
How to Improve the Robustness of Auto-Active
Program Proof Through Redundancy

Yannick Moy - AdaCore

How to Improve the Robustness of Auto-Active
Program Proof Through Redundancy

Yannick Moy - AdaCore

Auto-Active Program Proof

Auto-Active Program Proof

Tools where user input is supplied before VC generation therefore lie between
automatic and interactive verification, which we will give the name auto-active
verification.

in “Usable Auto-Active Verification”, K. Rustan M. Leino and Michał Moskal

Examples of auto-active program proof:

- based on Boogie: AutoProof, Dafny, SMACK
- based on Why3: Frama-C, SPARK
- other IVL: Viper, Crucible/What4
- others: F*, OpenJML, VeriFast

Automatic Provers

m
on

op
ro

vi
sm

po
ly

pr
ov

is
m

SPARK - Auto-Active Proof for Ada Programs

GNAT

SPARK

A(1) := 42;

WhyML

a.map__content <-
 set
 (a.map__content)
 (let temp = 1 : int in
 assert { temp ... };
 temp)
 (42 : value)

SMT-LIB

(assert
 (not
 (=> (dynamic_property 0 1000000
 (to_rep a__first) (to_rep a__last))
 (=> (and (= (to_rep a__first) 1)
 (<= 0 (to_rep a__last)))
 (<= (to_rep a__first) 1)))))
(check-sat)

The Robustness Problem

The Fragility of Automatic Proofs

Prover can be non-deterministic in some settings
➤ run the prover in a deterministic setting

The Fragility of Automatic Proofs

Prover can be non-deterministic in some settings
➤ run the prover in a deterministic setting

Use of timeout is neither portable nor reproducible
➤ limit instead the “effort” done by the prover (aka “rlimit” in CVC4/Z3)

The Fragility of Automatic Proofs

Prover can be non-deterministic in some settings
➤ run the prover in a deterministic setting

Use of timeout is neither portable nor reproducible
➤ limit instead the “effort” done by the prover (aka “rlimit” in CVC4/Z3)

Unrelated changes in Verification Condition can lead to unprovable VC
➤ compute minimal context, use slicing

The Fragility of Automatic Proofs

Prover can be non-deterministic in some settings
➤ run the prover in a deterministic setting

Use of timeout is neither portable nor reproducible
➤ limit instead the “effort” done by the prover (aka “rlimit” in CVC4/Z3)

Unrelated changes in Verification Condition can lead to unprovable VC
➤ compute minimal context, use slicing

Proof can change from instantaneous to impossible due to:
- reordering of definitions, renaming of symbols
- code changes
- changes in VC generation
- changes in the prover

The Impact of Fragile Proofs

On tool users:

- Unsatisfied users when new tool release leads to regressions
- Puzzled users when minor code changes “lose” some proofs
- Lower the confidence of users in the tool

On tool developers:

- Difficult-to-investigate proof regressions
- High cost of maintaining a large regression testsuite

An Example -
Is_Heap From
SPARK-by-Example

Provability of Is_Heap Across Versions of SPARK

All 3 provers Alt-Ergo, CVC4, Z3 prove all checks in all versions 2016..2020

… except for the postcondition of Is_Heap

… but GNATprove proves it always using all three provers!

2016 2018 2019 2020

Alt-Ergo

CVC4

Z3

GNATprove

Provability of Is_Heap and Assertions Used

The 2 assertions in the code have no effect on the results

… but if we add the following assertion:

… then GNATprove proves Is_Heap fully using each of the three provers!

2016 2018 2019 2020

Alt-Ergo

CVC4

Z3

GNATprove

The Experiment

The Experiment Proposal

Hypothesis:

using multiple provers and redundant assertions increases robustness

Hard to test against realistic code changes
- typical code patch includes code and spec/proof changes
- most code changes require spec/proof changes

➤ test instead against changes in the tool (VC generation and provers)

The Experiment Setup

3 successive versions of SPARK

3 provers: Alt-Ergo, CVC4, Z3

3 projects:
- SPARK-by-Example: collection of programs for teaching program proof
- SPARKNaCl: rewrite of the cryptographic library TweetNaCl
- SPARK Red-Black Trees: basis for NFM 2017 article

sloc # pre/post/predicate # assert # checks (2019)

SPARK-by-Example 5984 164 65 1709

SPARKNaCl 2845 48 82 1065

Red-Black Trees 2531 75 109 2817

2018 2019 2020

Alt-Ergo 1.30 2.3.0 2.3.0+

CVC4 1.6 1.7.1 1.8

Z3 4.6.0 4.8.0 4.8.6

The Experiment Details

Impossible to track individual checks between SPARK versions:
- changes in “trivial” checks not sent to provers
- different locations for messages on proved and unproved checks

Combination of provers is more than combination of their results: checks in the
form of conjunctions (including universally quantified and conditional expressions)
treated as separate VCs

Run GNATprove once for each combination of provers

Scripts and results available at https://github.com/yannickmoy/SPARKrobustX

➠

https://github.com/yannickmoy/SPARKrobustX

A Note on Reproducibility

Reproducible GNATprove runs require using prover “steps” (aka “rlimit”)
… very volatile from version to version,
… from prover to prover,
… and from VC to VC

Here we use instead “timeouts” as a measure of effort

We chose 1 minute timeout for every individual proof on a VC

In most cases, a good approximation of the results with 10 or even ∞ minutes

The Results

SPARK-by-Example

https://github.com/tofgarion/spark-by-example

Developed by researcher Christophe Garion and his students from
ISAE-SUPAERO for teaching

All proved with SPARK Community 2018 (using maximum timeout 20 seconds)
except a few checks intentionally showing the need for ghost code

Partially migrated to SPARK Community 2019

https://github.com/tofgarion/spark-by-example

SPARK-by-Example - Is_Heap

Reminder:

Now displayed:

2016 2018 2019 2020

Alt-Ergo

CVC4

Z3

GNATprove

SPARK-by-Example - Heap Algorithms

with assertions: without assertions:

Large variations between versions for individual provers
Much smaller variations (in absolute numbers) with prover combinations
Not much difference between runs with/without assertions

SPARK-by-Example - Unproved Checks

with assertions: without assertions:

Same remarks as on heap algorithms
With all provers together, +80/137% more unproved checks without assertions

SPARK-by-Example - Max Time for Proved Checks

Maximum time of proof not (inversely) correlated with robustness

No explanation for 3 times as many unproved for Z3 in 2019, for Alt-Ergo in 2018

SPARKNaCl

https://github.com/rod-chapman/SPARKNaCl

Developed by Rod Chapman

All proved with SPARK Community 2019 (using steps limit)

Migrated to SPARK Community 2020

We use here an updated version of the one for SPARK Community 2019 to make
it acceptable for SPARK Community 2018

https://github.com/rod-chapman/SPARKNaCl

SPARKNaCl - Unproved Checks

Good results of Z3 are the main driver for overall results
Alt-Ergo + CVC4 results very good despite much larger unproved checks of each
“U” shape for all individual provers ⇒ typical of robustness issues

with assertions: without assertions:

SPARKNaCl - Max Time for Proved Checks

Z3 max time always far from 60 seconds timeout

Correlates here with good results of Z3

SPARK Red-Black Trees

http://toccata.lri.fr/gallery/spark_red_black_trees.en.html

Developed by Claire Dross

Initially all proved with SPARK Pro 2017

All proved with SPARK Community 2019 (using replay or larger timeout)

http://toccata.lri.fr/gallery/spark_red_black_trees.en.html

SPARK Red-Black Trees - Unproved Checks

marked “U” shape for all individual provers ⇒ clear robustness issues
more visible even with assertions as more checks to prove
prover combination always improves results

with assertions: without assertions:

SPARK Red-Black Trees - Max Time for Proved Checks

Max time for all provers close to 60 seconds timeout

Correlates here with robustness issues

SPARK Red-Black Trees - Max Time - All Runs

Pushing timeout to
120 seconds gives
almost same results

Long queue of
checks only proved
at higher timeouts

Except for all
provers in 2019

SPARK Red-Black Trees - Max Time - Across Versions

Pushing timeout to
120 seconds gives
almost same results

Long queue of
checks only proved
at higher timeouts

Except for all
provers in 2019

SPARK Red-Black Trees - Max Time - Version 2019

Pushing timeout to
120 seconds gives
almost same results

Long queue of
checks only proved
at higher timeouts

Except for all
provers in 2019

The Takeaway

Polyprovism or Monoprovism?

GNATprove explicitly exploits polyprovism by diversifying its strategies for VC
generation depending on the prover

SPARK projects implicitly exploit polyprovism by not restricting to one prover

In such a setting, polyprovism helps with robustness

Critical role of IVL here as shepherd or matchmaker

 Why3: Shepherd Your Herd of Provers, 2011
 Why3 — Where Programs Meet Provers, 2013

To Assert or Not To Assert?

Assertions are just a special case of ghost code

Absolutely required in auto-active proof

But remember Is_Heap:
 can we write more assertions like:
that increase robustness,
 instead of just assertions like:
that are just part of the process?

For that, we need tool support that does not currently exist!

What Tool Support for Robustness?

Polyprovism and Assertionism: Better Together?

Quite common that a check is not proved by A+B provers, but:
assertion is proved by A
check is proved by B when assuming assertion

On the other hand, plethora of assertions increase proof context and lead to loss
of proofs

Careful use of ghost code isolates assertions in lemmas

More of an art than a science today

