Inconsistencies in Specification of Intel TDX Remote Attestation

Muhammad Usama Sardar, Saidgani Musaev and Christof Fetzer Ack: Anna Galanou, Amna Shahab, Bruno Blanchet Funding: CPEC, CeTI

> Chair of Systems Engineering Institute of Systems Architecture Technische Universität Dresden

> > Dresden, Germany

April 5, 2022

Need of science of security in an emerging and important domain

- Need of science of security in an emerging and important domain
- CCC: more marketing than scientific^{1,2} (highlights only)

 $^{^{1} \}hbox{Confidential Computing Consortium, W hitepaper feedback from Muhammad Usama Sardar, Issue $\#77$, 2020}$

²Sardar and Fetzer, Confidential Computing and Related Technologies : A Review, 2021 (🗇 🕨 4 🚊 🕨 4 🚊 💉 🔾 🤄

- Need of science of security in an emerging and important domain
- CCC: more marketing than scientific^{1,2} (highlights only)
- Attestation: one of the most critical and essential parts of TEE

 $^{^{1} \}hbox{Confidential Computing Consortium, } \textit{Whitepaper feedback from Muhammad Usama Sardar, Issue~\#77,~2020}$

²Sardar and Fetzer, Confidential Computing and Related Technologies : A Review, 2021 4 🗇 🕨 4 🔮 🕨 💈 🔊 🤄

- Need of science of security in an emerging and important domain
- CCC: more marketing than scientific^{1,2} (highlights only)
- Attestation: one of the most critical and essential parts of TEE
- Complexity is the worst enemy of security (B. Schneier)

 $^{^{1}} Confidential\ Computing\ Consortium,\ \textit{Whitepaper\ feedback\ from\ Muhammad\ Usama\ Sardar,\ Issue\ \#77,\ 2020}$

²Sardar and Fetzer, Confidential Computing and Related Technologies : A Review, 2021 4 🗇 🕨 4 🛢 🕨 💈 🤟 🦠

- Need of science of security in an emerging and important domain
- CCC: more marketing than scientific^{1,2} (highlights only)
- Attestation: one of the most critical and essential parts of TEE
- Complexity is the worst enemy of security (B. Schneier)
- Complexity is the best friend of Intel!

 $^{^{1} \}hbox{Confidential Computing Consortium, W hitepaper feedback from Muhammad Usama Sardar, Issue~\#77,~2020.}$

²Sardar and Fetzer, Confidential Computing and Related Technologies : A Review, 2021 ← → ← ≥ → ← ≥ → ← ≥ → へ ○

Outline

- Introduction
- 2 Formal Security Analysis Approach
- 3 TDX
 - Discrepancies Identified
 - Formal Specification
 - Automated Verification
- 4 Summary

 "an environment that provides a level of assurance of the three properties: data confidentiality, data integrity, code integrity"

- "an environment that provides a level of assurance of the three properties: data confidentiality, data integrity, code integrity"
- Quite vague, e.g.,

- "an environment that provides a level of assurance of the three properties: data confidentiality, data integrity, code integrity"
- Quite vague, e.g.,
 - "a level of assurance"

- "an environment that provides a level of assurance of the three properties: data confidentiality, data integrity, code integrity"
- · Quite vague, e.g.,
 - "a level of assurance"
 - Def. satisfied by HSM also

- "an environment that provides a level of assurance of the three properties: data confidentiality, data integrity, code integrity"
- Quite vague, e.g.,
 - "a level of assurance"
 - Def. satisfied by HSM also
- Trusted HW and SW argument: need for RA

- "an environment that provides a level of assurance of the three properties: data confidentiality, data integrity, code integrity"
- Quite vague, e.g.,
 - "a level of assurance"
 - Def. satisfied by HSM also
- Trusted HW and SW argument: need for RA
- Without attestation, no better than conventional computing for possible threat models

- "an environment that provides a level of assurance of the three properties: data confidentiality, data integrity, code integrity"
- Quite vague, e.g.,
 - "a level of assurance"
 - Def. satisfied by HSM also
- Trusted HW and SW argument: need for RA
- Without attestation, no better than conventional computing for possible threat models
 - Remote user cannot distinguish a malicious platform and a genuine one

- "an environment that provides a level of assurance of the three properties: data confidentiality, data integrity, code integrity"
- Quite vague, e.g.,
 - "a level of assurance"
 - Def. satisfied by HSM also
- Trusted HW and SW argument: need for RA
- Without attestation, no better than conventional computing for possible threat models
 - Remote user cannot distinguish a malicious platform and a genuine one
 - Even with alternative of attestation: authentication

- "an environment that provides a level of assurance of the three properties: data confidentiality, data integrity, code integrity"
- Quite vague, e.g.,
 - "a level of assurance"
 - Def. satisfied by HSM also
- Trusted HW and SW argument: need for RA
- Without attestation, no better than conventional computing for possible threat models
 - Remote user cannot distinguish a malicious platform and a genuine one
 - Even with alternative of attestation: authentication
- "Any attack that could compromise the attestation of a TEE instance could lead to a workload or data being compromised in turn."

³Confidential Computing Consortium, A Technical Analysis of Confidential Computing, v1.1, 2021

⁴Confidential Computing Consortium, A Technical Analysis of Confidential Computing, v1.15/2021 🚊 🕟 🧸 🗦 🔻 🔗 🔍

• Ease of use

- Different report generation mechanism
- Runtime TD measurements

Outline

- Introduction
- 2 Formal Security Analysis Approach
- 3 TDX
- 4 Summary

More automation vs. user interaction

- More automation vs. user interaction
 - Tamarin accepts ProVerif-like input but not vice versa

- More automation vs. user interaction
 - Tamarin accepts ProVerif-like input but not vice versa
- Computational security analysis on same model (CryptoVerif⁵)

- More automation vs. user interaction
 - Tamarin accepts ProVerif-like input but not vice versa
- Computational security analysis on same model (CryptoVerif⁵)
- Faster⁶

 $^{^5}$ Blanchet, "CryptoVerif: A computationally-sound security protocol verifier", 2017

⁶Lafourcade and Puys, "Performance Evaluations of Cryptographic Protocols Verification Tools Dealing with Algebraic Properties", 2016

« □ » « ⑤ » « ◉ » « ◉ » ⑤ ◉

Operational policies

Workflow of the Analysis Approach

Workflow of the Analysis Approach

Workflow of the Analysis Approach

Inference System

Composition rules

- Composition rules
 - pair $\frac{x}{\langle x,y \rangle}$ att $(x) \bigwedge att(y) \to att(\langle x,y \rangle)$

- Composition rules
 - pair $\frac{x}{\langle x, y \rangle}$ $att(x) \wedge att(y) \rightarrow att(\langle x, y \rangle)$ hash $\frac{m}{h(m)}$ $att(m) \rightarrow att(h(m))$

- Composition rules
 - pair $\frac{x}{\langle x,y \rangle}$ att $(x) \bigwedge att(y) \rightarrow att(\langle x,y \rangle)$

 - hash $\frac{m'}{h(m)}$ $att(m) \rightarrow att(h(m))$ hmac $\frac{mk}{hmac(mk,m)}$ $att(mk) \land att(m) \rightarrow att(hmac(mk,m))$

- Composition rules
 - pair $\frac{x}{\langle x,y \rangle}$ att $(x) \bigwedge \operatorname{att}(y) \to \operatorname{att}(\langle x,y \rangle)$
 - hash $\frac{m}{h(m)}$ att $(m) \rightarrow att(h(m))$
 - hmac $\frac{mk}{hmac(mk,m)}$ $att(mk) \bigwedge att(m) \rightarrow att(hmac(mk,m))$
 - senc $\frac{sek}{senc(sek,m)}$ $att(sek) \land att(m) \rightarrow att(senc(sek,m))$

- Composition rules
 - pair $\frac{x}{\langle x,y \rangle}$ att $(x) \bigwedge att(y) \rightarrow att(\langle x,y \rangle)$
 - hash $\frac{m}{h(m)}$ att $(m) \rightarrow att(h(m))$
 - hmac $\frac{mk}{hmac(mk,m)}$ $att(mk) \land att(m) \rightarrow att(hmac(mk,m))$
 - senc $\frac{sek}{senc(sek,m)}$ $att(sek) \land att(m) \rightarrow att(senc(sek,m))$
 - aenc $\frac{aek}{aenc(aek,m)}$ $att(aek) \land att(m) \rightarrow att(aenc(aek,m))$

- Composition rules
 - pair $\frac{x}{\langle x,y \rangle}$ att $(x) \bigwedge att(y) \rightarrow att(\langle x,y \rangle)$
 - hash $\frac{m}{h(m)}$ $att(m) \rightarrow att(h(m))$
 - hmac $\frac{mk}{hmac(mk,m)}$ $att(mk) \land att(m) \rightarrow att(hmac(mk,m))$
 - senc $\frac{sek}{senc(sek,m)}$ $att(sek) \land att(m) \rightarrow att(senc(sek,m))$
 - aenc $\frac{aek}{aenc(aek,m)}$ $att(aek) \land att(m) \rightarrow att(aenc(aek,m))$
 - sign $\frac{sk}{signAppDet(sk,m)}$ $att(sk) \land att(m) \rightarrow att(signAppDet(sk,m))$

- Composition rules
 - pair $\frac{x}{\langle x,y \rangle}$ $att(x) \wedge att(y) \rightarrow att(\langle x,y \rangle)$
 - hash $\frac{m}{h(m)}$ $att(m) \rightarrow att(h(m))$
 - hmac $\frac{mk}{hmac(mk,m)}$ $att(mk) \land att(m) \rightarrow att(hmac(mk,m))$
 - senc $\frac{sek}{senc(sek,m)}$ $att(sek) \land att(m) \rightarrow att(senc(sek,m))$
 - aenc $\frac{aek}{aenc(aek,m)}$ $att(aek) \bigwedge att(m) \rightarrow att(aenc(aek,m))$
 - sign $\frac{sk}{signAppDet(sk,m)}$ $att(sk) \land att(m) \rightarrow att(signAppDet(sk,m))$
- Decomposition rules

- Composition rules
 - pair $\frac{x}{\langle x,y \rangle}$ att $(x) \bigwedge att(y) \rightarrow att(\langle x,y \rangle)$
 - hash $\frac{m}{h(m)}$ $att(m) \rightarrow att(h(m))$
 - hmac $\frac{mk}{hmac(mk,m)}$ $att(mk) \bigwedge att(m) \rightarrow att(hmac(mk,m))$
 - senc $\frac{sek}{senc(sek,m)}$ $att(sek) \land att(m) \rightarrow att(senc(sek,m))$
 - aenc $\frac{aek}{aenc(aek,m)}$ $att(aek) \land att(m) \rightarrow att(aenc(aek,m))$
 - sign $\frac{sk m}{signAppDet(sk, m)}$ $att(sk) \land att(m) \rightarrow att(signAppDet(sk, m))$
- Decomposition rules
 - projection $\frac{\langle x,y\rangle}{x}$, $\frac{\langle x,y\rangle}{y}$ att $(\langle x,y\rangle) \to att(x)$, $att(\langle x,y\rangle) \to att(y)$

- Composition rules
 - pair $\frac{x}{\langle x, y \rangle}$ att $(x) \land att(y) \rightarrow att(\langle x, y \rangle)$
 - hash $\frac{m}{h(m)}$ att $(m) \to att(h(m))$
 - hmac $\frac{mk}{hmac(mk,m)}$ $att(mk) \bigwedge att(m) \rightarrow att(hmac(mk,m))$
 - senc $\frac{sek}{senc(sek, m)}$ $att(sek) \land att(m) \rightarrow att(senc(sek, m))$
 - aenc $\frac{aek}{aenc(aek,m)}$ $att(aek) \land att(m) \rightarrow att(aenc(aek,m))$
 - sign $\frac{\grave{sk} \quad m}{signAppDet(sk,m)}$ $att(sk) \land att(m) \rightarrow att(signAppDet(sk, m))$
- Decomposition rules
 - projection $\frac{\langle x,y\rangle}{x}$, $\frac{\langle x,y\rangle}{y}$ att $(\langle x,y\rangle) \to att(x)$, $att(\langle x,y\rangle) \to att(y)$ sdec $\frac{sek \quad senc(sek,m)}{x}$ att $(sek) \land att(senc(sek,m)) \to att(m)$

- Composition rules
 - pair $\frac{x}{\langle x,y \rangle}$ att $(x) \land att(y) \rightarrow att(\langle x,y \rangle)$
 - hash $\frac{m}{h(m)}$ $att(m) \rightarrow att(h(m))$
 - hmac $\frac{mk}{hmac(mk,m)}$ $att(mk) \bigwedge att(m) \rightarrow att(hmac(mk,m))$
 - senc $\frac{sek}{senc(sek,m)}$ $att(sek) \land att(m) \rightarrow att(senc(sek,m))$
 - aenc $\frac{aek}{aenc(aek,m)}$ $att(aek) \land att(m) \rightarrow att(aenc(aek,m))$
 - sign $\frac{sk \ m}{signAppDet(sk,m)}$ $att(sk) \land att(m) \rightarrow att(signAppDet(sk,m))$
- Decomposition rules
 - projection $\frac{\langle x,y\rangle}{x}$, $\frac{\langle x,y\rangle}{y}$ att $(\langle x,y\rangle)$ \to att(x), att $(\langle x,y\rangle)$ \to att(y)
 - sdec $\frac{sek}{m}$ $\frac{senc(sek,m)}{m}$ $att(sek) \land att(senc(sek,m)) \rightarrow att(m)$
 - adec $\frac{adk}{aenc(pk(adk),m)}$ $\frac{att(adk)}{m} \land att(aenc(pk(adk),m)) \rightarrow att(m)$

- Composition rules
 - pair $\frac{x}{\langle x,y \rangle}$ att $(x) \bigwedge \operatorname{att}(y) o \operatorname{att}(\langle x,y \rangle)$
 - hash $\frac{m}{h(m)}$ $att(m) \rightarrow att(h(m))$
 - hmac $\frac{mk}{hmac(mk,m)}$ $att(mk) \bigwedge att(m) \rightarrow att(hmac(mk,m))$
 - senc $\frac{sek}{senc(sek,m)}$ $att(sek) \land att(m) \rightarrow att(senc(sek,m))$
 - aenc $\frac{aek}{aenc(aek,m)}$ $att(aek) \land att(m) \rightarrow att(aenc(aek,m))$
 - sign $\frac{sk}{signAppDet(sk,m)}$ $att(sk) \land att(m) \rightarrow att(signAppDet(sk,m))$
- Decomposition rules
 - projection $\frac{\langle x,y\rangle}{x}$, $\frac{\langle x,y\rangle}{y}$ att $(\langle x,y\rangle)$ \to att(x), att $(\langle x,y\rangle)$ \to att(y)
 - sdec $\frac{sek}{m}$ $\frac{senc(sek,m)}{m}$ $att(sek) \land att(senc(sek,m)) \rightarrow att(m)$
 - adec $\frac{adk}{aenc(pk(adk),m)}$ $att(adk) \land att(aenc(pk(adk),m)) \rightarrow att(m)$
 - verifysign $\frac{vpk(sk)}{true}$ $\frac{vpk(sk)}{true}$

Outline

- Introduction
- 2 Formal Security Analysis Approach
- 3 TDX
 - Discrepancies Identified
 - Formal Specification
 - Automated Verification
- 4 Summary

Contributions

• Identification of discrepancies including inconsistent information

⁷Blanchet et al., "Modeling and verifying security protocols with the applied pi calculus and ProVerif", 2016

Contributions

- Identification of discrepancies including inconsistent information
- Precise specification of TD attestation protocol in ProVerif⁷

11 / 25

Contributions

- Identification of discrepancies including inconsistent information
- Precise specification of TD attestation protocol in ProVerif⁷
- Automated verification of confidentiality and authentication properties in ProVerif

Discrepancies Identified

Ambiguous/
undefined names

• SEAMINFO vs. TEE_TCB_INFO (e.g., p.2-8)⁸

⁸Intel, Intel (R) Trust Domain CPU Architectural Extensions, 2020

Discrepancies Identified

MROWNERCONFIG missing in TDINFO (Fig. 10.1, p.85)⁹

⁸Intel, Intel ® Trust Domain CPU Architectural Extensions, 2020

⁹ Intel, Architecture Specification: Intel® Trust Domain Extensions (Intel® TDX):Module, 2020 € → ⟨ € → | €

Discrepancies Identified

⁸Intel, Intel ® Trust Domain CPU Architectural Extensions, 2020

Inconsistent Information: Example 1^{10}

Figure 10.1: TDX Measurement Reporting

¹⁰ Intel, Architecture Specification: Intel® Trust Domain Extensions (Intel® TDX):Module;2020 🚊 🛌 🗦 🔻 💆 🥠 🔍

Inconsistent Information: Example 1¹¹

 $tmp_seamreport.REPORTMACSTRUCT.TEE_TCB_INFO_HASH = SHA384(tmp_seamreport.TEE_TCB_INFO);$

Table 2-3. TEE_TCB_INFO Structure

Name	Offset (Bytes)	Size (Bytes)	Description
VALID	0	8	Indicates TEE_TCB_INFO fields which are valid. 1 in the i-th significant bit reflects that the 8 bytes starting at offset (8 * i) are valid. 0 in the i-th significant bit reflects that either 8 bytes starting at offset (8 * i) is not populated or reserved, and is set to zero.
TEE_TCB_SVN	8	16	TEE_TCB_SVN array.
MRSEAM	24	48	Measurement of the Intel TDX module.
MRSIGNERSEAM	72	48	Measurement of TDX module signer if valid.
ATTRIBUTES	120	8	Additional configuration ATTRIBUTES if valid.
RESERVED	128	111	Must be zero.

¹¹Intel, Intel (R) Trust Domain CPU Architectural Extensions, 2020

Inconsistent Information: Example 2¹²

Figure 10.1: TDX Measurement Reporting

RESERVED is not a part of hash!

12 Intel, Architecture Specification: Intel® Trust Domain Extensions (Intel® TDX):Module, 2020 📱 🛌 📳 💈 🥙 🤇

Inconsistent Information: Example 2¹³

Software verifying a TEE report structure (for TDX, this includes TEE_TCB_INFO_STRUCT and TDINFO_STRUCT) should first confirm that its REPORTMACSTRUCT.TEE_TCB_INFO_HASH equals the hash of the TEE_TCB_INFO_STRUCT (if applicable) and that REPORTMACSTRUCT.TEE_INFO_HASH equals the hash of the TDINFO_STRUCT. Then, software uses

¹³ Intel, Architecture Specification: Intel® Trust Domain Extensions (Intel® TDX): Module 2020 📱 🕟 🔻 📱 🗸 🔊 🔍

TD Report Structures (Simplified view)

TD Report Structures¹⁴

¹⁴ Sardar, Musaev, and Fetzer, "Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification", 2021 🔈 🤉 🖎

Simplified View of Protocol

- Local attestation \rightarrow Symmetric crypto \rightarrow MAC
- ullet Remote attestation o Asymmetric crypto o Digital signatures

TDX Attestation Flow for Quote Generation 15

¹⁵Sardar, Musaev, and Fetzer, "Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification", 2021 🔈 🤉 🕒

Automated Verification

- Validation: reachability of all parts of code
- Confidentiality: reachability property
- Authentication properties, e.g.,
 x ≡ ⟨rtyp, res1, csvn, tcbh, tdih, rdata, res2⟩

```
\forall x.

\exists mac, tcbi.

event(QuoteVerified(x)) \Rightarrow event(CPUsentSMR(x, mac, tcbi))
```

Outline

- Introduction
- 2 Formal Security Analysis Approach
- 3 TDX
 - Discrepancies Identified
 - Formal Specification
 - Automated Verification
- 4 Summary

TDX specifications are inconsistent and poorly documented

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws
- Reported to Intel and being updated by Intel

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws
- Reported to Intel and being updated by Intel
- Works in progress (comments most welcome: also by email)

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws
- Reported to Intel and being updated by Intel
- Works in progress (comments most welcome: also by email)
 - Model: PCE and cert chain, verifier end

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws
- Reported to Intel and being updated by Intel
- Works in progress (comments most welcome: also by email)
 - Model: PCE and cert chain, verifier end
 - Properties:

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws
- Reported to Intel and being updated by Intel
- Works in progress (comments most welcome: also by email)
 - Model: PCE and cert chain, verifier end
 - Properties:
 - Mutual authentication

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws
- Reported to Intel and being updated by Intel
- Works in progress (comments most welcome: also by email)
 - Model: PCE and cert chain, verifier end
 - Properties:
 - Mutual authentication
 - Freshness

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws
- Reported to Intel and being updated by Intel
- Works in progress (comments most welcome: also by email)
 - Model: PCE and cert chain, verifier end
 - Properties:
 - Mutual authentication
 - Freshness
 - Equivalence properties

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws
- Reported to Intel and being updated by Intel
- Works in progress (comments most welcome: also by email)
 - Model: PCE and cert chain, verifier end
 - Properties:
 - Mutual authentication
 - Freshness
 - Equivalence properties
 - Tamarin for comparison

- TDX specifications are inconsistent and poorly documented
 - may lead to design and implementation flaws
- Reported to Intel and being updated by Intel
- Works in progress (comments most welcome: also by email)
 - Model: PCE and cert chain, verifier end
 - Properties:
 - Mutual authentication
 - Freshness
 - Equivalence properties
 - Tamarin for comparison
- Shameless plug: we are hiring PhDs, post-docs ([muhammad_usama.sardar,christof.fetzer]@tu-dresden.de)

Key References I

Blanchet, Bruno. "CryptoVerif: A computationally-sound security protocol verifier". In: Tech. Rep. (2017).

Blanchet, Bruno et al. "Modeling and verifying security protocols with the applied pi calculus and ProVerif". In: Foundations and Trends in Privacy and Security 1.1-2 (2016), pp. 1–135.

Confidential Computing Consortium. A Technical Analysis of Confidential Computing. v1.1. Jan. 2021. URL:

https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/03/CCC-Tech-Analysis-Confidential-Computing-V1.pdf.

Whitepaper feedback from Muhammad Usama Sardar, Issue #77. 2020. URL:

https://github.com/confidential-computing/governance/issues/77 (visited on 09/13/2021).

Intel. Architecture Specification: Intel® Trust Domain Extensions (Intel® TDX) Module. Sept. 2020. URL: https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-leas.pdf.

— .Intel (R) Trust Domain CPU Architectural Extensions. Sept. 2020. URL: https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf.

Lafourcade, Pascal and Maxime Puys. "Performance Evaluations of Cryptographic Protocols Verification Tools Dealing with Algebraic Properties". In: Foundations and Practice of Security. 2016, pp. 137–155. DOI: 10.1007/978-3-319-30303-1 9.

Sardar, Muhammad Usama and Christof Fetzer. Confidential Computing and Related Technologies: A Review. 2021. URL: https:

 $//{\tt www.researchgate.net/publication/356474602_Confidential_Computing_and_Related_Technologies_A_Review.$

Key References II

Sardar, Muhammad Usama, Saidgani Musaev, and Christof Fetzer. "Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification". In: IEEE Access (2021). URL: https://www.researchgate.net/publication/351699567_Demystifying_Attestation_in_Intel_Trust_Domain_Extensions_via_Formal_Verification.