
B o
o o O
S o o

[
=3
S

<o

8 16
Number of Nodes

(b) Aggregate Task Variant

—A-original *transforme&:l -4 overhead

1000 130%
*--" 77T .
2 00 753 .
2
2 600
E
2 400
=
=}
£ 200
0
8 16 32
Number of Nodes
(e) L8

—A-original -@-transformed ~# overhead
1600 1%

. 3%
__ 1400 1255 "= -e_
81200
g 1000
= 800
=
£ 600
=l
£ 400
&
200
0
8 16 32
Number of Nodes
(c) L3

—A-original -®-transformed 4 overhead
140% 139%
2500

2000

1500

Running Time (sec)
wn 5
(=3 i=3
(=} (=}

o

8 16
Number of Nodes

(f)L12
Figure 10: Benchmarks without conversion that MrCrypt’s analysis can handle, but does not evaluate experimentally.

—A-original -®@-transformed -# overhead

80% 429
3000 . 64% 2500 33, 40
5 LT T 5 --- Tl 19%
§ 2500 4‘3/‘1 - * 2000 15'97 e
e 1782 e
2000 g
E £ 1500 I
= = 0.
1500 1235 o
g 1000 876 g 1000 743
= =)
é 00 487 457 m: 500 523 394
278 331
0 0
8 16 32 8 16 32
Number of Nodes Number of Nodes
(a) Word Count (b) Inverted Index

Figure 11: Search-intensive benchmarks that MrCrypt evaluates experimentally.

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

Fig. 8. They show benefits from increased parallelism, while Fig. 8
shows substantially less. The overhead in Figs. 9 and 10 decreases
as the number of nodes increases. This conforms to Amdahl’s law>.
Let E3p denotes the running time of the encrypted program on
32 nodes, P3 denotes the running time of the plaintext program
on 32 nodes, etc. E32/Ps2 < E16/P1¢ because E14/E32 > P16/Ps2,
i.e,, because encrypted programs scale better than plaintext ones.
This is because the proportion of execution time that benefits from
parallelization in encrypted programs is larger than the proportion
in plaintext programs, where fixed costs tend to dominate much
less expensive computation.
As expected the overhead on search-intensive benchmarks (Fig. 11)

is comparable to the one reported by MrCrypt.

6 RELATED WORK

Partially Homomorphic Encryption (PHE) for cloud computing has
received significant attention in recent years [6, 18, 22-25]. Sect. 1
and Sect. 5 already position our work with respect to the most
closely related work, MrCrypt [23], and other related work, specifi-
cally CryptDB [18] and Monomi [25]. In addition, AutoCrypt [24]
enables homomorphic computations on C applications. None of
CryptDB, MrCrypt, AutoCrypt, or JCrypt [6] handle conversion. In
contrast, SecureMR handles conversion; it covers the largest set of
MapReduce programs, and assesses conversion and communication
cost on a real cloud platform.

MrCrypt and JCrypt build type systems to infer encryption
schemes for input columns. In contrast, SecureMR leverages a clas-
sical Reaching definitions analysis. Reaching definitions enables
row precomputation and optimal conversion placement, which no
work has addressed.

Program partitioning is a popular technique in various comput-
ing domains. EnerJ [20] uses program partitioning to save energy.
Swift [3] partitions a web application into a server part and a client
part in order to secure sensitive data. In this work, we partition
MapReduce programs towards secure and efficient computation on
the cloud. We adapt Swift’s integer program to our problem setting.

Trying to minimize communication is well studied in the paral-
lelization community [11, 12]. One key difference is that previous
work is not concerned with security and encryption, while our work
focuses on minimizing communication while preserving privacy,
which introduces constraints not present in the prior work.

7 CONCLUSIONS

We presented SecureMR, a system that provides data confiden-
tiality for MapReduce applications running on untrusted clouds.
SecureMR statically analyzes MapReduce programs and infers effi-
cient encryption schemes for input data. Furthermore, it provides
optimal conversion placement, and a cost model that guides pro-
gram partitioning. We evaluated SecureMR on 15 MapReduce bench-
marks (13 computation-intensive and 2 search-intensive) running
on the Google Cloud.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback on
our work. This work was supported by NSF Award CCF-1319384.

Shttps://en.wikipedia.org/wiki/Amdahl%27s_law

Yao Dong, Ana Milanova, and Julian Dolby

Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author and do not neces-
sarily reflect the views of the National Science Foundation.

REFERENCES

[1] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi, and T.N. Vijaykumar. 2012.
PUMA: Purdue MapReduce Benchmarks Suite. Technical Report. Purdue Univer-
sity.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-
ers: Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[3] Stephen Chong et al. 2007. Secure Web Applications via Automatic Partitioning.
In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles (SOSP "07). ACM, New York, NY, USA, 31-44.

[4] Michael Cooney. 2009. IBM touts encryption innovation: New technology per-
forms calculations on encrypted data without decrypting it. Network World (June
2009).

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[6] Yao Dong, Ana Milanova, and Julian Dolby. 2016. JCrypt: Towards Computation
over Encrypted Data. In Proc. 13th Int. Conf. Principles and Practices of Program.
Java Platform: Virtual Machines, Lang., and Tools (PPPJ '16). Article 8, 12 pages.

[7] Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing
(STOC ’09). ACM, New York, NY, USA, 169-178.

[8] Craig Gentry. 2010. Computing Arbitrary Functions of Encrypted Data. Commun.

ACM 53, 3 (March 2010), 97-105.

Craig Gentry and Shai Halevi. 2011. Implementing Gentry’s Fully-homomorphic

Encryption Scheme. In Proc. 30th Annu. Int. Conf. Theory and Appl. of Crypto-

graphic Techn.: Advances in Cryptology (EUROCRYPT’11). 129-148.

Google Cloud Platform 2017. Cloud Dataproc. (2017). https://cloud.google.com/

dataproc

Manish Gupta, Edith Schonberg, and Harini Srinivasan. 1995. A unified data-flow

framework for optimizing communication. Springer Berlin Heidelberg, Berlin,

Heidelberg, 266-282.

[12] M. Gupta, E. Schonberg, and H. Srinivasan. 1996. A unified framework for

optimizing communication in data-parallel programs. IEEE Transactions on

Parallel and Distributed Systems 7, 7 (Jul 1996), 689-704.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2010. Principles of

Program Analysis. Springer Publishing Company, Incorporated.

Rohan Padhye and Uday P. Khedker. 2013. Interprocedural Data Flow Analysis in

Soot Using Value Contexts. In Proceedings of the 2Nd ACM SIGPLAN International

Workshop on State Of the Art in Java Program Analysis (SOAP °13). 31-36.

Pascal Paillier. 1999. Public-key Cryptosystems Based on Composite Degree

Residuosity Classes. In Proceedings of the 17th International Conference on Theory

and Application of Cryptographic Techniques (EUROCRYPT 99). 223-238.

[16] Andrew Pavlo et al. 2009. A Comparison of Approaches to Large-scale Data

Analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on

Management of Data (SIGMOD *09). ACM, New York, NY, USA, 165-178.

Pig Mix 2013. PIGMIX2 Benchmarks. (2013). https://cwiki.apache.org/confluence/

display/PIG/PigMix

[18] Raluca Ada Popa et al. 2011. CryptDB: Protecting Confidentiality with Encrypted

Query Processing. In Proceedings of the Twenty-Third ACM Symposium on Oper-

ating Systems Principles (SOSP '11). ACM, New York, NY, USA, 85-100.

Stefan Rass and Daniel Slamanig. 2013. Cryptography for Security and Privacy in

Cloud Computing. Artech House, Inc., Norwood, MA, USA.

Adrian Sampson et al. 2011. Ener]J: Approximate Data Types for Safe and General

Low-power Computation. In Proceedings of the 32Nd ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI '11). 164-174.

Michael L. Scott. 2015. Programming Language Pragmatics (2Nd Edition). Morgan

Kaufmann.

Meelap Shah, Emily Stark, Raluca Ada Popa, and Nickolai Zeldovich. 2012. Lan-

guage support for efficient computation over encrypted data. In Off the Beaten

Track Workshop: Underrepresented Problems for Program. Lang. Researchers.

Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, and Todd Millstein. 2013.

MrCrypt: Static Analysis for Secure Cloud Computations. In Proc. 2013 ACM

SIGPLAN Int. Conf. Object Oriented Program. Syst. Lang. & Appl. 271-286.

Shruti Tople et al. 2013. AUTOCRYPT: Enabling Homomorphic Computation

on Servers to Protect Sensitive Web Content. In Proc. 2013 ACM SIGSAC Conf.

Comput. & Commun. Security (CCS °13). 1297-1310.

[25] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.

Processing analytical queries over encrypted data. In Proceedings of the 39th

international conference on Very Large Data Bases (VLDB’13). 289-300.

Raja Vallée-Rai et al. 1999. Soot - a Java Bytecode Optimization Framework. In Pro-

ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative

Research (CASCON ’99). IBM Press, 13-23.

—_
)

[10

[11

[13

[14

[15

=
=

[19

[20

[21

[22

[23

[24

[26

https://cloud.google.com/dataproc
https://cloud.google.com/dataproc
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://cwiki.apache.org/confluence/display/PIG/PigMix

SecureMR: Secure MapReduce Computation

A COST MODEL AND HEURISTIC
REFACTORING

In this section, we define the cost model as an integer programming
problem. We adapt the integer program from Chong et. al. [3]
to the settings of our problem. Sect. A.1 defines the parameters
of the integer program. The parameters approximate execution
costs, i.e., costs to run on the server and on the client, and the
communication costs, i.e., costs to send a message from the server
to the client and vice versa. Sect. A.2 defines the variables and
constraints, and Sect. A.3 defines the objective function.

A.1 Parameters
There are the following parameters:

(1) cyw is the cost to run conversion at edge e = (u, v). If optimal
conversion placement converts a value at edge e (e.g., AH to OPE),
then the cost is included into ¢y, . If there are multiple conversions
at e, all costs are included in ¢y, . If there is no conversion at e, ¢y,
is 0. Recall that conversions entail a message from the server to
the client, decryption, encryption, and a return message from the
client to the server.

(2) pu is the cost to run CFG node u on the server. This cost varies
per node. For example, if u performs addition over AH-encrypted
values, then p, will be set to a large constant to account for the
cost. On the other hand, if u computes over plaintext, p,, will be set
to a small constant.

(3) qu is the cost to run node u on the client. This is generally a
large constant. The client runs u over plaintext, however, we assume
high monetary cost due to the increased security requirements.
Another reason for setting large cost per operation on the client
is to discourage from outsourcing large segments to the client (a
single machine), and thus defeating the parallelism inherent in
MapReduce.

(4) myy is the cost to send a message (from the client to the
server, or from the server to the client) at edge (u, v). The message
cost happens when there is transition of control from the server to
the client, and vice versa. Strictly, this cost depends on the size of
the message and it is possible to have messages of varying length.
For simplicity, we assume constant message cost.

These costs do not include node and edge weights w;, and wy,.
They denote the cost to run the operation at node u, or conversion/-
communication at edge e, as if they were executed exactly once.
Constants wy, and wy, are accounted for in the objective function
that we minimize.

A.2 Variables and Constraints

We follow [3] to define variables and constraints. Let variables s,
and ¢, be integers in the interval {0, 1}. They denote whether node
u executes on the server or on the client. s, = 1 if u runs on the
server, and s, = 0 if u runs on the client. Analogously, ¢, = 1ifu
runs on the client, and ¢, = 0 if u runs on the server. To enforce
that each node runs either on the server or on the client, we have
constraint
Sutey =1

Let xy, € {0, 1} denote whether edge e = (u, v) is a transition from
the client to the server, i.e., node u is on the client but v is on the

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

server. x,, = 1 if there is transition from the client to the server,
and it equals 0 otherwise (including when u is on the server, v
is on the client, or both are either on the client or on the server).
Analogously, y,, € {0,1} denotes whether there is a transition
from the server to the client. y,,, = 1 if there is such a transition,
and 0 otherwise. The following constraints account for this:

Xuv 2 Cy — Cyp Yuv 2 Su — Sv

Note that if ¢, — ¢ (or sy — sp) is —1, then x4 (Or yyo) would be
0 because of the interval restriction: x4, Yy € {0, 1}.

A.3 Objective Function

The integer programming problem must find an assignment for
variables sy, ¢y, Xy and yyo that satisfies the above constraints,
and minimizes the cost of running the MapReduce program. The
total cost is the sum of execution cost and messaging cost:

Zu (Su - wu - (Pu + Xoepred(u) Cou) + Cu - Wu - qu)
+

Zez(u,v) (*uo - Wuo + (Muv = Cuo) + Yuo * Wuo - Muo)

The first summation term models execution cost. E.g., if u runs on
the server, then its cost would include p;, as well as all conversions
on incoming edges ¢y, The cost of a single run of u is multiplied
by wy, the static estimate of the number of times u executes. The
second term models communication (i.e., messaging) cost. Note that
we subtract ¢, from my,,, when u runs on the client but v runs on
the server (i.e., when xy,, is 1). This is necessary because conversion
cost term ¢y, is added by the first summation term, however, it
is unnecessary if the predecessor node runs on the server. In that
case, the edge adds message cost alone, transferring values (usually
encrypted) from the server to the client.

A.4 Heuristic Refactoring

Integer programming is NP-hard, and it is unclear whether the lin-
ear relaxation of our integer program produces an optimal integer
solution. Furthermore, it is nontrivial to choose appropriate values
for the parameters. Therefore, in this work, we aim to devise suit-
able heuristic solutions. In future work, we will study the integer
program and experiment with parameter values.

Users can vary cost model parameters to fit specific hardware
configurations or other requirements such as performance. A heuris-
tic solution heavily depends on the parameters. In one scenario, per-
formance is of highest importance. Thus, users would set g, = py,
while setting ¢y, and my,,, which negatively impact performance
in a significant way, to large constants. Under this scenario we are
likely to have larger segments of code on the client in order to mini-
mize communication between client and server. In another scenario,
keeping maximal amount of computation on the server is of highest
importance. For example, it may cost a lot to run and maintain a
secure client. Users would set q;, >> py, and ¢y = py. Under this
scenario, we are likely to have minimal amount of computation on
the client, but more frequent communication.

We assume the former scenario. Setting g, = py, in

Zu (Suwu - (Pu + Xoepred(u) Cou) + Cu - Wu - qu)
+

Ze:(u,v) (*uv * Wuo * (Myo = Cyv) + Yuo * Wuo * Myv)

HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA Yao Dong, Ana Milanova, and Julian Dolby

yields

Su Wy - pu sy - wy - Zvepred(u) Cou)
+
Ze:(u,v) (Xuv * Wuo - (Myo = cuv) + Yuo * Wuo * Myuo)

Assuming that we must have a server partition (i.e., it is not allowed
to place everything on the client), the minimum of the above expres-
sion is achieved when the ¢, terms contribute 0, or equivalently,
when all targets of conversion edges are on the client forcing s, to 0.
To balance server placement (which we aim to maximize) and com-
munication/messaging cost (which we aim to minimize), we use the
following heuristic. We extract the minimal construct s (recall the
grammar in Fig. 3) in each of map and/or reduce, that contains all
targets of conversion edges. We use the Extract Method refactoring
to extract s into a method that executes on the client. Intuitively,
extracting a contiguous chunk of statements, rather than multi-
ple disconnected chunks, works towards the goal of minimizing
communication cost — there are message sends at the start when
the server sends the arguments, and at the end, when the client
sends the result to the server. On the other hand, the minimality of
s works towards the goal of maximizing server placement.

In the example of Fig. 2, the conversion edges include (10,14)
(for definition sumRatings at line 10), (14,15), (15,16), (16,21) and
(22,27) (for definition outValue at line 22). To place all targets of
conversion edges on the client, we extract the segment from 14 to
25 into a client method *:

1 int m_client(sumRatings, totalReviews) {

2 float avgReview = sumRatings/totalReviews;
3 float absReview = Math.floor(avgReview);

4 float fraction = avgReview — absReview;

5 int limit = 1.0f/division; // division = 0.5f.

6 inti=1;

7 float outValue = 0.0f;

8 while (i <= limit) {

9 float x = ixdivision;
10 if (x — division <= fraction && fraction < x) {
11 outValue = absReview + x;
12 }
13 i=i+1;
14}
15 return outValue;
16 }

The extracted method m_client runs on the client where the
computation is done over plaintext. The server sends the ciphertext
of sumRatings and totalReviews through the socket. The client de-
crypts them and passes the plaintext to m_client. After the method
execution, the client encrypts the result outValue and sends it back
to the server. The mapper on the server takes the encrypted value
to continue the rest of the program. This partitioning entails only
two message sends between server and client.

4Strictly, the heuristic determines that 27 be placed on the client. However, it references
a special heap object, out, which resides on the server, and therefore, 27 must remain
on the server. In general, the heuristic fails if the extracted method includes heap
references that cannot be moved. It does work successfully in our benchmarks with
minor modification as the above.

SecureMR: Secure MapReduce Computation HoTSoS 18, April 10-11, 2018, Raleigh, NC, USA

B FIG. 2. HISTOGRAM MOVIES AND ITS CONTROL-FLOW GRAPH

Reviewers may rip this page to reference the figure while going over the paper.

1 map(LongWritable key, Text value) {
2 int totalReviews = 0, sumRatings = 0;
3 float avgReview, absReview, fraction, outValue = 0.0f;
4 String line = value.toString();
5
6 String reviews = line.substring(line.indexOf(":") + 1);
7 StringTokenizer token = new StringTokenizer(reviews, ","); [10: sumRatings = sumRatings + rating
8 while (token.hasMoreTokens()) { fem
9 int rating = Integer.parselnt(token.nextToken()); // rating is encrypted source
10 sumRati.ngs = sumRatin.gs + rating; ‘ 14: avgReview = sumRatings/totalReviews
11 totalReviews = totalReviews + 1;
12 } | 15: absReview = Math.floor(avgReview) |
13
14 avgReview = sumRatings/totalReviews; [26: fraction - avgReview - absReview |
15 absReview = Math.floor(avgReview);
16 fraction = avgReview — absReview;
17 int limit = 1.0f/division; // division = 0.5f.
18 inti=T1;
19 while (i <= limit) {
20 float x = i=division;
21 if (x — division <= fraction && fraction < x) {
22 outValue = absReview + x; 22: outValue = absReview + x
23 }
24 i=i+1;
25 } 27: output.collect(outValue, 1) |<—
26
27 output.collect(outValue, 1);
28}
1 reduce(FloatWritable key, Iterator<...> values) {
2 int sum = 0;
3 while (values.hasNext()) {
4 int value = values.next();
5 sum += value;
6
7 output.collect(key, sum);
8

Histogram Movies from the PUMA benchmark set, and its Control-flow Graph (CFG). Nodes 8-14 (shown in red) comprise the flow
network for def-use chain (10,14); edge (8,14), cut with a green dotted line, is the Min-cut.

	Abstract
	1 Introduction
	2 Overview of MapReduce
	3 Overview of SecureMR
	4 Formal Account of SecureMR
	4.1 Preliminaries
	4.2 Necessary Encryption Inference and Row Precomputation
	4.3 Optimal Conversion Placement using Min-cut
	4.4 Cost Model and Heuristic Refactoring

	5 Experiments
	5.1 Execution Environment
	5.2 Benchmarks
	5.3 Results

	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	A Cost Model and Heuristic Refactoring
	A.1 Parameters
	A.2 Variables and Constraints
	A.3 Objective Function
	A.4 Heuristic Refactoring

	B Fig. 2. Histogram Movies and Its Control-flow Graph

