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ABSTRACT
The existing state-of-the-art in the field of intrusion detection sys-
tems (IDSs) generally involves some use of machine learning al-
gorithms. However, the computer security community is growing
increasingly aware that a sophisticated adversary could target the
learning module of these IDSs in order to circumvent future detec-
tions. Consequently, going forward, robustness of machine-learning
based IDSs against adversarial manipulation (i.e., poisoning) will
be the key factor for the overall success of these systems in the real
world. In our work, we focus on adaptive IDSs that use anomaly-
based detection to identify malicious activities in an information
system. To be able to evaluate the susceptibility of these IDSs to
deliberate adversarial poisoning, we have developed a novel frame-
work for their performance testing under adversarial contamina-
tion. We have also studied the viability of using deep autoencoders
in the detection of anomalies in adaptive IDSs, as well as their
overall robustness against adversarial poisoning. Our experimental
results show that our proposed autoencoder-based IDS outperforms
a generic PCA-based counterpart by more than 15% in terms of
detection accuracy. The obtained results concerning the detection
ability of the deep autoencoder IDS under adversarial contamina-
tion, compared to that of the PCA-based IDS, are also encouraging,
with the deep autoencoder IDS maintaining a more stable detection
in parallel to limiting the contamination of its training dataset to
just bellow 2%.
ACM Reference Format:
Pooria Madani and Natalija Vlajic. 2018. Robustness of Deep Autoencoder
in Intrusion Detection under Adversarial Contamination. In HoTSoS ’18: Hot
Topics in the Science of Security: Symposium and Bootcamp, April 10–11, 2018,
Raleigh, NC, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3190619.3190637

1 INTRODUCTION
Cyber security can be thought as a game which is played against
adversaries, and as for any game, it is important to have a strategy.
In order to win the game, however, one should also consider reac-
tions of the opponents to the adopted strategy [1]. In respect to this
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view, an Intrusion Detection System (IDS) is one kind of a strategy
in the detection of malicious activities in information systems. Due
to lack of stationarity in the world of cyber security (e.g., frequent
changes in normal and malicious behaviors), strategies adopted by
IDSs require frequent updates in order to compensate for these con-
tinual changes. However, these very circumstances/factors - lack
of stationarity and attempts of adaptive IDSs to adjust to occurring
changes - provide ample opportunities for the adversaries to poison
the modelling process of these systems [2]. In other words, by the
virtue of their operation, adaptive IDSs are particularly suscepti-
ble to contamination introduced by adversaries into their training
datasets. For that very reason, achieving robustness under adversar-
ial contamination is one of the most desired properties of detection
models in adaptive IDSs.

Deep learning, owed to the use of cascaded layers of nonlinear
processing units, has shown promising results in many hard compu-
tational tasks and has revolutionized many research fields such as
computer vision. Recently, IDS research community have started to
adopt deep learning models in the construction of anomaly-based
IDSs, and Hodo et al. [3] have compiled a survey on the related
researche works in this domain. By leveraging the abundance of
training data, deep learning models are capable of carrying the task
of representation (i.e., feature) learning in order to model underly-
ing complexities in a given training dataset. Given the abundance
of sample data in the field of computer security and the complexi-
ties of the latent variables that define normality in this field, it is
appropriate to study the capabilities of deep generative models for
the construction of anomaly-based IDSs.

The contributions of thework presented in this paper are twofold:
(1) We have investigated the viability of deploying deep autoen-
coders - a deep neural network model - in the construction of an
anomaly-based IDS. Moreover, we have compared the performance
of such an autoencoder-based IDS to that of and an IDS based on
the other well-known subspace analysis method - Principle Com-
ponent Analysis (PCA) - in terms of their ability to capture the
normality of the input data as well as to detect their anomalies.
Although autoencoders have been used in the past for the purposes
of anomaly detection, in this paper we have explored different
techniques (e.g., visualization) in validating the constructed model.
(2) We have proposed a novel framework for testing robustness
of adaptive anomaly-based IDSs under adversarial contamination.
Using the proposed framework, we have compared the robustness
of the proposed autoencoder-based IDS to that of tis PCA-based
counterpart under adversarial contamination.
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2 BACKGROUND AND RELATEDWORKS
Intrusion detection systems, depending on the point of deployment,
are generally classified into two categories: (1) Network Intrusion
Detection System (NIDS), and (2) Host-based Intrusion Detection
System (HIDS). NIDSs are placed at points within a network to
monitor traffics to and from all network devices. Given that they
are deployed at the network level, they have a broader view of net-
work activities are able to detect network-wide malicious activities.
However, encrypted network packets reduce the ability of NIDSs
to detect certain classes of intrusions. In contrast to NIDSs, HIDSs
run on individual network devices and are able to monitor the in-
ner states of devices in order to detect malicious activities. There
are numerous survey papers [4–7] that review the advantages and
disadvantages of the two intrusion detection system architectures.

IDSs are further classified into two to distinct categories based
on the employed detection techniques: (1) signature-based IDSs,
and (2) anomaly-based IDSs. Signature-based IDSs identify attacks
by looking for known malicious patterns in incoming data, aslo
referred to as signatures. . However, new attacks, for which there
are no identified signatures, can evade such detection systems. In
contract to signature-based, anomaly-based IDSs are capable of
capturing unknown malicious activities by measuring the degree
of deviation of incoming data streams from what is considered to
be the normal data profile. There are many machine learning ap-
proaches [8–10] that are developed to detect outliers or anomalies
in data. Unfortunately, in intrusion detection systems, due to the
inherent absence of stationarity, non-adaptive anomaly-based tech-
niques often result in high rate of false alarm (i.e., false positive)
during runtime. As a result, such techniques are not well adapted
by the industry practitioners [11].

Shyu et al. [12] were one of the early adaptors of Principle Com-
ponent Analysis (PCA) in development of anomaly-based IDSs.
They assumed anomalies are qualitatively different from the nor-
mal instances and this difference can be detected by measuring the
deviation from the established normal (i.e., non-malicious) datasets.
Their proposed Principle Component Classifier (PCC) consists of
two functions of principle component scores: (a) major compo-
nents ∑qi=1 y2

i
λi
, and (b) minor components ∑pi=p−r+1 y2

i
λi
, where λi

is sample variance of feature i in the dataset and the top q principle
components form the major components. Due to the simplicity of
PCA, many anomaly detection-based IDSs have adopted a variation
of PCC in detecting malicious activities. However, PCC in its origi-
nal form, suffer from lack of robustness against adversarial noise
in the training dataset. In other words, the training data must be
free of any noise which is an unrealistic assumption for building
an adaptive IDS that requires frequent semi-supervised retraining.
Ringberg et al. [13] have studied the lack of robustness in PCA
models for detecting anomalous traffic in IP networks. Specifically,
they have shown that the false alarm rate is very sensitive to small
differences in the number of principle components and a realistic
number of anomalies in the training data can easily pollute the
normal subspace.

Rubinstein et al. [14] demonstrated an attack against a typical
adaptive PCA-based IDS by injecting malicious points and perturb-
ing the principle components gradually. Furthermore, they devel-
oped ANTIDOTE [15] as a framework for testing and enhancing

the robustness of anomaly detection techniques in flow-based intru-
sion detectors. It should be noted that our work differs form [14]
in terms of the nature of the attack initiated against the model. In
ANTIDOTE, the PCA engine is being tested against flow-based at-
tacks whereas in our proposed framework we study the robustness
of anomaly detectors against label contamination.

Xiao et al. [16] have studied the robustness of Support Vector
Machine (SVM) against adversarial label contamination. In their
work, they theoretically analyzed and proposed an algorithm that
can manipulate a set of labels to maximize the empirical loss of
the original classifier on a trained dataset. Although our work
is inspired by the work of Xiao et al. [16], the difference comes
from the fact that our proposed simulation is closer to an actual
deployment scenario of an adaptive IDS.

Niyaz et al. [17] have used deep autoencoder for feature extraction
and feature reduction before using a feedforward neural network
to perform the classification. Our approach is significantly different
since we are utilizing the reconstruction error of the autoencoder
as the measure for anomaly detection. Hawkins et al. [18] used
reconstruction error of the trained autoencoder to detect outliers
which provided the basis for our research. Although, Hawkins et
al. used this method for outlier detection, the sensitivity of their
method under adversarial setting (e.g., intrusion detection system)
has been studied extensively. Moreover, their technique was used to
detect generic outliers outside of the context of building an adaptive
IDS.

3 APPROACH
3.1 Deep Autoencoders
An autoencoder is a neural network that is trained to reconstruct
the provided input on its output nodes. Generally, the representa-
tion layer h, describes a code that represents the input distribution.
An autoencoder is consisted of two parts: an encoder function
h = f (x ) that encodes the input on to the representation layer h,
and a decoder function r = д(h) that reconstruct the coded rep-
resentation h back into the original input. The main goal of this
architecture, as depicted in Figure 1, is to learn an approximation of
д( f (x )) ≈ x . Due to the bottleneck in the representation layerh, the
autoencoder is forced to encode only approximately the underlying
concepts that resemble the input. As a result, the model often learns
useful properties of the input data in order to achieve necessary
reconstruction ability.

The original idea of autoencoders, initially introduced by Le-
Cun [19], has been studied for decades. Traditionally, autoencoders
were used for dimensionality reduction and/or feature learning.
Recently, due to the existent of theoretical relations between au-
toencoders and latent variable models, autoencoders are considered
as one of the compelling subspace analysis techniques.

The learning process in autoencoders is described as minimizing
a loss function

L(x ,д( f (x ))), (1)
where L is the loss function (e.g., mean squared error) intended to
penalize the dissimilarity between д( f (x )) and x . When the activa-
tion function used in decoder layers are linear and L is the mean
squared error, the autoencoder learns to span the same subspace as
Principle Component Analysis (PCA). Autoencoders with nonlinear
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Figure 1: Anatomy of a generic autoencoder.

encoding function f and nonlinear decoding function д can learn a
more powerful nonlinear generalization of PCA [20].

In terms of their neural structure, autoencoders are a special
case of feedforward Artificial Neural Networks (ANN). Thus, they
inherit all the properties and training procedures associated with
ANNs. More importantly, given nontrivial depth in an autoencoder,
universal approximation theorem [21] guarantees that the neural
network can approximate any function to an arbitrary degree of
accuracy.

3.2 Anomaly Detection using Autoencoders
Although autoencoders are mostly used for feature learning and
dimensionality reduction, we are going to use its reconstruction
loss (i.e., error) as a measure for anomaly detection. The underlying
assumption (which is verified by our experiments) is that a deep
autoencoder trained on normal (i.e., non-malicious) dataset will
have a large reconstruction error when is used to reconstruct non-
normal (i.e., attack) data samples. This is due to the fact that latent
variables (such as environmental factors, learned by the representa-
tion h of the deep autoencoder) that exist in malicious data points
are substantially different from those of non-malicious data points.
As in Equation 2, mean squared error loss function L is used for
both training and anomaly detection purposes.

L(x ,д( f (x ))) =
1
n

∑
(xi − д( f (xi )))

2 (2)

α = P (L(x ,д( f (x ))) > C | x is normal instance) (3)

In order to be able to approximate a general function, lossless re-
construction is not the main objective of training of the autoencoder.
To compensate for this, an allowance threshold can be introduced
to help differentiate between a normal and faulty reconstruction -
threshold C in Equation 3. Obviously, the value of this parameter
will ultimately (also) control the rate of false-positives (i.e., normal
instance mistakenly flagged as malicious) which is vital in the de-
sign and deployment of IDSs. To minimize the rate of false positives,

the value of threshold C could be calculated empirically before the
actual system deployment.

3.3 The Framework for Adversarial Drift
Simulation

Although we are not the first to use autoencoders in anomaly de-
tection, due to the recent advances in deep learning, we decided to
test the robustness of deep autoencoders for anomaly detection pur-
poses in adversarial settings. In the semi-supervised learning mode
of anomaly detection models, normal data instance are provided in
order to capture the underlying non-malicious (i.e., normal) data
can be extremely large, it is typical to use the existing detection
model to select candidate examples from the realtime data streams
for retraining. To that end, the most naive strategy to system re-
training is to consider new points identified as non-malicious (i.e.,
normal) to be added to the pool of new training instances in order
to cope with the occurring concept-drift. Although many cleansing
techniques are developed to remove outliers and abnormalities from
such a constructed training pool, there are still ample opportunities
for contamination and noise to get introduced into the training
dataset by the adversaries [15, 16]. Therefore, it is important for
detection models, in scenarios where frequent un- supervised re-
training is necessary, to be robust to the ill effects of adversarial
contamination of the training dataset. To date, there have been sev-
eral research efforts to test and/or make classification techniques
robust to the presence of noise [15, 16]. In this research work, we
have decided to specifically test the robustness of an arbitrary deep
autoencoder under adversarial contamination and compare it to
that of PCA under same environmental settings.

Figure 2 depicts the proposed simulation framework within
which an anomaly detection-based IDS will frequently retrain itself
in order to cope with the occurring concept drifts. Under the pro-
posed framework, training data is split into three smaller subsets
– namely, initial set T which consist of the initial benign training
samples, benign set B which contains the benign instances that are
statistically drifted in distribution parameters in respect to T , and
malicious setM that contains malicious instances. Initial detection
model Di=0 construction is done by training on the entirety of the
training setT . Then, at each test iteration i , a batch of test points are
created by sampling (with replacement) nbeniдn instances from set
B and sampling (without replacement) nmalicious instances from
setM ; the proportion of nbeniдn and nmalicious should resemble
the reality that the simulation tries to capture. At iteration i , the
assembled test batch will be fed into to the detection model Di−1,
and those points that are labeled as normal are added to the train-
ing set T in order to be used during retraining and construction
of model Di . Since the assembled test batch contains both benign
and malicious data points, it is possible for malicious points that
are not detected (i.e., false-negative points) to get added and con-
taminate set T . At each iteration, before retraining of the IDS, the
performance of detection model Di−1 is obtained on the assembled
test batch in order to construct the performance trend at the end of
the simulation. This process continues untilM = {∅}.
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Figure 2: General overview of adversarial drift emulation

Cont%(i ) =
∑i
j=0 P

(
L(x ,D j (x )) ≤ C | x is malicious

)
× nmalicious

|T |i
(4)

Since each detection model is treated as a black-box in our pro-
posed evaluation framework, the main objective is to measure the
trend of their performance by calculating cumulative contamination
percentage. Equation 4 is the formula for calculating cumulative
contamination at iteration i .

Although this method of contaminating training dataset is very
simple, it is very realistic when considering deployment of an adap-
tive anomaly detection-based IDS in practice. After the initial train-
ing phase, the decision boundaries of the latest detection model
will be used to select from the new incoming data points to enrich
the existing training dataset T . Any false-negative classification
of new data points can result in contamination of the subsequent
retraining dataset, while any false-positive classification can result
in loss of a valuable non-malicious training instance.

4 EXPERIMENTS
In this study, we have implemented a deep autoencoder with the
proposed anomaly detection scheme in order to assess its robust-
ness against adversarial label contamination. As a baseline for
comparison, we have used a widely adapted anomaly detection
scheme based on Principle Component Analysis proposed by Shyu
et al. [12].

Initially, both models were trained with no adversarial drift em-
ulation in order to test their comparative performance under sta-
tionarity assumption. Following that, we assessed the performance
of the two models under a simulated adversarial drift

4.1 NSL-KDD Dataset
Initiated by DARPA in 1998, KDDCUP’99 [22] became the main-
stream dataset to test and evaluate research works in the field of
intrusion detection by containing simulated normal and malicious

traffics on a typical U.S. Air Force LAN. McHugh [23] and many
other members of the community, however, heavily criticized the
process of the creation of the dataset. Tavallaee et al. [24], attempted
to resolve some of the statistical issues (e.g., data redundancies)
that existed in the original dataset and NSL-KDD is the result of
their effort. Although the dataset does not reflect some of the most
sophisticated attacks that can be found in today’s cyber landscape,
it is still used to evaluate anomaly detection methods by the re-
search community. For the in-depth explanation of the content of
NSL-KDD, we refer readers to the paper published by Tavallaee et
al. [24].

4.1.1 Preprocessing: NSL-KDD contains two subsets of data for
training and testing purposes that are distributionally different.
Since our attempt is to distinguish between malicious and nor-
mal traffics, we have replaced the label of all non-normal traffic
instances with ‘malicious’. Moreover, similar to PCC, our proposed
model of the autoencoder IDS uses only ‘normal’ instances in the
dataset for training. Thus, the normal instances from the training
set are being extracted and used as the initial training setT . All the
‘malicious’ instances from the training dataset are being merged
with ‘malicious’ instances from the test dataset in order to form
the malicious setM for robustness test and poisoning simulations.
‘Normal’ instances left in the test set constitute the instances in
B that are continually sampled in order to build a simulation of
normal traffic batches in each iteration.

NSL-KDD contains both nominal and numerical features, and for
implementation convenience, many researchers exclude nominal-
valued features. Moreover, some research works that are focused on
model development for classification of malicious instances, tend
to exclude some of the features based on their statistical relevance
to their classification task. In our work, however, we could not
make any argument about unseen normalities, and since we ac-
knowledge that in the real-world ?normal profiles? are generally
non-stationary, we have decided to retain all the features and rely
on dynamic representation learning capability of the autoencoder
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to discover and update the appropriate representations in different
layers. As a result, we have transformed all the nominal features
using one-hot encoding in order for these features to be used as
inputs to the anomaly detection schemes.

4.2 Implementation
For the purposes of baseline comparison, we have implemented
Principle Component Classifier (PCC) proposed by Shy et al. [12].
In their proposed anomaly detections scheme, top K principle com-
ponents are considered to be themajor components that can capture
anomalies with extreme values. Additionally, the remaining princi-
ple components are used to detect anomalies that do not have same
correlation structure similar to the majority of the normal instances.
Choosing K is done experimentally, and since they have used the
statistically-flawed KDDCUP’99 [22] dataset, we have redone their
experiment on NSL-KDD in order to find the appropriate value for
K .

As previously described, the desired false-positive rate dictates
the selected value of the classification thresholdC . The false-positive
rate of 2%, frequently used as the target rate in the literature of IDS
design, is selected to define the threshold values for both PCC and
our proposed autoencoder-based IDS.

The architecture of the implemented autoencoder is similar to
the one shown in Figure 1. The input and output layers each contain
122 sigmoid nodes, encoding and decoding layers each contain 50
sigmoid nodes, and the representation layer contains 10 sigmoid
nodes.

S (t ) =
1

1 + e−t (5)

Sigmoid (Equation 5) activation function, in our experiments,
outperformed other activation functions such as ReLU or tanh.
Moreover, the lack of smoothness in the error surface (refer to
Equation 2), had trapped many deterministic optimization methods
such as normal gradient descent in different local minima’s which
resulted in a poor performance. In contrast, Adam Optimizer by
Kingma and Ba [25] was used to stochastically compute the optimal
gradient during the trainingwhich resulted in a acceptable detection
performance.

Algorithm used to iteratively simulate the adversarial drift for
each of the trained models (Algorithm 1 in the subsequent page)
is the pseudocode realization of the process depicted in Figure 2.
Note that in our experiments, at each iteration i , Ttest contained
nbeniдn = 500 benign samples and nmalicious = 50. Al- though
in some attacks (e.g., distributed denial of service (DDoS) attacks)
number of malicious samples could be exponentially larger than
normal instances, we believe that 10% malicious instances of the
total sample size (as used in our experimentation) is a realistic con-
figuration for most other types of attacks including low-rate DDoS.
Furthermore, this ratio is treated as a parameter in our proposed
framework that can be tuned to emulate any attack scenario.

4.3 Result
The performance of an arbitrary deep autoencoder is measured by
its ability to reconstruct presented inputs with a minimum loss.
Figure 3 depicts a visualization of NSL-KDD datasets (malicious
and non-malicious sets) and their corresponding reconstructions

Algorithm 1: Adversarial Label Contamination Robustness Test
Data:T : Initial benign traffic training sample
B : Benign traffic sample to be used for testing and re-training
M : Malicious traffic sample to be used for testing and poisoning
Result: R = {(I , C%, D%)} is a set of tuples with I representing the iteration number,C% representing the

contamination percentage, and D% representing the detection rate of the model interval order.
begin

M ←− Construct anomaly detection model usingT
I ←− Initial iteration count to 0
C ←− Initial contamination count to 0
whileM , ∅ do

I ←− I + 1
Ttest []←− ∅
Add nbeniдn random samples from B (by selection) toTtest []
Add nmalicious random samples fromM (by removal) toTtest []
D ←− Initialize detection count to 0
for x ∈ Ttest do

if M .classi f y (x ) as MALICIOUS and x is MALICIOUS then
D ←− D + 1

else if M .classi f y (x ) as BENIGN and x is MALICIOUS then
False-negative has occurred, poisoning will take place
Add x to T
C ←− C + 1

else if M .classi f y (x ) as MALICIOUS and x is BENIGN then
Update false-positive statistics

else
Add true BENIGN classified traffic to training data to emulate online adaptation
Add x to T

Add (I , (C/ |T |)%, (D/nmalicious )%) to R

M ←− re-train anomaly detection mode using updatedT

using the trained deep autoencoder. Figure 3(a) shows the heat-
map visualization of the normal training instances used during the
training of the deep autoencoder. It is important to note that all
the feature values are normalized between 0 and 1. Each horizontal
pixel-line represents an instance data and the main goal of this
visualization is to represent an overall view of value distributions
in the dataset.

Figure 3(b) is the corresponding visualization for malicious in-
stances that are used during the robustness test. Through a visual
inspection of these two heat-maps, we can observe a clear distri-
butional difference between the normal and malicious instance
datasets.

Once the autoencoder is trained using normal training instances
(shown in figure 3(a)), its reconstruction on malicious and normal
training datasets is tested. . Our proposed use of autoencoders?
reconstruction error as an anomaly detection measure is validated
by means of the obtained results shown in Figure 4: the autoencoder
trained on normal instance dataset can poorly reconstruct malicious
instances.

As shown in Figure 3(c), normal training instances are almost
perfectly reconstructed with the reconstruction error (i.e., square
mean error) distribution shown in Figure 4(a). On the other hand,
malicious instances shown in Figure 3(b), are poorly reconstructed
(refer to Figure 3(d)) and their reconstruction error distribution
is shown in Figure 4(b). In order to compute the threshold α in
Equation 3, the error distribution in Figure 4(a) is consulted.

The receiver operating characteristic (ROC) curve depicted in
Figure 5 shows superiority of the autoencoder in detecting network
anomalies compared to PCC. It is important to note that the curve
is representing a non-poisoning scenario. In other words, all the
training instances used to train the PCC and the autoencoder for
construction of the ROC curve were empty of any malicious data
point. The proposed autoencoder-based IDS has outperformed PCC
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(a) (b)

(c) (d)

Figure 3: Dataset reconstruction visualization, x-axis represent the feature index while y-axis represent
instance index - (a) normal training dataset, (b) anomaly test dataset, (c) reconstruction of normal training
dataset using the trained autoencoder, and (d) reconstruction of malicious test dataset using the trained

autoencoder.

(a) (b)

Figure 4: Autoencoder reconstruction error distribution of normal (a) and malicious (b) datasets.

by approximately 15% in detection rate while keeping the rate of
reported false alarm at 1%.

The testing of both anomaly detection techniques for robustness
under adversarial contamination was performed using the proce-
dure described in Algorithm 1. Figure 6 shows the performance
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Figure 5: ROC comparison of PCA versus Autoencoder

of each of the methods at different contamination percentage. It
should be noted and stressed that contamination selection is not
influenced by the experimenters. Instead, recall, malicious samples
that are added into the training datasets (at each iteration) are based
on the falsenegative classifications of the model currently under
test.

Figure 6: Detection rate of the models under
different adapted contamination percentage

of the training data.

As shown in Figure 6, the autoencoder IDS is generally more
robust to contamination (compared to PCC), as the percentage of
contaminated instances that make it into the training set never
exceeds 2%. Moreover, under the comparable-conditions of input
data contamination (i.e., under the same/comparable rates of false
negatives), the autoencoder model?s detection rates are persistently
better than those of of PCC. Thus, resulted in less possible contam-
inating iterations.

5 DISCUSSION AND CONCLUSION
In most anomaly-based IDSs novel attacks are detected at the ex-
pense of high rate of false alarm. Moreover, since most of detection
alarms typically need to be investigated by human operators, high
rate of false-positives (i.e., false alarm) can quickly overwhelm the
operators and render the given detection scheme cumbersome. .,
Luckily, adaptiveness to occurring concept-drifts has the potential

to lower the number of false alarms in most detection systems.
For that reason, self adaptiveness is one of the main requirements
when develop- ing a modern IDSs. In our research, we have investi-
gated a naive self-adaptive IDS scheme and demonstrated that, if
this scheme is to be used in reality, the presence of contaminating
points in retraining datasets would be inevitable. In the context of
this proposed novel framework , we have furthered compared the
robustness of the autoencoder-based IDS against the IDS based on
PCA which is well adapted by the industry. Through our compara-
tive study, the deep autoencoder IDS maintained a more stable rate
of detection even in the presence of contaminations in its training
dataset.

In this researchworkwe have validated the reconstruction ability
of deep autoencoders for data points drawn from different distri-
butions. In cybersecurity where normality is a moving target, it
is shown deep autoencoders can capture latent semantics to re-
construct such data points. Most anomaly-based IDSs detect novel
attacks at the expense of high rate of false alarm. Since most of the
detection alarm will be investigated by human operators, high rate
of false-positive (i.e., false alarm) can quickly overwhelm the opera-
tors and render the detection scheme useless. Thus, adaptiveness to
the occurring concept-drift can potentially lower such false alarms.

Self adaptiveness is one of the main requirements of develop-
ing a modern IDSs. In our research, we have investigated a naive
self-adaptive scheme and demonstrated that in reality presence of
contaminating points in retraining datasets are inevitable. Thus,
through our proposed novel approach, we have compared the ro-
bustness of the autoencoder-based IDS with one of the popular
PCA-based IDS that is well adapted by the industry. Through our
comparative study, the deep autoencoder IDS maintained a more
stable rate of detection even in the presence of contaminations in
its training dataset (refer to Figure 6).

In the case of PCA-based adaptive IDSs, complete retraining
of the entire model is necessary to cope with occurring concept
drift. Given the training dataset is continually growing (while new
training data are added to the existing training dataset), we have
observed an increase in model re-training time unless a forgetting
mechanism is introduced. In case of deep autoencoders, however,
adaptation of existing detection model to occurring concept drift
does not require retraining from scratch. Using mini-batch stochas-
tic gradient descent we can update the latest detection model only
using the recent acquired data examples. Thus, in a long run, deep
autoencoders can exhibit superior online adaptive performance in
respect to the re-training time required.
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