Insights into Composability from Lablet Research

Jonathan Aldrich

with William Scherlis, Anupam Datta, David Garlan, Bradley Schmerl, Joshua Sunshine, Marwan Abi-Antoun, Sam Malek, Juergen Pfeffer, Christian Kaestner, Andre Platzer, Limin Jia, Robert Harper, Travis Breaux, Witawas Srisa-an, and Arbob Ahman

Science of Security

Quarterly Lablet PI Meeting University of Maryland October 28-29, 2014

Five Hard Problems in the Science of Security

- 1. Scalability and composability
- 2. Policy-governed secure collaboration
- 3. Predictive security metrics
- 4. Resilient architectures
- 5. Human behavior

H.P. Talk

Our selection criteria for the problems

- High level of technical challenge
- Significant operational value
- Likelihood of benefiting from emphasis on scientific research methods and improved measurement capabilities

Hard Problem: Composability

Challenge

- Develop methods to enable the construction of secure systems with known security properties.
 - Construct from components each of which has known quality and security properties
 - Avoid full reanalysis of the constituent components.

Motivation

- Need composition to manage
 - Increasing scale, complexity, dynamism
 - Socio-technical ecosystems, rich supply chains
 - Direct evaluation of artifacts as they are produced/evolved

The SoS Lablet Approach

(1) Advance the state of cybersecurity research

- Focus on the hardest technical problems, emphasizing (at CMU)
 - HP 1: composability of modeling and reasoning as a key to scale and incrementality
 - HP 5: human behavior and usability for developers, evaluators, operators, and end users
- Support advances in the other three HPs also:
 - Policy, Metrics, Resiliency
- (2) Advance the scientific coherence of the multidisciplinary body of cybersecurity technical results
 - Advance most effective scientific processes
 - Acknowledge the unavoidable multidisciplinary nature of cybersecurity
 - Enhance the coherence of the relevant body of technical results
 - Enhance productivity, validity, and translation into practice
- (3) Engage and broaden the cybersecurity technical community
 - Facilitate community and educational engagement
 - Subcontractor partners, workshops, and conference events

Initial Workshop on Composability

- Held September 26, 2013 at CMU
- Crosscutting principles (excerpt)
 - Assume-guarantee reasoning
 - Game theory
 - Families of systems
- Open questions (excerpt)
 - New kinds of refinement needed to preserve security properties
 - How to reason under uncertainty
 - Level of abstraction (of programming, of assurance, and relating these)
 - Managing imprecise specifications
- Impact on practice
 - Adoption barriers and incentives making the ROI case

Priming the Discussion Pump

- Our initial meetings have been focused on work at CMU
 - But we want to gather community input
 - Composability is subtle, and this is a work in progress!
- Question for Lablet researchers: What have you learned about composability that could generalize beyond your particular research project?
 - Consider methods, results, and patterns of approach. Examples are helpful!
- We'll come back to discuss these at the end!

Composability

What is Composability?

A Software Engineering view of Composability

- Construction C is compositional w.r.t. abstraction α if
 - there is an abstract construction C^{α} ,
 - operating on the abstract domains A_i
 - satisfying, for arbitrary parameter values p_i

$$\alpha \big(\mathcal{C}(p_1, \dots, p_n) \big) = \mathcal{C}^{\alpha} \big(\alpha(p_1), \dots \alpha(p_n) \big)$$

whenever the left hand side is defined

Definition by Arend Rensink, presented at Dagstuhl in 2012, suggested by Christian Kaestner. Taken from <u>http://www.dagstuhl.de/mat/Files/12/12511/12511.RensinkArend.Slides.pptx</u>

• What does this mean in the SoS setting?

Example: Sequential Composition of Information Flow Properties

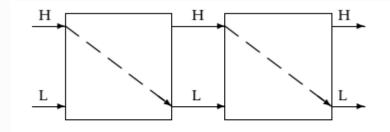
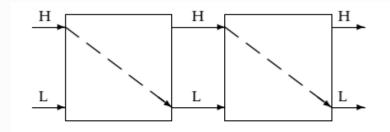
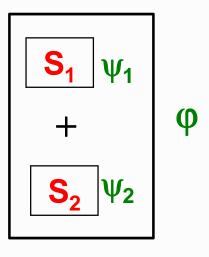


Figure 1: Sequential composition of non-interfering programs

- Confidentiality: high-security inputs do not flow to low-security outputs
- Sequential compositionality [Ahmad, Harper]
 - If two components preserve confidentiality
 - And we compose them in sequence
 - Then the result preserves confidentiality

Concurrent Composition of Information Flow Properties



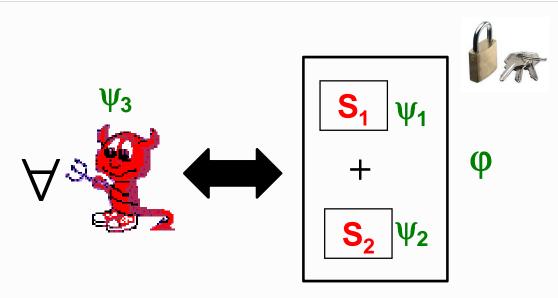

Figure 1: Sequential composition of non-interfering programs

- Confidentiality: high-security inputs do not flow to low-security outputs
- **Concurrent** compositionality
 - Presence/absence of input can be used to leak secure content!
 - Solution: the presence/absence of input also has a security level [Rafnsson *et al.* 2012, 2013]
- Current lablet research: compositional reasoning about declassification [Ahmad, Harper]

10

Background: Assume-Guarantee Reasoning

Do $S_1 + S_2$ satisfy a global property φ based on


- Local properties ψ_1 of \textbf{S}_1 and ψ_2 of \textbf{S}_2 that are **checkable** separately

Assume-Guarantee is a general technique for composability

Can we use it to unify approaches to **composable reasoning** about **security**?

Secure Assume-Guarantee Engineering

Do $S_1 + S_2$ satisfy a global **security** property φ based on

- Local properties ψ_1 of \textbf{S}_1 and ψ_2 of \textbf{S}_2 that are **checkable** separately; and
- Invariant property ψ_3 of all adversaries of a certain class that is $\mbox{enforceable}$

[Garg, Jia, Datta et al. Logic of Secure Systems and System M]

Application Domain: Security Protocols

Security Protocols

Example: SSL/TLS

- Global property: authentication
- Local property: only send secrets encrypted with specific keys

PPT programs

Adversary invariant: Cannot forge signatures

SAGE vs traditional AG

Adversary invariants **enforced** by design of signature schemes for PPT environments

[Datta et al. Protocol Composition Logic]

Application Domain: Systems Software

Systems Software

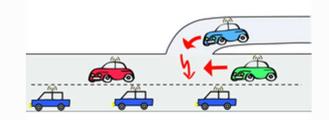
Example: XMHF hypervisor Global property: Integrity of hypervisor

Interface-confined programs

Adversary invariant: Guest OS preserves safe memory protection bits

Local property: each component updates memory protection bits safely

SAGE vs traditional AG

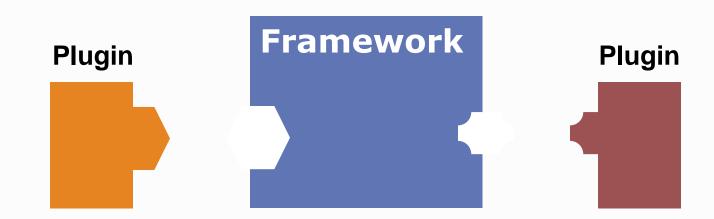

Interface-confinement of adversary code **enforced** using hardwarebased interface confinement (HIC)

[Vasudevan, Chaki, Jia, Datta et al. Compositional XMHF]

Assume-Guarantee in Cyber-Physical Systems

- Known compositionality results in a software engineering setting
- New challenges adapting to secure assume-guarantee engineering
 - e.g. DARPA HACMS

- Key question: what can we safely assume?
 - Communication happens in finite time?
 XNot if an adversary can interfere
 - Our code will be run every N seconds?
 XNot if an adversary refuses to yield the processor
 - No communication out of thin air?
 - This one is OK!


Potential to explore enforcement of these assumptions

Andre Platzer and Dexter Kozen, Security Reasoning for Distributed Systems with Uncertainties lablet project

Assume-Guarantee in a Framework Context

- Frameworks increasingly common form of reuse
 - Enterprise, web, mobile, etc.
- Assume-guarantee relationship with plugins
 - Framework assumes that plugins follow certain rules
 - e.g. don't start your own thread, let framework manage network
 - As a result, framework can provide desired properties
 - Scalability, robustness, security, ...
- Research challenge: enforcing rules on plugins
 - Looking at using *capabilities* to reason about what plugins can do
 - Link to interface enforcement in the Hypervisor lablet project

Garlan, Aldrich, Schmerl, Malek, Abi-Antoun: Science of Secure Frameworks lablet project

Research Challenges in Secure Assume-Guarantee Engineering

- The role of abstraction in security
 - The attacker can attempt to break our abstraction
 - e.g. timing in a CPS setting, totality in concurrent information flow
 - Research challenge to abstract the attacker
 - e.g. probabilistic polynomial time (PPT) attackers
- Interface specification and enforcement
 - Complete interface specification is an issue
 - must include anything the attacker may target, especially in open systems (e.g. Android)
 - Enforcing interface abstraction is a research challenge
 - cf. Hypervisor research, frameworks
- Diversity and dependencies between properties
 - Inter-compositionality: high-level properties build on lower-level properties
- New kinds of properties
 - Information flow is not a trace property, but a relation between traces

School of Computer Science

17

Discussion

- What have you learned about composability that could generalize beyond your particular research project?
 - Consider methods, results, and patterns of approach

• Do the themes above resonate with your own research?

