
Foresighted Deception in Dynamic Security Games

Xiaofan He and Mohammad M. Islam Richeng Jin and Huaiyu Dai

Dept. of EE, Lamar University Dept. of ECE, North Carolina State University

Emails: {xhe1,mislam11}@lamar.edu Emails: {rjin2,hdai}@ncsu.edu

Abstract—Deception has been widely considered in literature
as an effective means of enhancing security protection when
the defender holds some private information about the ongoing
rivalry unknown to the attacker. However, most of the existing
works on deception assume static environments and thus consider
only myopic deception, while practical security games between
the defender and the attacker may happen in dynamic scenarios.
To better exploit the defender’s private information in dynamic
environments and improve security performance, a stochastic
deception game (SDG) framework is developed in this work to
enable the defender to conduct foresighted deception. To solve
the proposed SDG, a new iterative algorithm that is provably
convergent is developed. A corresponding learning algorithm
is developed as well to facilitate the defender in conducting
foresighted deception in unknown dynamic environments. Nu-
merical results show that the proposed foresighted deception can
offer a substantial performance improvement as compared to the
conventional myopic deception.

I. INTRODUCTION

Along the path of human civilization, there has never been

a ceasefire in security. In view of the adversary’s constant

growing in intelligence and escalating in attacking tactics,

game-theoretic approaches have been widely employed in

literature to analyze the security competitions between the

defender and the attacker [1–3].

Nevertheless, in many practical security competitions, the

defender and the attacker possess different private knowledge

about the ongoing rivalry, making the corresponding game-

theoretic analysis non-trivial. When the defender holds extra

private information unknown to the attacker, deception mech-

anisms are often employed to enhance security. In fact, de-

ception has a long history of effective use in military (e.g., [4,

5]), anti-terrorism (e.g., [6, 7]), and is recently being exploited

to protect information systems (e.g., [8–10]). Two common

approaches have been adopted in literature to fulfill deception.

The first approach adopts a signaling game model and allows

the defender to design and proactively send out falsified signals

to mislead the attacker about the ongoing security rivalry [7,

8, 11, 12]. In the second approach, the defender spends extra

security resource to either hide its private information from the

attacker’s surveillance or create fake targets (e.g., honeypots

[13]) to spoof the attacker [5, 9, 14, 15].

One limitation of existing works on deception is that most

of them consider only static environments, while practical

security problems often take place in dynamic environments
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(e.g., due to channel condition variations in a wireless environ-

ment, configuration changes in a computer network, or state

evolvement in a cyber-physical system). In such cases, existing

(myopic) deception mechanisms may not be able to achieve the

best performance, as they fail to consider the influence of the

current deception action on the future. To address this problem,

foresighted deception that can better adapt to and fully exploit

the environmental dynamics is considered in this work. In

addition, a stochastic deception game (SDG) framework is

developed to model the corresponding interactions between

the foresighted deceptive defender and the attacker. To solve

the proposed SDG and find a good foresighted deception

strategy for the defender, a new iterative algorithm that is

provably convergent is developed. In addition, considering that

practical security problems may occur in unknown dynamic

environments, a corresponding learning algorithm is developed

as well to enable the defender to gradually learn the deception

strategy.

The remainder of this paper is organized as follows. Sec-

tion II starts with a motivating example of network protection

game and then introduces the proposed SDG model. A new

iterative algorithm is developed in Section III to solve the

proposed SDG so as to find the defender’s foresighted decep-

tion strategy. A learning algorithm is developed in Section IV

to further enable the defender to conduct foresighted decep-

tion in unknown dynamic environments. Numerical results

are presented in Section V to corroborate the effectiveness

of foresighted deception. Conclusions and future works are

discussed in Section VI.

II. PROBLEM FORMULATION

A. The Network Protection Game

Target network of K nodes

with state = (1 ,… , 1 )

Defender Attacker

Fig. 1. The Network Protection Game.

To motivate the pro-

posed work, consider

a network protection

game as depicted in

Fig. 1. In this game,

the defender (D) has to

prevent the target net-

work consisting of a

set of K nodes K =
{1, ...,K} from being

brought down by the attacker (A) who strategically injects

malwares into the network. Particularly, at each timeslot n, the

defender (attacker) chooses a set of nodes aDn ⊆ K (aAn ⊆ K)

in the target network to enforce security protection (inject

malwares) with a per node protection (attacking) cost ϕD
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(ϕA). It is also assumed that each of the K nodes in the

target network can be in either a healthy (0) or an infected (1)

state. In addition, it is assumed that when both the defender

and the attacker act on the same node, this node will transit

from infected (healthy) state to healthy (infected) state with

probability p10 (p01); when only the defender (attacker) acts on

a node, this node will result in a healthy (infected) state; oth-

erwise, the state of the node remains unchanged. Considering

the possibility of malware spreading, it is further assumed that,

after both the attacker and the defender taking their actions,

an infection phase will occur, in which, any healthy node may

be infected by an infected node with probability pinf . In this

security game, as the defender’s objective is to maximize the

number of healthy nodes at the minimum cost, its immediate

reward at timeslot n can be modelled as

rDn = RD(sn, a
D
n , aAn ) = ϕ (kn)− ϕD · |aDn |+ ϕA · |aAn |,(1)

where RD is the reward function of the defender; | · | de-

notes the cardinality of a set; the state of the target network

sn , {11,n, ..., 1K,n} with 1i,n the indicator of whether or not

node-i is infected; the non-decreasing function ϕ(·) gives the

network’s profit when 0 ≤ kn , K −
∑n

i=1 1i,n ≤ K nodes

remain healthy; and the last term is the attacker’s attacking

cost, which is accounted here due to the assumption of a

zero-sum security game. The attacker’s immediate reward is

rAn = −rDn .

It can be seen from (1) that the optimal strategies of both

the defender and the attacker depend on the current state

sn of the target network. If the defender can use deception

techniques (e.g., deploying honeypots [13]) to disrupt the

attacker’s perception of the current state information, better

defense performance may be obtained. Nonetheless, as decep-

tion usually comes with a certain cost, it is important for the

defender to allocate the right amount of security resource for

deception. This is a non-trivial task in dynamic environments,

since the deception action at the current time will influence the

attacker’s current action and hence affect the future state of the

target network as well as the future rewards of the defender.

Conventional myopic deception originally designed for static

security games may no longer be effective in such cases, and

one may need to appeal to foresighted deception proposed in

the next section.

B. The Proposed SDG Model

To achieve foresighted deception, a novel SDG framework is

proposed by augmenting the classic stochastic game (c.f. [16]

and references therein) with an extra deception procedure. As

depicted in Fig. 2, the proposed SDG unfolds as follows: At the

beginning of each timeslot n, the defender directly observes

the state of the target system (or environment) sn ∈ S, with

S the set of system states. Based on sn, the defender takes

a deception action dn(sn) to conceal the true state according

to a deception policy σD , at a cost CD(dn). As a result, the

attacker observes a false state g(sn) ∈ S∪{∅} with probability

P(dn) and the true state sn with probability 1 − P(dn).
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Fig. 2. Diagram of the proposed stochastic deception game.

The possibly stochastic function g(·) specifies the defender’s

selection of the false state in its deception mechanism. After

this, the attacker will launch an attack aAn based on its

observed state ŝn (which equals either sn or g(sn)) and its

attacking strategy πA; the defender takes a defense action

aDn based on the true state sn and possibly ŝn according to

a policy πD.1 Immediate security rewards received by the

defender and the attacker are rDn = RD(sn, a
D
n , aAn ) and

rAn = −rDn , respectively, due to the zero-sum assumption.

Then, the target system transits into a new state sn+1 ∈ S with

a probability P(sn+1|sn, aDn , aAn ) depending on the current

state and actions from both the defender and the attacker.

The objective of the defender is to find a strategy pair
(

σD, πD
)

to optimize its expected cumulative discounted re-

ward E
[
∑∞

n=1 β
n−1 ·

(

rDn − CD(dn)
)]

with discounting fac-

tor β ∈ [0, 1). That is, the defender considers its long-term

security performance in this dynamic environment, through

evaluating the consequences of its actions on the future, but

discounted for increasing uncertainty. As compared to existing

deception games, the proposed SDG can further capture the

dynamics in the target system/environment, and hence enables

the defender to plan for the future. This procedure is coined

by us as foresighted deception. It is worth mentioning that

the proposed SDG reduces to 1) the conventional myopic

deception when β = 0 and 2) the conventional stochastic game

when the attacker directly observes the true state, respectively.

The proposed SDG is actually very general and may be

applied to a wide range of security problems. In the following,

the network protection game will be used as example to

illustrate how the proposed SDG framework can guide the

defender to conduct effective foresighted deception. Several

assumptions that are reasonable to underlying application are

clarified first. In this work, it is assumed that the defender

always selects the null state as the false state (i.e., g(s) = ∅
for all s ∈ S); more sophisticated state disguising mechanisms

will be considered in our future work. It is also assumed that

deception succeeds with probability P(dn) = 1− exp(−λdn)
(with λ ≥ 0 the deception coefficient that represents the

effectiveness of deception) when the defender spends dn
deception resource at a cost of CD(dn) , dn. Note that the

discussions in the following also hold for other forms of P(dn).
Moreover, it is assumed that, when the attacker observes ŝ = ∅,

it will take an action aA chosen uniformly at random.

1The deception result is assumed known to the defender in this work.
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Based on the proposed SDG described above, the defender

needs to solve the following optimization problem so as to

find its optimal foresighted deception strategy {d(si)}
|S|
i=1 for

each of the possible state si ∈ S.

max
{d(si)}

|S|
i=1

≥0

(

V D(s1), ..., V D(s|S|)
)

(P)

s.t. (C1) V D(s) = −d(s) + exp(−λd(s)) · Ṽ D(s, s)

+ (1− exp(−λd(s))) · Ṽ D(s, g(s)), ∀s ∈ S

(C2) Q̃D(s, aD, aA) = RD(s, aD, aA)

+ β ·
∑

s′∈S

P(s′|s, aD, aA) · V D(s′),

∀s ∈ S ,∀aD ∈ D, ∀aA ∈ A,

(C3) Ṽ D(s, s) = NE
(

Q̃D, s, s
)

, ∀s ∈ S ,

(C4) Ṽ D(s, g(s)) = BR
(

Q̃D, s, g(s)
)

, ∀s ∈ S .

Some illustrations of the above optimization problem are

in order. The value function V D(s) represents the defender’s

optimal long-term reward at a given current state s. In (C1), the

intermediate value function Ṽ D(s, g(s)) (Ṽ D(s, s)) represents

the defender’s long-term reward when deception is successful

(failed) after taking deception d(s). (C2) is the well-known

Bellman equation [17] and the Q-function Q̃D(s, aD, aA)
represents the defender’s long-term reward when players take

actions (aD, aA) for the current timeslot and follow optimal

strategies later on. (C3) and (C4) indicate that when deception

fails, the defender should follow the Nash equilibrium (NE)

at the current timeslot with a corresponding best possible

long-term reward related to Q̃D and s; while if deception

is successful, since the attacker will take an action chosen

uniformly at random by assumption, the defender can take

the corresponding best response (BR) [17] to seek a better

reward. Also, a larger β indicates that the defender puts more

emphasize on the future rewards.

Nonetheless, finding the optimal solution of this multi-

objective optimization problem is challenging due to the

inherent non-linear non-convex structure and equilibrium con-

straints.

III. SOLVING THE PROPOSED SDG

+ 1

Fig. 3. Diagram of the Al-
gorithm 1.

In this section, instead of seeking the

optimal solution, an algorithm that

can always find a reasonably good

solution to the optimization problem

(P) with convergence assurance is

proposed, enabling the defender to

conduct effective foresighted decep-

tion in dynamic environment.

Particularly, by starting with some initial values, the pro-

posed algorithm iteratively updates the deception strategy d,

the value function V D, the Q-function Q̃D, and the interme-

diate value function Ṽ D through the order shown in Fig 3.

At the nth iteration of the proposed algorithm, based on the

constraint (C1) of (P), for given Ṽ D
n−1(s, s) and Ṽ D

n−1(s, g(s)),

the optimal deception dn(s) and the corresponding value

function V D
n (s) are updated by

dn(s) = max

{

0,
1

λ
log

(

λ ·
(

Ṽ D
n−1(s, g(s))− Ṽ D

n−1(s, s)
))

}

,(2)

and

V D
n (s) =−dn(s) + e−λdn(s) · Ṽ D

n−1(s, s)

+
(

1− e−λdn(s)
)

· Ṽ D
n−1(s, g(s)), (3)

respectively. Note that the parameter of the log function in (2)

is always well-defined due to the following fact.

Fact 1: The defender always assumes a higher security

value when deception is successful. That is, Ṽ D(s, g(s)) ≥
Ṽ D(s, s), for all s ∈ S.

Proof: This is straightforward and hence is omitted in the

interest of space.

Then, the Q-function is updated by using

Q̃D
n (s, aD, aA) = RD(s, aD, aA) + β

∑

s′∈S

P(s′|s, aD, aA) · V D
n (s′).

(4)

Finally, based on the updated Q-function, the updated inter-

mediate value functions and the corresponding strategies are

given by

Ṽ D
n (s, s) = NE(Q̃D

n , s, s), (5)

πD
NE,n(s, ·) = argNE(Q̃D

n , s, s), (6)

Ṽ D
n (s, g(s)) = BR(Q̃D

n , s, g(s)), (7)

πD
BR,n(s, ·) = arg BR(Q̃D

n , s, g(s)), (8)

where πD
NE,n (πD

BR,n) denotes the defender’s strategy when

deception fails (succeeds). These steps are summarized in

Algorithm 1.

Algorithm 1 Computing Algorithm for the Defender

Initialization: set Ṽ D
0 (s, s) = 0, Ṽ D

0 (s, g(s)) = 0 and V D
n (s) = 0

for all s ∈ S ; set n = 1.
Repeat

• (S1) Compute dn(s) using (2) based on Ṽ D
n−1(s, g(s)) and

Ṽ D
n−1(s, s), respectively, for all s ∈ S .

• (S2) Compute V D
n (s) using (3) based on dn(s),

Ṽ D
n−1(s, g(s)) and Ṽ D

n−1(s, s), for all s ∈ S .

• (S3) Compute Q̃D
n using (4) based on V D

n (s), for all s ∈ S ,

aD ∈ D and aA ∈ A.
• (S4) Compute Ṽ D

n (s, s) and Ṽ D
n (s, g(s)) using (5) and (7),

respectively, based on Q̃D
n , for all s ∈ S . Then, the updated

πD
NE,n and πD

BR,n will be given by (6) and (8), respectively.
• n := n+ 1.

Until |V D
n (s)− V D

n−1(s)| ≤ ǫ.

Proposition 1: For all s ∈ S, {V D
n (s)}∞n=0 in Algorithm 1

converges monotonically to a converging point V D
c (s), which

is denoted by V D
n (s) → V D

c (s). Consequently, Q̃D
n (s, ·, ·) →
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Q̃D
c (s, ·, ·), πD

NE,n → πD
NE,c, πD

BR,n → πD
BR,c, Ṽ D

n (s, s) →

Ṽ D
c (s, s), Ṽ D

n (s, g(s)) → Ṽ D
c (s, g(s)), and dn(s) → dc(s).

Proof: Please see Appendix A.

As will be shown in Section V, by using the deception

dc and strategies πD
NE,c and πD

BR,c found in Algorithm 1,

the defender can achieve effective foresighted deception that

leads to substantial performance improvement as compared to

conventional myopic deception.

IV. LEARNING IN SDG

One limitation of Algorithm 1 developed in the previous

section is the requirement of statistical knowledge about the

target system dynamics (i.e., P(s′|s, aD, aA)). In practice, such

information may not be readily available to the defender.

For example, in the network protection game considered in

Section II-A, the infection rate pinf may be unknown to the

defender for new malwares. To conduct effective foresighted

deception in such unknown dynamic environments, the learn-

ing counterpart of Algorithm 1 will be devised in this section.

This new learning algorithm is built by further embedding

a reinforcement learning procedure [18] into Algorithm 1.

Particularly, instead of directly computing the updated Q̃D

through (4) as in Algorithm 1, the following reinforcement

learning procedure will be used to allow the defender to

gradually accumulate knowledge about Q̃D without knowing

P(s′|s, aD, aA) beforehand.

Q̃D
n (s, aD, aA) = (9)



















(1− αn)Q̃
D
n−1(s, a

D, aA) + αn

(

RD(s, aD, aA)

+ βV D
n−1(sn+1)

)

, for (s, aD, aA) = (sn, a
D
n , aA

n )

Q̃D
n−1(s, a

D, aA), otherwise,

where αn is the so-called learning rate and satisfies 0 ≤ αn <

1,
∑∞

n=0 αn = ∞ and
∑∞

n=0 α
2
n < ∞ [18].

The new learning algorithm is summarized in Algorithm 2

and its convergence is given in Proposition 2.

Proposition 2: All the quantities in Algorithm 2 converge

to their corresponding converging points given by Algorithm 1.

Proof: Please see Appendix B.

V. NUMERICAL RESULTS

The effectiveness of the proposed foresighted deception will

be validated through simulations in this section. Particularly,

consider the network protection game with the following

setting: The network consists of K = 2 nodes, and the per

node protection (attacking) costs are set to ϕD = 1 and

ϕA = 1, respectively. In addition, the profit function of the

network is assumed to be ϕ (kn) = ϕ0 · 1{kn>0} + ∆ϕ · kn,

where ϕ0 = 10 is the profit for keeping the network on (i.e.,

kn > 0) and ∆ϕ = 1.5 is the profit increasing rate with respect

to the number of healthy nodes kn. The infection probability

pinf is set to 0.5 and p01 and p10 are set to 0.3.

The convergence of Algorithm 1 (c.f. Proposition 1) is

shown in Fig. 4. As it can be seen that, after about 20
iterations, the value functions V D

n ’s for the four different states

Algorithm 2 Learning Algorithm for the Defender

Initialization: set Q̃(s, ·, ·) = 0, Ṽ D
0 (s, s) = 0, Ṽ D

0 (s, g(s)) = 0
and V D

n (s) = 0 for all s ∈ S ; set πD
NE,0(s, ·) and πD

BR,0(s, ·) as
the uniform random strategies and n = 1.
Repeat

• Observe the current state sn.
• (M2) Update dn(sn) and V D

n (sn) using (2) and (3), respec-
tively.

• Devote dn(sn) amount of resource for deception.
• if deception suceeds then

Taking action aD
n at current state sn

– uniformly at random with an exploration probability
pexplr [18];

– otherwise, with probability πD
BR,n−1(sn, a

D
n );

• else if deception fails then
Taking action aD

n at current state sn
– uniformly at random with probability pexplr;
– otherwise, with probability πD

NE,n−1(sn, a
D
n );

• end if
• Learning: after receiving a reward RD(sn, a

D
n , aA

n ) and ob-
serving the system state transition from sn to sn+1

– (M3) Compute Q̃n using (9);

– (M1) Compute Ṽ D
n (s, s) and Ṽ D

n (s, g(s)) using (5) and
(7), respectively, and πD

NE,n and πD
BR,n are updated by (6)

and (8), respectively.

• n := n+ 1

converge respectively.2 It is not difficult to realize based on

Algorithm 1 and constraints (C1)–(C4) that the convergence

of V D
n implies the convergence of Ṽ D

n , Q̃D
n , dn, πD

BR,n and

πD
NE,n, which are not shown here due to space limitation.

The performance of the proposed foresighted deception is

compared with that of the conventional myopic deception. In

particular, the average security reward of using foresighted

deception (with parameter β) r̄D,β
n , 1

n

n
∑

i=1

rDi − CD(di) is

considered as the metric of interest here, and when β = 0
this coincides with the average security reward of myopic

deception. The relative performance gain, defined as η ,
r̄
D,β
T

−r̄
D,0
T

r̄
D,0
T

× 100% over a period of T = 5000 timeslots, is

shown in Fig. 5 for different β’s and deception coefficient

λ’s. It can be seen that a substantial performance gain can

be obtained by using the proposed foresighted deception. For

example, when β = 0.9 and λ = 1.5, the proposed foresighted

deception provides about 4 times extra reward as compared to

myopic deception. Also, the performance gain becomes more

significant when the defender puts more emphasis on future

reward (corresponding to larger β) and when the deception

coefficient λ is larger.

When statistical knowledge of the target system dynamics

(i.e., p01, p10 and pinf ) is unknown a priori, the defender

can employ Algorithm 2 to gradually learn its foresighted

deception strategy. The convergence of Algorithm 2 (c.f.

Proposition 2) is shown in Fig. 6. It can be seen that V D
n

2V D
n (s2) and V D

n (s3) overlap, since the two symmetric states s2 ,

{11 = 0, 12 = 1} and s3 , {11 = 1,12 = 0} have equal values.
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learnt through Algorithm 2 eventually converges to V D
c given

by Algorithm 1.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, the novel concept of foresighted deception is

proposed for enhancing the security performance in dynamic

environments. In particular, an SDG framework is developed to

guide the defender to conduct effective foresighted deception.

To solve the proposed SDG, a new iterative algorithm that is

provably convergent is developed. In addition, a corresponding

learning algorithm is developed to enable the defender to

gradually learn the foresighted deception strategy in unknown

dynamic environments. Using the network protection game

as an exemplary application, numerical results show that

the proposed foresighted deception can lead to a substantial

performance gain as compared to the conventional myopic

deception. As to future work, it is interesting to consider

the situations where the attacker may also spend some extra

resource to conduct surveillance.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: The proof will consist of two parts where we

will show that, for all s ∈ S, {V D
n (s)}∞n=1 produced by

Algorithm 1 is upper bounded and non-decreasing.

Define M , 1
1−β

||RD||∞ ≤ ∞ (with ||·||∞ the max-norm).

We will show that if ||V D
n ||∞ ≤ M , then ||V D

n+1||∞ ≤ M .

Particularly, we have,

||Q̃D
n ||∞≤||RD||∞ + β||V D

n ||∞ ≤ ||RD||∞ + βM = M, (10)

where the first inequality is due to (S3) of Algorithm 1. In

addition, it is not difficult to realize that ||Ṽ D
n ||∞ ≤ ||Q̃D

n ||∞
based on (S4), and hence ||Ṽ D

n ||∞ ≤ M . According to (S2),

for all s ∈ S, one has V D
n+1(s) ≤ Ṽ D

n (s, g(s)). Then, we have

||V D
n+1||∞ ≤ ||Ṽ D||∞ ≤ M . Therefore, given ||V D

0 ||∞ = 0, it

can be readily shown by induction that {V D
n (s)}∞n=1 is upper

bounded by M .

The non-decreasing property of {V D
n (s)}∞n=1 is then shown

in the following. First, notice that d1(s) = 0 by (S1) and the

given initial values of Ṽ D
0 (s, s) and Ṽ D

0 (s, g(s)), and hence

V D
1 (s) = V D

0 (s) = 0, for s ∈ S. In the following, it will

be shown that, given V D
n (s) ≥ V D

n−1(s), V
D
n+1(s) ≥ V D

n (s)
holds. To this end, notice that

V D
n+1(s) =−dn+1(s) + e−λdn+1(s) · Ṽ D

n (s, s) (11)

+
(

1− e−λdn+1(s)
)

· Ṽ D
n (s, g(s))

≥−dn(s) + e−λdn(s) · Ṽ D
n (s, s)

+
(

1− e−λdn(s)
)

· Ṽ D
n (s, g(s))

≥−dn(s) + e−λdn(s) · Ṽ D
n−1(s, s)

+
(

1− e−λdn(s)
)

· Ṽ D
n−1(s, g(s)) = V D

n (s),

where the first and the last equalities are due to (S2) in

Algorithm 1, and the first inequality is due to (S1); the last

inequality is true if the following two conditions hold:

Ṽ D
n (s, s) ≥ Ṽ D

n−1(s, s), (12)

Ṽ D
n (s, g(s)) ≥ Ṽ D

n−1(s, g(s)). (13)

Before proving (12) and (13), notice that, due to (S3) in

Algorithm 1 and the inductive assumption V D
n (s) ≥ V D

n−1(s),

it can be verified that Q̃D
n (s, d, a) ≥ Q̃D

n−1(s, d, a) (and

Q̃A
n (s, d, a) ≤ Q̃A

n−1(s, d, a) due to the zero-sum assumption)

for all (s, d, a) ∈ S × D × A. Since it is well-known that

both the NE and the BR operators can be formulated as the

following linear-programming problems:

max
[πD

NE
(s,·)]T ·1=1,Ṽ D(s,s)

Ṽ D(s, s)

s.t. [πD
NE(s, ·)]T [Q̃(s, ·, ·)] ≥ Ṽ D(s, s) · 1T

and

max
[πD

BR
(s,·)]T ·1=1

Ṽ D(s, g(s)) = [πD
BR(s, ·)]

T [Q̃(s, ·, ·) · 1/|A|],

from which, it can be seen that Ṽ D(s, s) and Ṽ D(s, g(s)) are

non-decreasing functions of Q̃(s, ·, ·). Therefore, (12) and (13)

hold.

Since for any s ∈ S, {V D
n (s)}∞n=1 is an upper bounded and

non-decreasing sequence, it converges [19] and the converging

point is denoted by V D
c (s). Then, the convergence of other

quantities readily follow.
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APPENDIX B

PROOF OF PROPOSITION 2

Proof: The following lemma will be used to prove Propo-

sition 2.

Lemma 1: (Szepesvari and Littman [20]) Assume a learning

rate sequence αn that satisfies 0 ≤ αn < 1,
∑∞

n=0 αn = ∞
and

∑∞
n=0 α

2
n < ∞, and a sequence of (random) mappings Tn

from Q̃ to Q̃ (with Q̃ denoting the set of quality functions Q̃’s)

that satisfies: (c1) E[TnQ̃c] = Q̃c; (c2) There exist a number

0 < γ < 1 and a positive sequence ϕn converging to zero

with probability 1, such that ||TnQ̃ − TnQ̃c||∞ ≤ γ · ||Q̃ −
Q̃c||∞ + ϕn, for all Q̃ ∈ Q̃. Then, the iteration defined by

Q̃n(s, a
D, aA) =















(1− αn)Q̃n−1(s, a
D, aD) + αn[

(

TnQ̃n−1

)

(s, aD, aA)],

if (s, aD, aA) = (sn, a
D
n , aA

n ),

Q̃n−1(s, a
D, aA), otherwise,

converges to Qc with probability 1.

To prove Proposition 2, we will first define several mappings

M1
n, M2

n and M3
n corresponding to (M1)–(M3) in Algo-

rithm 2. Particular, for any Q̃ ∈ Q̃, M1
n maps Q̃ to Ṽ D using

(5) and (7) (with subscript n eliminated); M2
n maps Ṽ D to

V D using (2) and (3); M3
n randomly3 maps V D to a point in

Q̃ as follows: If (s, aD, aA) = (sn, a
D
n , aAn ), then

(

M3
nV

D
)

(s, aD, aA) = RD(sn, a
D
n , aA

n ) + βV D(sn+1), (14)

otherwise,
(

M3
nV

D
)

(s, aD, aA) = Q̃n−1(s, a
D, aA).

Define Tn as the composition of M1, M2 and M3. Note

that Tn satisfies condition (c1) of Lemma 1, since, for Q̃c and

V D
c obtained in Algorithm 1,

E

[

TnQ̃c(s, a
D, aA)

]

=
∑

s′

P(s′|s, aD, aA) ·
(

RD(s, aD, aA)

+βV D
c (s′)

)

= Q̃c(s, a
D, aA), ∀(s, aD, aA) ∈ S ×D ×A, (15)

where the last equality is due to the fact that the converging

point Q̃c and V D
c of Algorithm 1 must satisfy (C2) of the

optimization problem (P). In the following, it will be shown

that Tn also satisfies condition (c2). To this end, we show the

following lemma first.

Lemma 2: For any Q̃ ∈ Q̃ and corresponding V D,

|V D(s)− V D
c (s)| ≤ ||Q̃(s)− Q̃c(s)||∞, (16)

where Q̃(s) , [Q̃(s, aD, aA)]aD∈D,aA∈A is the |D| × |A| Q-

matrix for state s, with |D| and |A| the cardinalities of action

sets of the defender and the attacker, respectively.

Proof: Based on (2) and (3), it is not difficult to re-

alize that V D(s) ∈
[

Ṽ D(s, s), Ṽ D(s, g(s))
]

and V D
c (s) ∈

[

Ṽ D
c (s, s), Ṽ D

c (s, g(s))
]

. Hence, we have

|V D(s)− V D
c (s)| ≤max

{

|Ṽ D(s, g(s))− Ṽ D
c (s, s)|, (17)

3M3
n is a random mapping since sn+1 is random given the information

up to timeslot n; so is the mapping Tn.

|Ṽ D
c (s, g(s))− Ṽ D(s, s)|

}

.

In addition, based on (5) and (7), it is clear that both

|Ṽ D(s, g(s))−Ṽ D
c (s, s)| and |Ṽ D

c (s, g(s))−Ṽ D(s, s)| cannot

exceed ||Q̃(s)− Q̃c(s)||∞. Therefore, (16) holds.

Then we can show (c2) holds (with ϕn = 0) as follows.

||TnQ̃− TnQ̃c||∞ = β ·max
s

|V D
c (s)− V D(s)|

≤ β ·max
s

||Q̃(s)− Q̃c(s)||∞ = β · ||Q̃− Q̃c||∞, (18)

where the first equality is by (14) and the definition of Tn,

and the first inequality follows from Lemma 2.

Therefore, by Lemma 1 (with γ = β and ϕn = 0), Q̃n in

Algorithm 2 converges to Q̃c, and hence V D
n , dn πD

NE,n and

πD
BR,n converge to V D

c , dc πD
NE,c and πD

BR,c, respectively.
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