
Identifying Security Critical
Properties for the Dynamic
Verification of a Processor
Rui Zhang, Natalie Stanley, Christopher Griggs,

Andrew Chi, Cynthia Sturton

Processor Bugs can Create
Security Vulnerabilities

🐞

🔍 Silicon

Executable Programs

🐞

Operating System

2

Dynamic Verification for Security

3

Assertions Attacks

Research Question

How to find the security properties
we should protect for a processor?

The State of the Art:
Human Expertise and Judgment

5

Instruction Set Architecture

Experts

Assertions

Security-Critical Assertions

Vulnerability Example: DoS Attack

Normal Syscall in Delay Slot

Exception
Handler

Normal Program

l.sys

l.rfe

PC

EPCR = PC + 4 EPCR = PC

Exception
Handler

Attack Program

l.j foo

l.sys

l.rfe

PC
PC-4

6

Vulnerability Example: DoS Attack

Normal Syscall in Delay Slot

7

Exception
Handler

Normal Program

l.sys

l.rfe

PC PC

EPCR = PC + 4 EPCR = PC

Exception
Handler

Attack Program

l.j foo

l.sys

l.rfe

PC-4

Observation

Observation:
• Security-critical bugs are vulnerabilities precisely because they

violate some underlying security property
Goal:
• Identify security properties for a processor

8

Our Approach

9

Non-Sec

Known Security Bugs

Machine Learning

Security Properties
Additional Security

Properties

Processor Invariants

Sec

Our Approach

10

Processor Design

Security-Critical Bugs

1. Invariant Generation
2. Recognition of Security-

Critical Invariants
3. Machine Learning

💻

🐞🐞
🐞🐞

📃📃📃📃📃📃
⚠

Final Security Properties

SCIFinder Tool Chain

Workflow of SCIFinder

Invariant Generation Human Expert

SCI Identification

SCI Inference Final SCI

Initial
SCI

Known Processor
Bugs (Patches,

Published Errata)

Functional
Bugs

Security Critical
Bugs

Processor
Design
(Verilog)

SW Programs
(C, C++)

Processor
Invariants

👥

11

SCIFinder Tool Chain

Workflow of SCIFinder

Invariant Generation Human Expert

SCI Identification

SCI Inference Final SCI

Initial
SCI

Known Processor
Bugs (Patches,

Published Errata)

Functional
Bugs

Security Critical
Bugs

Processor
Design
(Verilog)

SW Programs
(C, C++)

Processor
Invariants

👥

12

SCIFinder Tool Chain

Workflow of SCIFinder

Invariant Generation Human Expert

SCI Identification

SCI Inference Final SCI

Initial
SCI

Known Processor
Bugs (Patches,

Published Errata)

Functional
Bugs

Security Critical
Bugs

Processor
Design
(Verilog)

SW Programs
(C, C++)

Processor
Invariants

👥

13

SCIFinder Tool Chain

Workflow of SCIFinder

Invariant Generation Human Expert

SCI Identification

SCI Inference Final SCI

Initial
SCI

Known Processor
Bugs (Patches,

Published Errata)

Functional
Bugs

Security Critical
Bugs

Processor
Design
(Verilog)

SW Programs
(C, C++)

Processor
Invariants

👥

14

SCIFinder Tool Chain

Workflow of SCIFinder

Invariant Generation Human Expert

SCI Identification

SCI Inference Final SCI

Initial
SCI

Known Processor
Bugs (Patches,

Published Errata)

Functional
Bugs

Security Critical
Bugs

Processor
Design
(Verilog)

SW Programs
(C, C++)

Processor
Invariants

👥

15

Invariant Generation

💻 📄📄📄📄📄📄
⚙
📜

⚙
Processor

Dynamic
Simulation

Execution
Traces

Daikon

Invariants

16

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

Invariant Generation

17

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

Simulation Tools:
Icarus Verilog
Execution Traces:
……
EXECUTED(1589): 000060b8: e0c67000
GPR 0: 00000000 GPR 1: 00000001 GPR 2: 00000000 GPR 3: 00002640
GPR 4: 00000040 GPR 5: 00001000 GPR 6: 00000750 GPR 7: 00000008
GPR 8: 00000001 GPR 9: 00002038 GPR10: 00000000 GPR11: 00000000
GPR12: 00000000 GPR13: 00000100 GPR14: 00000010 GPR15: 00000000
GPR16: 00000000 GPR17: 00000000 GPR18: 00000000 GPR19: 00000000
GPR20: 00000000 GPR21: 00000000 GPR22: 00000000 GPR23: 00000000
GPR24: 00000000 GPR25: 00000000 GPR26: 00000000 GPR27: 00000000
GPR28: 00000000 GPR29: 00000000 GPR30: 00000000 GPR31: 00000000
SR : 00008211 EPCR0: 00000000 EEAR0: 00000000 ESR0 : 00008001
……

Instruction

Program Counter

👇
👈

ISA-level Variables
👆

Invariant Generation

18

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

Daikon:
• A dynamic invariant detection tool
• An instrumenter: records information about variable values as

a program executes
• An inference engine: reads the traces produced by the

instrumenter to generate invariants

Invariant Generation

Adaptation:
• New Daikon Instrumenter: adapt Daikon to processor

execution traces
• ISA-level variables: registers and signals visible to software

19

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

Invariant Generation

Adaptation:
• New Daikon Instrumenter: adapt Daikon to processor

execution traces
• ISA-level variables: registers and signals visible to software
• Configurable: patterns unknown to Daikon, such as bit-packing

20

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

Supervision Register: 32-bit special-purpose supervisor-level register
31-28 27-17 16 15 14 13 12

Context
ID Reserved

SPRs User
Mode Read

Access
Fixed One Exception

Prefix High
Delay Slot
Exception

Overflow
Flag

Exception
11 10 9 8 7 6 5

Overflow
Flag

Carry
Flag Flag CID

Enable

Little
Endian
Enable

Instruction
MMU

Enable
Data MMU

Enable

4 3 2 1 0
Instructio
n Cache
Enable

Data
Cache
Enable

Interrupt
Exception

Enable

Tick Timer
Exception

Enable
Supervisor

Mode

Invariant Generation

Adaptation:
• New Daikon Instrumenter: adapt Daikon to processor

execution traces
• ISA-level variables: registers and signals visible to software
• Configurable: patterns unknown to Daikon, such as bit-packing
• Carefully handle processor optimizations

21

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI Delay Slot:

100 foo:
104 l.nop
108 l.j r9
200 main:
204 l.j foo
208 l.add

l.j NPC = PC + 4
l.j NPC = Target Address

❌
✔

Invariant Generation

Invariant Format:
• I ≐ risingEdge(INSN) → EXPR

Invariant Example:
• I ≐ risingEdge(l.rfe) → SR = orig(ESR0)

22

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

Manually Classifying Bugs

Sources:
• Processors’ bug tracker or Bugzilla sites
• Developers’ mail archives
• Commits to the source repository
• Comments in the source code
• Published list of errata

🐞🐞🐞🐞🐞🐞

🐞🐞🐞🐞🐞🐞
🐞🐞🐞🐞🐞🐞

🐞🐞🐞🐞🐞🐞

⚠
🔍

Collected Bugs
(185)

Security-Critical
Bugs (25,

reproduced 17)

23

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

Security-Critical Invariant Identification

Key Observation:
• Security-critical bugs are vulnerabilities precisely

because they violate some underlying security property

💻 📄
⚙

📜

⚙🐞 🐞

📃
⚠Buggy

Processor

Dynamic
Simulation

Check
Violation SCI

Invariants

Execution
Traces

24

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

Security-Critical Invariant Inference

The constructed model can:
• Predict whether a given invariant is likely an SCI
• Help hardware designers understand which features are

critical to security

📃📃📃📃

📃📃📃📃
⚠

📜
⚙

📃📃📃📃
⚠

Initial SCI

Invariants

Logistic
Regression with

Elastic Net Penalty Final SCI

25

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

Sources:
• Generate an invariant that isn’t truly an invariant

False Positives

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

⚙ 💻
🐞

🗞
Inadequate
Test Suites Daikon Use of a Buggy

Processor

26

Sources:
• Generate an invariant that isn’t truly an invariant

Solutions:
• Rely on human experts to manually remove them

False Positives

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

⚙ 💻
🐞

🗞
Daikon Use of a Buggy

Processor

27

Inadequate
Test Suites

Sources:
• Generate an invariant that isn’t truly an invariant
• Classify a non-SCI as security-critical
Solutions:
• Rely on human experts to manually remove them

False Positives

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

non-SCI

📃
⚠
🚫

28

Sources:
• Generate an invariant that isn’t truly an invariant
• Classify a non-SCI as security-critical
Solutions:
• Rely on human experts to manually remove them
• Draw a fine line between SCI and non-SCI, add more

labeled data, refine machine learning model

False Positives

Invariant Generation

Human Expert

SCI Identification

SCI Inference

Final
SCI

Initial
SCI

non-SCI

📃
⚠
🚫

29

Evaluation Methodology

Gather Real-world Security Vulnerabilities:
• Reproduce 17 security-critical bugs from open source processors
• Write attack programs that exploit the vulnerabilities
Generate Security-Critical Properties:
• Run normal programs and attack programs on affected processors
• Record execution traces
• Use SCIFinder to generate SCI
Compare with Prior Work:
• Collect 22 manually written security-critical properties from prior work
• Compare SCI generated by SCIFinder with manually written ones
• Add assertions to detect unknown bugs

30

Main Results

SCI FinderSecurity Properties

1922 3

Manually Intensive Semi-automatic

+ New

Manual Effort: classifying bugs,
validating the reported SCI

31

Results: Comparison to State-of-the-Art
p1 Execution privilege matches page privilege ✓
p2 SPR equals GPR in register move instruction b12
p3 Updates to exception registers make sense b4 b9 b15
p4 Destination matches the target ✓
p5 Memory value in equals register value out b14
p6 Register value in equals memory value out b16 b17
p7 Memory address equals effective address ✓
p8 Privilege escalates correctly ✓
p9 Privilege deescalates correctly ✓
p10 Jumps update the PC correctly ✗

p11 Jumps update the LR correctly b13
p12 Instruction is in a valid format b11
p13 Continuous Control Flow b5
p14 Exception return updates state correctly b1 b5
p15 Register change implies that it is the instruction target ✓
p16 SR is not written to a GPR in user mode ✗

p17 Interrupt implies handled b8
p18 Instruction unchanged in pipeline --
p19 SPR modified only in supervisor mode ✓
p20 Enter supervisor mode is on reset or exception ✓
p21 Exception handling implies exception mechanism activated b8
p22 Unspecified custom instructions are not allowed ✗

p23 Exception handler accessed only during exception, in supervisor mode, or on reset b8
p24 Page fault generated if MMU detects an access control violation --
p25 UART output changes on a write command from CPU --
p26 Only transmit command or initialization change Ethernet data output --
p27 Debug Unit’s value and control registers only accessible from supervisor mode --

Properties
from SPECS

Properties from
Security-Checker

32

No. Security Property Description Found?

[H.S.K. ASPLOS 2015]

[B.H.I. HOST 2011]

p1 Execution privilege matches page privilege ✓
p2 SPR equals GPR in register move instruction b12
p3 Updates to exception registers make sense b4 b9 b15
p4 Destination matches the target ✓
p5 Memory value in equals register value out b14
p6 Register value in equals memory value out b16 b17
p7 Memory address equals effective address ✓
p8 Privilege escalates correctly ✓
p9 Privilege deescalates correctly ✓
p10 Jumps update the PC correctly ✗

p11 Jumps update the LR correctly b13
p12 Instruction is in a valid format b11
p13 Continuous Control Flow b5
p14 Exception return updates state correctly b1 b5
p15 Register change implies that it is the instruction target ✓
p16 SR is not written to a GPR in user mode ✗

p17 Interrupt implies handled b8
p18 Instruction unchanged in pipeline --
p19 SPR modified only in supervisor mode ✓
p20 Enter supervisor mode is on reset or exception ✓
p21 Exception handling implies exception mechanism activated b8
p22 Unspecified custom instructions are not allowed ✗

p23 Exception handler accessed only during exception, in supervisor mode, or on reset b8
p24 Page fault generated if MMU detects an access control violation --
p25 UART output changes on a write command from CPU --
p26 Only transmit command or initialization change Ethernet data output --
p27 Debug Unit’s value and control registers only accessible from supervisor mode --

Results: Comparison to State-of-the-Art

Properties Outside
of Processor Core

No. Security Property Description Found?

33

p1 Execution privilege matches page privilege ✓
p2 SPR equals GPR in register move instruction b12
p3 Updates to exception registers make sense b4 b9 b15
p4 Destination matches the target ✓
p5 Memory value in equals register value out b14
p6 Register value in equals memory value out b16 b17
p7 Memory address equals effective address ✓
p8 Privilege escalates correctly ✓
p9 Privilege deescalates correctly ✓
p10 Jumps update the PC correctly ✗

p11 Jumps update the LR correctly b13
p12 Instruction is in a valid format b11
p13 Continuous Control Flow b5
p14 Exception return updates state correctly b1 b5
p15 Register change implies that it is the instruction target ✓
p16 SR is not written to a GPR in user mode ✗

p17 Interrupt implies handled b8
p18 Instruction unchanged in pipeline --
p19 SPR modified only in supervisor mode ✓
p20 Enter supervisor mode is on reset or exception ✓
p21 Exception handling implies exception mechanism activated b8
p22 Unspecified custom instructions are not allowed ✗

p23 Exception handler accessed only during exception, in supervisor mode, or on reset b8
p24 Page fault generated if MMU detects an access control violation --
p25 UART output changes on a write command from CPU --
p26 Only transmit command or initialization change Ethernet data output --
p27 Debug Unit’s value and control registers only accessible from supervisor mode --

No. Security Property Description Found?

Results: Comparison to State-of-the-Art

Properties Needing
Micro-architectural

States

34

Results: Comparison to State-of-the-Art

35

p1 Execution privilege matches page privilege ✓
p2 SPR equals GPR in register move instruction b12
p3 Updates to exception registers make sense b4 b9 b15
p4 Destination matches the target ✓
p5 Memory value in equals register value out b14
p6 Register value in equals memory value out b16 b17
p7 Memory address equals effective address ✓
p8 Privilege escalates correctly ✓
p9 Privilege deescalates correctly ✓
p10 Jumps update the PC correctly ✗

p11 Jumps update the LR correctly b13
p12 Instruction is in a valid format b11
p13 Continuous Control Flow b5
p14 Exception return updates state correctly b1 b5
p15 Register change implies that it is the instruction target ✓
p16 SR is not written to a GPR in user mode ✗

p17 Interrupt implies handled b8
p18 Instruction unchanged in pipeline --
p19 SPR modified only in supervisor mode ✓
p20 Enter supervisor mode is on reset or exception ✓
p21 Exception handling implies exception mechanism activated b8
p22 Unspecified custom instructions are not allowed ✗

p23 Exception handler accessed only during exception, in supervisor mode, or on
reset

b8
p24 Page fault generated if MMU detects an access control violation --
p25 UART output changes on a write command from CPU --
p26 Only transmit command or initialization change Ethernet data output --
p27 Debug Unit’s value and control registers only accessible from supervisor mode --

Properties Found in
the Identification Step

No. Security Property Description Found?

Results: Comparison to State-of-the-Art
p1 Execution privilege matches page privilege ✓
p2 SPR equals GPR in register move instruction b12
p3 Updates to exception registers make sense b4 b9 b15
p4 Destination matches the target ✓
p5 Memory value in equals register value out b14
p6 Register value in equals memory value out b16 b17
p7 Memory address equals effective address ✓
p8 Privilege escalates correctly ✓
p9 Privilege deescalates correctly ✓
p10 Jumps update the PC correctly ✗

p11 Jumps update the LR correctly b13
p12 Instruction is in a valid format b11
p13 Continuous Control Flow b5
p14 Exception return updates state correctly b1 b5
p15 Register change implies that it is the instruction target ✓
p16 SR is not written to a GPR in user mode ✗

p17 Interrupt implies handled b8
p18 Instruction unchanged in pipeline --
p19 SPR modified only in supervisor mode ✓
p20 Enter supervisor mode is on reset or exception ✓
p21 Exception handling implies exception mechanism activated b8
p22 Unspecified custom instructions are not allowed ✗

p23 Exception handler accessed only during exception, in supervisor mode, or on
reset

b8
p24 Page fault generated if MMU detects an access control violation --
p25 UART output changes on a write command from CPU --
p26 Only transmit command or initialization change Ethernet data output --
p27 Debug Unit’s value and control registers only accessible from supervisor mode --

No. Security Property Description Found?

👈

 36

One property can
be identified from

different bugs

Results: Comparison to State-of-the-Art
p1 Execution privilege matches page privilege ✓
p2 SPR equals GPR in register move instruction b12
p3 Updates to exception registers make sense b4 b9 b15
p4 Destination matches the target ✓
p5 Memory value in equals register value out b14
p6 Register value in equals memory value out b16 b17
p7 Memory address equals effective address ✓
p8 Privilege escalates correctly ✓
p9 Privilege deescalates correctly ✓
p10 Jumps update the PC correctly ✗

p11 Jumps update the LR correctly b13
p12 Instruction is in a valid format b11
p13 Continuous Control Flow b5
p14 Exception return updates state correctly b1 b5
p15 Register change implies that it is the instruction target ✓
p16 SR is not written to a GPR in user mode ✗

p17 Interrupt implies handled b8
p18 Instruction unchanged in pipeline --
p19 SPR modified only in supervisor mode ✓
p20 Enter supervisor mode is on reset or exception ✓
p21 Exception handling implies exception mechanism activated b8
p22 Unspecified custom instructions are not allowed ✗

p23 Exception handler accessed only during exception, in supervisor mode, or on
reset

b8
p24 Page fault generated if MMU detects an access control violation --
p25 UART output changes on a write command from CPU --
p26 Only transmit command or initialization change Ethernet data output --
p27 Debug Unit’s value and control registers only accessible from supervisor mode --

No. Security Property Description Found?

👈
👈

 37

One property can
be identified from

different bugs

Different properties
can be identified

from the same bug

Results: Comparison to State-of-the-Art
No. Security Property Description Found?
p1 Execution privilege matches page privilege ✓
p2 SPR equals GPR in register move instruction b12
p3 Updates to exception registers make sense b4 b9 b15
p4 Destination matches the target ✓
p5 Memory value in equals register value out b14
p6 Register value in equals memory value out b16 b17
p7 Memory address equals effective address ✓
p8 Privilege escalates correctly ✓
p9 Privilege deescalates correctly ✓
p10 Jumps update the PC correctly ✗

p11 Jumps update the LR correctly b13
p12 Instruction is in a valid format b11
p13 Continuous Control Flow b5
p14 Exception return updates state correctly b1 b5
p15 Register change implies that it is the instruction target ✓
p16 SR is not written to a GPR in user mode ✗

p17 Interrupt implies handled b8
p18 Instruction unchanged in pipeline --
p19 SPR modified only in supervisor mode ✓
p20 Enter supervisor mode is on reset or exception ✓
p21 Exception handling implies exception mechanism activated b8
p22 Unspecified custom instructions are not allowed ✗

p23 Exception handler accessed only during exception, in supervisor mode, or on
reset

b8
p24 Page fault generated if MMU detects an access control violation --
p25 UART output changes on a write command from CPU --
p26 Only transmit command or initialization change Ethernet data output --
p27 Debug Unit’s value and control registers only accessible from supervisor mode --

👈

👈

👈

 38

One property can
be identified from

different bugs

Different properties
can be identified

from the same bug

A single SCI can
concisely represent
multiple manually
written properties

Results: Comparison to State-of-the-Art
p1 Execution privilege matches page privilege ✓
p2 SPR equals GPR in register move instruction b12
p3 Updates to exception registers make sense b4 b9 b15
p4 Destination matches the target ✓
p5 Memory value in equals register value out b14
p6 Register value in equals memory value out b16 b17
p7 Memory address equals effective address ✓
p8 Privilege escalates correctly ✓
p9 Privilege deescalates correctly ✓
p10 Jumps update the PC correctly ✗

p11 Jumps update the LR correctly b13
p12 Instruction is in a valid format b11
p13 Continuous Control Flow b5
p14 Exception return updates state correctly b1 b5
p15 Register change implies that it is the instruction target ✓
p16 SR is not written to a GPR in user mode ✗

p17 Interrupt implies handled b8
p18 Instruction unchanged in pipeline --
p19 SPR modified only in supervisor mode ✓
p20 Enter supervisor mode is on reset or exception ✓
p21 Exception handling implies exception mechanism activated b8
p22 Unspecified custom instructions are not allowed ✗

p23 Exception handler accessed only during exception, in supervisor mode, or on reset b8
p24 Page fault generated if MMU detects an access control violation --
p25 UART output changes on a write command from CPU --
p26 Only transmit command or initialization change Ethernet data output --
p27 Debug Unit’s value and control registers only accessible from supervisor mode --

Properties Found
in the Inference Step

 39

No. Security Property Description Found?

Results: Comparison to State-of-the-Art
p1 Execution privilege matches page privilege ✓
p2 SPR equals GPR in register move instruction b12
p3 Updates to exception registers make sense b4 b9 b15
p4 Destination matches the target ✓
p5 Memory value in equals register value out b14
p6 Register value in equals memory value out b16 b17
p7 Memory address equals effective address ✓
p8 Privilege escalates correctly ✓
p9 Privilege deescalates correctly ✓
p10 Jumps update the PC correctly ✗

p11 Jumps update the LR correctly b13
p12 Instruction is in a valid format b11
p13 Continuous Control Flow b5
p14 Exception return updates state correctly b1 b5
p15 Register change implies that it is the instruction target ✓
p16 SR is not written to a GPR in user mode ✗

p17 Interrupt implies handled b8
p18 Instruction unchanged in pipeline --
p19 SPR modified only in supervisor mode ✓
p20 Enter supervisor mode is on reset or exception ✓
p21 Exception handling implies exception mechanism activated b8
p22 Unspecified custom instructions are not allowed ✗

p23 Exception handler accessed only during exception, in supervisor mode, or on reset b8
p24 Page fault generated if MMU detects an access control violation --
p25 UART output changes on a write command from CPU --
p26 Only transmit command or initialization change Ethernet data output --
p27 Debug Unit’s value and control registers only accessible from supervisor mode --

Properties Not Found

 40

No. Security Property Description Found?

Results: New Security Properties Found

p28 Flags that influence control flow should be set correctly b6 b7
p29 Calculation of memory address or memory data is correct b3 b10
p30 Link address is not modified during function call execution ✓

41

No. Security Property Description Found?

Results: Stopping New Bugs

2

7

5

Using Properties from
the Identification Step

Missing (Need Micro-
architectural States)

Using Properties from
the Inference Step

Result of detecting 14 AMD errata from SPECS project
(bugs not used in the development of the assertions).

42

Summary

SCIFinder:
• Generates security-critical invariants semi-automatically
• Requires a list of known security-critical bugs and

a processor design

Main Results:
• The final SCI set covers 86.4% of the manually crafted

security properties
• We identify 3 new properties not seen in prior work

Website:
• https://cs.unc.edu/~csturton/SCIFinder/

43

https://cs.unc.edu/~csturton/SCIFinder/

