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Interest Driven Navigation in Visualization
Christopher G. Healey, Senior Member, IEEE, and Brent M. Dennis

Abstract—This paper describes a new method to explore and discover within a large dataset. We apply techniques from preference
elicitation to automatically identify data elements that are of potential interest to the viewer. These “elements of interest” are bundled
into spatially local clusters, and connected together to form a graph. The graph is used to build camera paths that allow viewers to “tour”
areas of interest within their data. It is also visualized to provide way nding cues. Our preference model uses Bayesian classi cation
to tag elements in a dataset as interesting or not interesting to the viewer. The model responds in real-time, updating the elements of
interest based on a viewer’s actions. This allows us to track a viewer’s interests as they change during exploration and analysis. Viewers
can also interact directly with interest rules the preference model de nes. We demonstrate our theoretical results by visualizing historical
climatology data collected at locations throughout the world.

Index Terms—Bayesian network, classi cation, navigation, preferences, visualization.

✦

1 INTRODUCTION

SCIENTIFIC and information visualization convert
large collections of strings and numbers into visual

representations that allow users to discover patterns
within their data. The focus of this paper is the visual-
ization of large datasets containing n data elements and
m data attributes. The size of these datasets normally
exceeds the available screen resources, forcing much of
the dataset to lie offscreen. This leads to an important
question for a data analyst: “How can I locate interesting
data when most of the data is outside my current view?”
Various methods have been proposed to address this

problem. Our particular solution applies an arti cial in-
telligence technique known as preference elicitation. How
can we order a person’s preferences across a set of items?
Techniques like Bayesian classi cation can be used to
learn the person’s preferences, both known and hidden
[1]. We apply these theories to build rules that classify
a subset of a dataset’s elements as “interesting” to the
viewer. The elements are visualized as multidimensional
glyphs, and presented using animated tours that focus
on clusters of interesting elements within the dataset.
Techniques for visualizing multidimensional elements

and presenting them with camera animations have been
discussed in previous work [2], [3]. Our focus in this
paper is on how to construct rules that classify elements
as interesting or not interesting, without requiring the
viewer to explicitly describe these rules. The ability
to automatically identify elements of interest offers a
number of important advantages:

• Explicitly de ning rules of interest is time consum-
ing, particularly if these rules need to be updated
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every time a viewer’s interests change.
• It may be dif cult for a viewer to formulate an exact
de nition to describe why an element is interesting.

• A viewer may not know apriori what they will nd
interesting.

To our knowledge, this is the rst attempt to auto-
matically de ne and update in real-time data properties
that are of interest to a viewer during visualization. Our
contributions in this paper are:

• A description of the area of preference elicitation
and its relevance to data visualization.

• A Bayesian classi er capable of constructing user
models to tag data elements as interesting or not
interesting.

• A description of how a viewer’s actions during
visualization can be used as implicit cues to track
and update the viewer’s interests.

• A demonstration of integrating a preference-driven
interest model into an existing framework for
navigating and visualizing large, multidimensional
datasets.

Although our goal is to automatically classify data ele-
ments for navigation, we believe this research has broad
appeal for visualization environments that can bene t
from understanding a viewer’s interests. Our technique
is applicable to any dataset where combinations of at-
tribute values can be used to determine a viewer’s level
of interest. It is designed to function ef ciently in the
presence of large numbers of multidimensional data
elements, and will automatically adjust its user model
in real-time to track viewers’ changing interests during
their exploration and analysis.

2 RELATED WORK

Information and scienti c visualization algorithms have
been proposed to visualize large, multidimensional in-
formation spaces. Arti cial intelligence, information re-
trieval, and user interface approaches have been sug-
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gested to model a user’s interests. Although these tech-
niques offer important clues about how to track interests
during visualization, none of the existing techniques
fully satis es our requirements.

2.1 Visualizing Large Datasets

Various methods have been proposed to visualize large
information spaces. Two topics that are relevant to our
research are: (1) techniques for visualizing datasets with
a large number of elements n, and (2) techniques for
visualizing datasets with a high dimensionality m.

2.1.1 Overview+Detail and Focus+Context
Card, Mackinlay, and Shneiderman de ne information
visualization as “the general application of assembling
data objects into pictures, revealing hidden patterns”
[4]. Two techniques from this eld are closely related to
our goal of visualizing large datasets: overview+detail and
focus+context. overview+detail methods present a global
overview of an information space, together with ways to
request increased levels of detail for subregions within
the space. focus+context techniques display the global
context of an information space, together with ways
to interactively focus on a full-detail representation of
speci c locations in the space.
Different algorithms use different methods to repre-

sent the global structure and local detail. For example,
the treemap decomposes a dataset D into rectangular
regions that are hierarchically partitioned based on prop-
erties (or attributes) of the data within D [5]. The sheye
lens presents a low level-of-detail display of the entire
dataset, together with an interactive lens that “zooms
in” about its center, providing a higher level-of-detail
display of the data directly beneath the lens [6]. The
hyperbolic tree structures information in D as a tree
embedded in the surface of a sphere [7]. A portion of
the sphere facing outward uses hyperbolic geometric to
form a lens, zooming the information being displayed as
the sphere is rotated. A cone tree visualizes a hierarchical
information space as a tree of semi-transparent 3D cones,
one for each category in the hierarchy [8]. Elements
within a category are located around the base of the
appropriate cone.

2.1.2 Multidimensional Visualization
Multidimensional visualization addresses the need to
visualize datasets that contain multiple data attributes.
One common and long-studied example is a carto-
graphic map [9]. The basic concept of a map is well un-
derstood by most viewers. Visualization is most directly
related to thematic maps—maps that focus on speci c
themes or properties of a geographic area. Examples
include isarithmic (contour), proportional symbol, dot,
or choropleth (color-coded) maps.
Another approach is the use of multidimensional

glyphs that modify their appearance to represent mul-
tiple attribute values. Guidelines built on properties of

low-level visual perception are used to choose data-
to-visual feature mappings that are effective and well-
suited to a user’s analysis tasks. Original work in this
area includes Chernoff faces and starplots [10], tech-
niques that used facial characteristics and radial spokes,
respectively, to visualize a data element with multi-
ple attribute values. Laidlaw used painterly glyphs to
visualize diffuse tensor scans of a mouse spinal cord
[11]. Follow-on work used a similar approach for ow
visualization [12]. Healey et al. conducted experiments
to measure the capabilities of and interactions between
basic visual properties of color, texture, and motion.
These results are used to construct multidimensional
glyphs, and more recently to design multidimensional
brush strokes for nonphotorealistic visualizations [3],
[13]. More abstract approaches also exist. Parallel coordi-
nates are a well-known technique used to visualize the
distributions of attribute values in a multidimensional
dataset [14]. This allows viewers to identify common
trends, relationships, and outliers. Shneiderman pro-
posed star elds and spot re, techniques that array the
data in a 2D scatterplot, then allow users to interactively
lter the display based on ranges of attribute values [15].

2.2 Identifying User Interests

In the visualization area, a common approach to identi-
fying a user’s interests is to maintain a history of how
previous users have visualized and analyzed a dataset
(e.g., as done in VisTrails [16]). More sophisticated ap-
proaches to automatically identify user interests have
been presented, although not in the visualization area.
Kelly and Teevan provide a comprehensive overview of
recent work on inferring user preferences [17]. Much
of this research focuses on document retrieval or web
browsing. Kelly and Teevan use two axes to describe
implicit user feedback: a behavior category—examining a
web page, annotating a paper—and a scope category—
for example, sentences, paragraphs, and pages represent
three scopes for a document. They found that a majority
of the existing techniques involve examination of small
or medium-scope objects.
Other techniques have also been documented. Lam et

al. propose a two-level approach to identify shifts in user
interests [18]: a low-level machine learning algorithm for
speci c interests, and a higher-level Bayesian analyzer
for signi cant shifts in a general “interest pro le.” Kim
and Chan build a user interest hierarchy, a continuum of
general to speci c interests based on words and phrases
in web pages bookmarked by a user [19]. Goecks and
Shavlik [20] and Claypool et al. [21] propose tracking a
user’s interactions with web pages to construct a user
interest pro le.

2.3 Navigation Assistant

Although overview+detail and focus+context algorithms
offer important advantages, a suf cient increase in n can
produce overviews that sample too sparsely to properly
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represent D, or increase the distance between overview
and detail to a point where large distortions occur.
Rather than trying to build an overview, we construct

a model of a user’s preferences to identify interesting
elements throughout D. We use an inset view and au-
tomated camera tours to help users navigate to areas of
interest. Data elements in the main view are visualized
as multidimensional glyphs whose visual features are
selected using guidelines from human perception.

2.3.1 Direct Interaction
Most visualization systems use direct interaction to ex-
amine elements of interest (e.g. picking or brushing). Au-
tomatically identifying a viewer’s interests complements
these capabilities. The navigation assistant initially pro-
vided direct selection and a simple language to de ne
rules that describe elements of interest. Unfortunately,
this was not always ef cient. For example:

• It is dif cult to locate elements of interest when only
a small subset of the data is visible at any one time.

• It is time consuming to enter more than a few rules,
or to update rules when new interests are found.

• It can be dif cult to properly specify interests as a
set of mathematical and boolean operations on an
attribute’s values.

This motivated us to seek a method that “automati-
cally” determines rules of interest based simply on what
viewers select or where they look in the visualization.
The navigation assistant provides new interface op-

erations to support interaction with the preference
system. Users can reject recommendations about an
element being interesting (or uninteresting) using a
keyboard + mouse click. A rule dialog is provided to
allow users to enter known interests, and to modify
interest rules the system builds (see Fig. 7a for an exam-
ple). These interactions are fed back into the system, to
track a user’s interests and improve recommendations.

3 PREFERENCE ELICITATION
Preference elicitation is used to construct an accurate
user model u to assist a decision support system, in
our case, a navigation and visualization system [22].
The outcomes O for a decision problem are de ned by
the assignment of values to a set of attribute variables,
X = (X1, . . . , Xm). Decisions require an ordering of the
outcomes oi, oj ∈ O to properly respect user preferences.
oi � oj implies the user prefers outcome oi to oj .
In our system, Xi = (xi,1, . . . , xi,m) is a speci c set

of attribute values and O is the set of all data elements
ei ∈ D. We seek a user model u that assigns an estimated
interest to each ei based on its attribute values Xi. We
can then order ei � ej to show that ei is potentially more
interesting to a user than ej .

3.1 Preference Queries

Constructing u requires ways to query a user’s prefer-
ences. Queries can be explicit, where the user is asked

to answer questions or evaluate examples, or implicit,
where the user’s actions are observed to extract infor-
mation.

3.1.1 Example Queries
The simplest query example is an order query: “Do
you prefer oi or oj?” or a rank query: “What is the
rank of oi?” Unfortunately, these queries may not be
feasible when O is large. Another disadvantage of value
queries is that they force a user to make statements about
attribute values out of context. They also require detailed
statements, even when a user’s preference knowledge
may be incomplete or generalized.
Presenting examples is an alternative way to obtain

preference information. Various exampling mechanisms
exist. One method is tweaking, which allows users to
modify or “tweak” candidate solutions to narrow their
search for an optimal solution [23]. A second approach is
candidate critiquing, where a user describes the merits or
aws in an example [24], [25]. A third technique asks a
user to order a set of examples, allowing for comparison
and relative ranking.

3.1.2 Implicit Queries
Implicit preference identi cation avoids direct requests
to a user. Instead, the user’s interactions with the sys-
tem are studied to infer preferences. Most research on
implicit preferences involves web browsing [17], [21],
[26]. A user’s actions are tracked—reading web pages,
bookmarking pages, following links, and so on—as well
as the time spent for each action.
Implicit queries have a number of drawbacks. Implicit

information is uncertain. Observed behavior may not be
an appropriate source from which to infer preferences
[27] (e.g. if a user views a web page for a sustained
period, is he interested in the page, or is he away
from his workstation?) Interactive behavior may not be
consistent between users. Finally, implicit collection is
driven by the user and not by the system. This means
the system has no way to request a speci c piece of
information.

3.2 Preference Elicitation and Classi cation

Although preferences provided a theoretical framework
for our research, the solution we implemented uses a
standard classi cation approach: a Bayesian network is
constructed from a training set to generate a continuous
range of outcomes representing estimated user inter-
ests over each data element. The outcomes—and by
extension the data elements—are thresholded into two
categories: interesting and not interesting.
Using classi cation algorithms to generate preferences

is not uncommon. Approaches like Bayesian networks
are appropriate because they can satisfy a preference al-
gorithm’s requirements: support for ef cient incremental
training input, useful estimates based on a small initial
set of example classi cations, and relative comparisons
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both within and between categories. Although other
methods (e.g., support vector machines) were consid-
ered, Bayesian networks best matched the inputs and
uncertainties we need to support.
Preference elicitation does contribute important tech-

niques to query a user’s interests. Thus, our system can
be viewed as a preference-based approach to collect clues
about a user’s interests, a Bayesian classi er that uses
those clues to tag each data element as interesting or not
interesting, and association rule mining to compress the
set of interesting attributes into a manageable collection
of interest rules.

3.3 Navigation Assistant

We seek a user model u that orders elements such that
ei � ej implies the user is more interested in ei than
ej . Information about a user’s preferences is collected in
different ways. Users can de ne rules to identify known
elements of interest. They can also select elements in the
visualization that they nd interesting. Users perform
example ordering to create a staring set of preferences,
and example tweaking to re ne interest rules the system
discovers. Finally, implicit tracking allows us to infer
preferences based on where the user looks in D.

4 USER MODELS
We construct a user model to learn a viewer’s prefer-
ences, then apply that knowledge to identify interesting
data elements. We want a model that provides both
qualitative and quantitative information: whether an
element is interesting, and if it is, the viewer’s level of
interest.
Bayesian classi ers are a simple, yet effective tool for

performing classi cation [28], [29]. Bayesian classi ers
are a form of supervised learning. They take as input a
training set that contains pairings between a collection
of attribute values and a class value. Bayesian classi ers
can be quickly and easily retrained, so they are appro-
priate for an interactive environment.
Bayesian classi ers use probabilistic models to equate

preference values to the likelihood that a viewer will
select an item from a set of data. Qualitatively, Bayesian
classi ers assign a class value to a set of attribute values.
Quantitatively, they provide a probability distribution
describing the con dence of their class assignment.

4.1 Bayesian Probability

Bayesian probability combines some prior probability P
for a hypothesis H with new data D to determine a
new posterior probability for H . The prior probability
is often called the prior, and the posterior probability the
posterior. Speci cally, the posterior is the likelihood of H
multiplied by the prior.

P (H | D) =
P (D | H)P (H)

P (D)
(1)

The posterior probability P (H | D) equals the like-
lihood of seeing data D given hypothesis H is true,
P (D | H), times the prior probability P (H). P (D) is the
probability of seeing dataD over all possible hypotheses.
Since P (D) is identical for all H , it is often considered a
normalizing constant, and removed from the formula.

4.2 Bayesian Networks

A Bayesian network is a directed acyclic graph where
nodes represent variables and directed edges represent
parent–child dependencies. Each node Xi maintains a
probability function that takes as input the node’s parent
variables, and produces as output a probability for each
of Xi’s possible values. In other words, each node repre-
sents a posterior probability distribution P (Xi | π(Xi)),
where π(Xi) represents the parents of Xi.
The probability of a particular set of values

(x1, . . . , xm) for random variables X1, . . . , Xm is com-
puted as a joint distribution:

P (x1, . . . , xm) =

m∏

i=1

P (Xi = xi | π(Xi)) (2)

4.3 Bayesian Classi cation

Bayesian analysis can be used to convert a training
set into an underlying probability distribution function
modeled as a Bayesian network. Given a dataset D
with m data attributes (A1, . . . , Am), suppose a subset
of the data elements in D are assigned a classi cation
C (e.g. C = {interesting, not interesting}). We want to
use this training set to tag unclassi ed data elements
e = (a1, . . . , am) with classi cation c ∈ C. Bayes rule
(Eqn. 1) allows us to do this:

P (c | a1, . . . , am) =
P (a1, . . . , am | c)P (c)

P (a1, . . . , am)
(3)

The likelihood P (c) comes directly from the train-
ing set. As previously noted, the marginal probability
P (a1, . . . , am) is independent of C, and can therefore be
removed. This leaves only the posterior P (a1, . . . , am | c)
to be derived.
We apply the product rule P (A,B) = P (A | B)P (B) =

P (B | A)P (A):

P (a1, . . . , am, c) = P (a1 | a2, . . . , c)P (a2, . . . , am, c) (4)
= P (a1, . . . , am | c)P (c) (5)

Equating Eqns. 4 and 5, then using the product rule to
replace P (a2, . . . , am, c) with P (a2, . . . , am | c)P (c) gives:

P (a1, . . . , am | c) = P (a1 | a2, . . . c)P (a2, . . . , am, c)

P (c)
(6)

= P (a1 | a2, . . . , c)P (a2, . . . , am | c)
By recursively reducing the nal term in a similar way,

we can rewrite Eqn. 6 as:
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P (a1, . . . , am | c) (7)
= P (a1 | a2, . . . , c)P (a2, . . . , am | c)
= P (a1 | a2, . . . , c) · · ·P (am+1 | am, c)P (am | c)

If the attribute values are independent of one another,
this reduces to:

P (a1, . . . , am | c) =
m∏

i=1

P (Ai = ai | c) (8)

To handle attribute dependencies, the product is
rewritten as:

P (a1, . . . , am | c) =
m∏

i=1

P (Ai = ai | π(Ai), c) (9)

This is the same joint distribution shown in Eqn. 2 for
Bayesian networks.

4.4 Learning Bayesian Structure

Given a training set, we want to “learn” a Bayesian
network that ts the training set. This provides the
probabilities needed to solve the joint distribution in
Eqn. 9.
One possibility is a naive Bayesian classi er that as-

sumes attribute independence. The computation needed
to build a naive classi er is small, and it often performs
as well as more sophisticated techniques [29].
The classi er’s performance can be further improved

by boosting. Boosting is a form of ensemble learning,
where a collection of learning models are combined to
form conclusions from existing knowledge [30]. Boosting
creates different models by varying the weights assigned
to elements in the training set. For Bayesian classi ers,
increasing the weight of a training element is equivalent
to increasing its frequency in the training set.
Boosted Bayesian classi ers create a new model M t+1

based on the accuracy of the previous model M t. Ele-
ments misclassi ed in M t have their weights increased,
while elements correctly classi ed have their weights de-
creased. For example, AdaBoost, a well-known boosting
algorithm, runs as follows [31]:
1) Given a base network G and training set D of size

n.
2) Let wt

i be the weight of ei in the training set at iter-
ation t. Initialize the weights w1

i = 1
n , i = 1, . . . , n.

3) For t = 1, . . . , Tn,
a) De ne error εt =

∑n
i=1 w

t
imt(ei), mt = 1 if

M t’s classi cation of ei is incorrect, mt = 0
otherwise.

b) Set βt = εt/(1− εt).
c) Set wt+1

i = wt
iβ

mt(ei).
d) Normalize wt+1

i .
4) Output ensemble structure M = (M1, . . . ,MTn).

4.5 Navigation Assistant

We implemented a boosted Bayesian network classi er
(BBNC) to classify data elements as interesting or not
interesting [32]. BBNCs have been shown to be com-
putationally ef cient and accurate [1], [33], [34], [35].
BBNCs can also be run iteratively, accepting new training
examples and updating the network as a user interacts
with a visualization. Once interesting elements are iden-
ti ed, association rule mining is used to build rules that
distinguish the elements within the dataset. The rules
summarize what we believe are the subset of elements
that inspire the viewer’s interest.

5 NAVIGATION FRAMEWORK
We decided to modify and extend an existing navigation
assistant that clusters elements of interest and visualizes
them as multidimensional glyphs. A brief overview of
the system is provided here. Interested readers are di-
rected to [2] for more detail.
In the current system elements of interest must be

manually identi ed by the viewer using mathematical
expressions and boolean operators. These elements are
spatially clustered into local regions called areas of
interest (AOIs). A Delaunay triangulation of the ele-
ments of interest in each AOI is reduced to form a
local graph cycle that visits each element exactly once.
Next, a complete graph of the AOI’s centroids is built,
with edges weighted by their Euclidean distance. A
minimum spanning tree of the graph is constructed to
produce a minimum-length tree that visits each AOI.
Both local and global graph structures are displayed as
an inset within the visualization, providing way nding
cues to direct viewers to offscreen regions of interesting
elements (Fig. 5).
The graph framework also provides a fundamental

data structure for constructing automated animations.
Graph traversal algorithms are used to build camera
paths to view elements of interest within an AOI. Vis-
ibility algorithms position the camera to provide unoc-
cluded views of each element of interest as the camera
moves along the animation path.
Individual data elements are represented as geometric

”tower” glyphs that can vary their hue, luminance,
height, density, and regularity of placement to represent
multiple attribute values. Previous research in our labo-
ratory has shown that the low-level human visual system
processes these features very rapidly and accurately.
We have conducted numerous controlled experiments to
de ne the information-carrying capacity of each feature,
both in isolation, and in combination with other features
[3], [36], [37], [38]. The result is a multidimensional
visualization system that helps viewers to locate and
examine data elements within the dataset that are likely
to be of interest.
A critical disadvantage of the existing system is that

elements of interest must be de ned by the viewer. As
previously noted, this can be time consuming, imprecise,
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(a) (b) (c)

Fig. 1. Discretizing continuous attributes, unique colors
identify each bin: (a) cloud coverage, n = 59 unique
values; (b) temperature, n = 311; (c) wind speed, n = 51

and is often ineffective at locating all the elements a
viewer may want to study.

5.1 Discretizing Attributes

In order to reduce the size of the outcome space O,
we discretize continuous attributes Ai into a set of
ranges. We believe that most users will not have strong
preferences for a speci c attribute value, but instead
are interested in ranges of values. If speci c values are
important, a user can identify those by providing explicit
interest rules.
There are several approaches for discretizing a contin-

uous space, for example, intervals that have equal width
or equal frequency. Discretization can also be viewed as
clustering the attribute values [39]. We built a hybrid k-
means clustering algorithm to discretize Ai into k bins
Xi = (xi,1, . . . , xi,k):
1) Set k = log2(ni), where ni is the number of unique
attribute values in Ai.

2) Run m trials of k-means clustering using random
seeds as starting points and record the cluster
centers C = (c1,1, . . . , c1,k, . . . , cm,1, . . . , cm,k).

3) Run hierarchical clustering on C to collapse neigh-
boring centers to a common position.

4) Run a nal k-means clustering using C as the
starting points. Assign the cluster boundaries to X .

Our algorithm is designed to preserve locally dense
regions, and to assign outliers to their own clusters.
Attribute values ai ∈ Ai map to an interval xi,j =
[xi,j,lo, xi,j,hi ], xi,j,lo ≤ ai ≤ xi,j,hi (Fig. 1). Data ele-
ments ei ∈ D replace their attribute values ai,j with the
index of the bin containing ai,j , producing a discretized
dataset D′.

5.2 Bayesian User Model

The navigation assistant uses a boosted Bayesian net-
work classi er (BBNC) to tag data elements as inter-
esting or not interesting. As users interact with the
visualization, they generate new training examples ti
that are added to the training set T . The BBNC is then
re-trained, and the elements of interest are updated.
To demonstrate our BBNC’s performance, consider

T with 15 elements ti ∈ D′, D′ = (A1, A2, A3, A4),
Ai = {1, 2, 3} ∀i (Table 1a). The user is interested in two

TABLE 1
Example BBNC: (a) training set to capture preferences

A1 = 1 and A4 = 3; (b) BBNC classi cation c and
average con dence p for four sets of ei ∈ D′

ti c

(1, 1, 2, 1) 1
(1, 1, 3, 1) 1
(1, 2, 1, 2) 1
(1, 2, 2, 1) 1
(2, 2, 3, 3) 1
(2, 3, 2, 3) 1
(3, 2, 3, 3) 1
(3, 3, 2, 3) 1
(2, 1, 2, 1) 0
(2, 2, 2, 2) 0
(2, 3, 3, 1) 0
(3, 2, 1, 1) 0
(3, 2, 2, 2) 0
(3, 2, 3, 1) 0
(3, 3, 2, 2) 0

(a)

ei c p

(1, ∗, ∗, ∗) 1 0.94
(∗, ∗, ∗, 3) 1 0.94
(1, ∗, ∗, 3) 1 1.00

({2, 3}, ∗, ∗, {2, 3}) 0 0.75

(b)

properties: A1 = 1 and A4 = 3. The rst four ti in T
satisfy the rst property, the next four satisfy the second
property, and the last seven satisfy neither. Table 1b
shows the BBNC classi cation for all 81 elements in
D′. Every element of interest is properly identi ed with
average con dences ranging from 0.94 to 1.0. Every
element that is not interesting is also properly classi ed
with an average con dence of 0.75.

5.2.1 Boosting
Unfortunately, the standard boosting process cannot be
integrated directly into the navigation assistant. The
main problem is that a general BBNC views all ti ∈ T
as correct and equally important to the learning process.
There may be uncertainty about the correctness of the ex-
amples we collect. This is especially true for information
that comes from implicit actions. ti with low certainty
need to have a weaker in uence during boosting.
An obvious approach is to set the initial boosting

weight w1
i to ti’s certainty. This will not work, however,

since later boosting iterations may increase w1
i to a much

larger value to compensate for misclassifying ti.
To solve this problem, we assign two weights to each

ti: the boosting weight w1
i and a certainty weight ui. w1

i

is modi ed to guide subsequent user models towards a
correct classi cation of ti, exactly as before. ui remains
constant for each boosting iteration to re ect the in u-
ence ti should have over the entire ensemble learning
process.
Consider the same D′ from the previous example (Ta-

ble 1) but with a preference of A1 = 1 and a new training
set containing errors and certainty weights (Table 2a):
(1, 1, 1, 2), (1, 2, 1, 2), and (1, 3, 2, 1) should be labeled
c = 1, while (2, 3, 3, 2), (2, 3, 1, 1), (2, 3, 1, 3), (3, 2, 3, 2),
and (3, 2, 2, 1) should be labeled c = 0.
Table 2 shows the performance of using: no certainty u

(Table 2b); u as the initial boosting weight w1
i (Table 2c),
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TABLE 2
Managing uncertainty u: (a) training set to capture

preference A1 = 1; (b) elements of interest (EOIs) for Tn

boosts, con dence p for classes c = 0 and c = 1, overall
accuracy a, w1

i = 1
n ; (c) w

1
i = u; (d) both u and w1

i = 1
n

ti c u

(1, 1, 1, 2) 0 0.1
(1, 2, 1, 2) 0 0.1
(1, 3, 2, 1) 0 0.1
(2, 2, 2, 2) 0 1.0
(3, 3, 3, 3) 0 1.0
(2, 3, 1, 1) 0 1.0
(3, 3, 1, 2) 0 1.0
(2, 1, 1, 1) 0 0.1
(3, 1, 1, 3) 0 0.1
(2, 2, 1, 2) 0 0.1
(3, 2, 3, 1) 0 0.1
(3, 1, 2, 2) 0 0.1
(1, 1, 1, 1) 1 1.0
(1, 2, 1, 3) 1 1.0
(1, 2, 2, 1) 1 1.0
(1, 3, 2, 2) 1 1.0
(2, 3, 3, 2) 1 0.1
(2, 3, 1, 1) 1 0.1
(3, 3, 1, 3) 1 0.1
(3, 2, 3, 2) 1 0.1
(3, 2, 2, 1) 1 0.1

(a)

w1
i = 1

n

p for p for
Tn EOIs c = 0 c = 1 a

1 44 0.59 0.66 0.67
10 47 0.55 0.59 0.63
20 46 0.55 0.59 0.63

(b)

w1
i = u

p for p for
Tn EOIs c = 0 c = 1 a

1 35 0.86 0.61 0.96
10 35 0.64 0.57 0.96
20 35 0.64 0.57 0.96

(c)

u and w1
i = 1

n

p for p for
Tn EOIs c = 0 c = 1 a

1 32 0.88 0.63 0.96
10 36 0.89 0.64 0.96
20 36 0.89 0.65 0.96

(d)

and u independent of w1
i (Table 2d).

When u is ignored, the BBNC misclassi es a large
number of elements. After Tn = 10 boosts over half of D′

is classi ed as interesting, with low average con dence
p = 0.57 and accuracy a = 0.63. When w1

i = u, there
is an immediate improvement in BBNC accuracy, with
almost every element the user prefers being captured
(a = 0.96). Notice, however, that the con dence in
elements classi ed as interesting declines signi cantly in
later boost iterations. Erroneous examples in uence the
model more during later iterations as the BBNC tries
to “correct” them. Finally, when u and w1

i are managed
independently, the model’s accuracy is as good as for
w1

i = u. This approach also maintains strong con dence
for interesting elements with A1 = 1.
Unfortunately, all three schemes incorrectly classify

some elements with A1 �= 1 as interesting. Although
this is undesirable, we believe it is better to have false
positives—suggesting elements that are not interesting—
rather than false negatives—missing interesting elements
entirely—as long as the number of false positives is
relatively small.

5.3 User Input

Visualization is normally interactive. A user can change
how the data is visualized, he can navigate to new

locations in the dataset, he can look at the same data
elements from different locations, and so on. User inter-
vention can also be used to guide and correct the assis-
tant. Our assistant must transform existing visualization
actions into inputs that are compatible with our BBNC
preference model. Several explicit and implicit methods
are provided to support this.

5.3.1 Updating the Preference Model

The training set T is the bridge that transforms user
input into preference values. T must be updated in
a meaningful way when new user input is received.
Preference statements have a subject, a classi cation, and
a certainty. For example, when a user clicks on a data
element ei to mark it as interesting, the subject is ei, the
classi cation is positive, and the certainty is high. This
action is converted into ti = (ei, ci, ui) made up of the
discretized form of ei, classi cation ci, and certainty ui.
Next, the assistant must integrate ti into T . A simple

approach is to append ti to T . This means T can contain
multiple ti with the same ei and ci, but possibly different
ui. Since ui de nes the frequency of ei in T , we can sum
common ti to produce an overall certainty, for example,
Σ{(ei, 0, 0.5), (ei, 0, 0.75), (ei, 0, 0.4)} =⇒ (ei, 0, 1.65).
Unfortunately, this basic scheme leads to the problem

of overclassi cation. All of ei’s attribute values have the
same ui, even when the user is only interested in a subset
of these values. Consider ti = (1, 2, 1, 2) in Table 2a. ti
was added because of a user interest in A1 = 1, but
A2 = 2, A3 = 1, and A4 = 3 will also be considered as
interesting as A1 = 1.
If an attribute value is of interest—for example, A1 = 1

in Table 2a—it should occur in many ti. The other
attributes A2, A3, and A4 will have values with relatively
uniform distributions over their domains. Instead of
summing to update certainty ui, we calculate a likeli-
hood that at least one attribute value in ei is correct:
1) For ti = (ei, ci, ui), search T for an entry tj that
matches ei and ci.

2) If no entry is found, add ti to T .
3) Otherwise update uj = 1.0− (1.0− uj) ∗ (1.0− ui).

5.4 Explicit Input

Explicit feedback from a user is the most reliable source
of information, but it comes at the cost of forcing the user
to temporarily stop exploring to specify preferences. We
try to keep our explicit input methods simple, both in
terms of the interface for the methods, and in the type
of preference information they request.

5.4.1 Preference Statement Interface

A user can de ne known preferences by entering them
explicitly using a preference statement interface. The
attributes’ discretized ranges are presented, allowing the
user to select the subset of ranges that match the known
preference.
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5.4.2 Broad Critiquing
The navigation assistant highlights elements of interest
in the visualization. A user can critique the model by
explicitly adding or removing interesting elements.
An element ei incorrectly tagged as uninteresting can

be added with a keyboard + mouse selection. ei is added
to a list of elements explicitly labeled as interesting by
the user. Any ej ∈ D′, ej = ei is marked as an element
of interest, and T is updated:
1) For tj ∈ T with ej = ei, cj = 0, remove tj from T .
2) If ti = (ei, 1, u) ∈ T , set u = 1, otherwise add

(ei, 1, 1) to T .
If a user clicks on an interesting ei to tag it as uninter-

esting, the same process is applied with the class c set to
0. The user does not need to explain which properties of
ei make it interesting or uninteresting. The Bayesian user
model analyzes the elements to determine what caused
the user’s actions.

5.4.3 Fine Critiquing
Selecting glyphs is a simple way to indicate preferences,
but it offers no information about which attribute values
are interesting to a user. The navigation assistant pro-
vides an interface to allow the user to enter this informa-
tion. In order to avoid an overly complex interface, our
ne critiquing dialog asks only two questions (Fig. 7a):
1) Is data element ei interesting?
2) Which attribute values of ei make it interesting?
For example, suppose a user con rms ei is interesting,

and speci es Y ⊆ X as the attributes of interest. In
order to update T with respect to Y , we must allow for
incomplete training examples. These examples in uence
preferences towards a subset of attribute values. For
example, (∗, ∗, 1, ∗) speci es information about the third
attribute only. All ei with ai,3 = 1 will have their
preference value in uenced by this example.
The values y for the attributes Y must be added to T .

The obvious solution of using ti = (y, 1, 1) is insuf cient.
We want ti to have a stronger in uence than normal
examples tj , since ti represents a strong statement by the
user towards yi. It would take multiple fully-speci ed
tj to produce the same in uence. To support this, we
specify a certainty u ≥ 1.
A second issue is whether the user’s preference to-

wards the values in y are independent of one another,
that is, should the assistant strengthen preferences to-
wards ei containing at least one attribute value in y, or
only towards ei that contain all the attribute values in y?
Since our interface provides no mechanism to de ne this,
we generate all possible subsets of y ∈ Y and add each
of them as incomplete training examples. The assistant
assigns ti with fewer unde ned attribute values a larger
ui. Although there are 2|Y | − 1 total subsets, we assume
most ne critiques will involve only a few attributes,
keeping the number of subsets manageable.
Consider ei = (3, 1, 4, 4, 5), and the user indicates he is

interested in the values of the rst three attributes. The
following incomplete ti will be added to T with ci = 1:

ui = 3 : (3, 1, 4, ∗, ∗)
ui = 2 : (3, 1, ∗, ∗, ∗), (3, ∗, 4, ∗, ∗), (∗, 1, 4, ∗, ∗)
ui = 1 : (3, ∗, ∗, ∗, ∗), (∗, 1, ∗, ∗, ∗), (∗, ∗, 4, ∗, ∗)

The same process is applied for values marked as un-
interesting, but with ci = 0. We also derive information
from Z = X − Y , the attribute values the user ignored,
by assuming he is indifferent to these values. Incomplete
ti based on Z are added as both interesting and uninter-
esting. Since it is possible that |Z| � |Y |, we only add
incomplete ti with one attribute value set. In the above
example, we would add ti = ((∗, ∗, ∗, 4, ∗), {0, 1}, 1) and
ti = ((∗, ∗, ∗, ∗, 5), {0, 1}, 1) to T .

5.5 Implicit Input

Implicit input occurs alongside a user’s normal interac-
tion with the visualization. This type of input contains a
degree of uncertainty. Because of this, only cumulative
implicit feedback can signi cantly in uence the user
model. Noisy input will have little or no effect.

5.5.1 Broad Focus Events

The navigation assistant tracks which parts of the dataset
move through the user’s focus. The intuition is that an
element’s onscreen presence offers an indication of its
importance.
We measure a degree of focus to compute an element’s

wear weight. The degree of focus depends on three view-
ing parameters:
1) Camera distance. Elements closer to the camera
present more detail, and are assumed to be of more
interest to a user.

2) Center distance. Elements near the center of the
window are centered in the user’s view, and are
assumed to be more interesting.

3) Viewing time. Elements that are in view for a sus-
tained, continuous period of time are assumed to
be of more interest to the user. We use continuous
rather than cumulative time to manage common
elements that are frequently in view, but only for
short durations.

OpenGL’s projection operators are used to de ne a
frustum that contains a subset of the elements in view.
Elements in a circular region V inscribed within the
frustum are selected for consideration. The radius of V
is one-half the length of the shorter edge of the window.
For each element ei ∈ V a wear weight wt is computed:

wt = tv (k1 + k2(1− z) + k3 (1 − d)) (10)

where tv is the viewing time, z is the camera distance,
and d is the center distance. Constants k1, k2, and k3
weight the contributions of z and d to wt. The constants
depend on sampling frequency: higher sampling rates
produce smaller ki.
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(a) (b)

Fig. 2. Wear weight examples, low to high colored dark
blue to bright pink: (a) a straight camera shot; (b) effects
of time as a camera rotates about a common view position

Fig. 2 shows examples of wt for different camera
positions. Notice how the wear weight increases for
a sustained view over time (Fig. 2b) versus a single
snapshot (Fig. 2a). Once wt for ei exceeds a minimum
threshold, the assistant adds ti = (ei, 1, β) to T .

β is a constant used for all implicit input events. It is
small enough so it does not immediately impact the pref-
erence model, but large enough so that multiple implicit
events for ei will direct the model to classify ei correctly.
For example, with β = 0.2, suppose a user views ei long
enough for its wt to exceed the interest threshold. If this
happens three times during a visualization session, three
occurrences of (ei, 1, 0.2) are added to T , producing a
certainty u = 0.49 for classi cation c = 1 (see the formula
for u at the end of Section 5.3.1).

5.5.2 Fine Focus Events
Our multidimensional visualizations use geometric
glyphs that vary their visual properties to represent
multiple attribute values. A user can infer approximate
values based on the perception of a glyph’s appearance.
A user can also select an element ei to show ei’s attribute
values in an information balloon. We assume that when
an element is examined at this level of detail, the user
can accurately determine whether the element is inter-
esting. The navigation assistant uses this action as an
opportunity to update its user preference model.
The assistant’s response depends on whether ei is

already an element of interest. If it is, and if the user
does not explicitly remove ei from the set of interesting
elements after examination, the assistant reinforces the
model’s classi cation of ei by adding ti = (ei, 1, β)
to T . If ei is not interesting, the assistant requires ad-
ditional evidence to decide how to proceed. If some
other action within a short time window suggests ei
is interesting, the assistant strengthens ei’s preference
by adding ti = (ei, 1, β) to T . Otherwise the assistant
weakens ei’s preference by adding ti = (ei, 0, β).

5.6 Interest Rules

Interest rules are de ned as a nested list of discrete
attribute value ranges. This is a common format for data

mining algorithms. Rules are generated using association
rule mining on the current set of elements of interest [40],
[41]. First, collections of attribute values that occur to-
gether with a signi cant frequency—frequent itemsets—
are identi ed. Normally there are more frequent itemsets
than a user would want to see. We score interest rules
based on their importance and relevance. Rules are pre-
sented in descending sorted order by score, prioritizing
the rules the user is most likely to nd interesting.
The support σ of a frequent itemset φ is the number

of ei that contain the itemset. We calculate support over
the set of elements of interest, σφ,E , and for the entire
dataset D′, σφ,D′ . If σφ,E is below a minimum threshold,
the interest rule is discarded. Otherwise, a combination
of the support values is used to score the rule. If σφ,E

and σφ,D′ are both high, it is unlikely that φ is a property
of interest. If σφ,E is high and σφ,D′ is low, however, then
φ is useful for distinguishing elements of interest within
D′. Based on this intuition, the score wφ for each φ is:

wφ =
(σφ,E)

2

σφ,D′
(11)

To further reduce the number of frequent itemsets, we
merge itemsets together if the following criteria are met:
1) Both itemsets have a minimum σφ,E .
2) Both itemsets contain the same non-empty attribute
ranges.

3) The difference between non-empty attribute ranges
is no more than 1.

5.7 Initial View Selection

When visualization begins, the assistant initializes the
user model with general preference information using a
set of intelligently chosen views. The goal is to quickly
eliminate large numbers of ei as being potentially in-
teresting. To do this, the assistant needs to determine
preferences for prominent yet distinctive features in D′.
Using k-means, we cluster D′ to form groups of ei

with similar attribute values. Each cluster Ci is mined
to collect its descriptive features fi. Each fi is assigned
a weight wi based on its support in Ci and D′, wi =
(σfi,Ci)

2/σfi,D′ . fi that are common in Ci, but uncom-
mon throughout D′ have higher wi. fi with the largest
wi is selected as the representative feature for Ci.
For each Ci, a view is constructed that contains a large

neighborhood of elements with attribute values fi. The
assistant positions the OpenGL camera to visualize the
neighborhood. A hill-climbing search is used to move
the camera back and forth along a parabolic arc, bringing
elements into view that contain fi, or removing visible
elements that do not contain fi. The view with the
highest support σfi for fi is selected.
The views for each Ci are presented in an array layout

(Fig. 3). The user indicates interest in a view by selecting
it with the mouse. For selected views, incomplete train-
ing examples ti = (fi, 1, 2.0 ∗ σfi) are added to T . For
unselected views, we assume the user is indifferent to
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(a) (b)

(c) (d)

Fig. 3. Initial views: (a) climatology data clustered into
neighborhoods of similar elements; (b) elements colored
to identify cluster membership; (c) initial views of similar
elements; (d) elements colored to identify cluster mem-
bership

its fi. We therefore add ti = (fi, {0, 1}, 2.0 ∗ σfi) to mark
the feature as equally interesting and uninteresting.

6 VISUALIZING CLIMATOLOGY DATA

We investigated the practical abilities of our navigation
assistant using a large climatology dataset collected by
the Intergovernmental Panel on Climate Change (IPCC).
The dataset records monthly 30-year averages for 11
climate attributes. Data is sampled in 1

2

◦ latitude and
longitude steps at every positive elevation throughout
the world. In total, D contains approximately 750,000
data elements and 8.25 million attribute values. After
discretization, D is reduced to 833 distinct ranges.
Data elements ei are represented with 3D “tower”

glyphs that vary their color and texture properties to
visualize ei’s attribute values. We mapped A1 = cloud
coverage→ density, A2 = temperature→ color, A3 = wind
speed → height, A4 = wet day frequency → luminance,
and A5 = temperature range → regularity of placement.
Research in our laboratory has shown that these features
are perceptually salient, both in isolation, and in combi-
nation with one another. The mapping order is based on
attribute importance: important attributes are assigned
to perceptually strong visual features. Interested readers
are directed to [3] for more details.
Fig. 4 displays all data elements for February. This

demonstrates how viewing D′ in its entirety degrades
the effectiveness of the visualization. Although regions
with similar luminances, colors, and densities are visible,
differences in height and regularity are dif cult to see.
Moreover, certain values of one feature—for example,
low glyph densities—can mask other features like lu-
minance and color. A user must zoom in to obtain a

reasonable level of detail, causing large parts of D′ to
move offscreen.
Our example scenarios were based on explorations

climatology colleagues described as part of their work.
For example, attribute correlations are used to: (1) locate
areas with attributes values that may identify features of
interest; (2) visually examine the regions to see whether
the features exist; (3) determine if other attribute values
correlate with the presence of the feature; and (4) modify
the attribute value set to improve feature detection.
Scientists also compare historical conditions to computa-
tional models by checking to see whether the types and
distributions of attribute values from real-world data
match simulated results. We focus here on describing
the theoretical details of our navigation system and
demonstrating how it captures user input to estimate
user interests.

6.1 Broad Critiquing and Fine Focus

We provide two example scenarios to demonstrate iden-
tifying a viewer’s interests from a small number of
interactions. The Bayesian classi er examines each ei to
determine how well it ts interest rules the classi er
has discovered. Spatial groups of interesting elements
are highlighted to allow users to quickly locate them.
The rst example demonstrates how a preference

model is re ned with explicit broad critiquing—adding
or removing ti from T—and implicit ne focus events—
observing a user’s actions after viewing ei’s information
balloon. The goal is to examine areas with dense cloud
coverage and moderate temperature, to see if the other
attributes form patterns within these regions.

Step One. Following an initial view selection, the user
moves to western Canada (Fig. 5a) and explicitly adds
(4, 3, 5, 5, 1) and (4, 3, 5, 4, 2), and rejects (4, 4, 5, 5, 1) and
(3, 3, 5, 3, 3). Elements of interest are outlined in blue,
and navigation graph edges are displayed as red lines
(Fig. 5b). Each addition or removal requires an infor-
mation balloon to query an element’s values—a ne
focus event—followed by an action—an explicit broad
critiquing event. This produces 104 training examples.
The four highest ranked interest rules are shown in
Table 3.

Step Two. Following the navigation graph, the user
shifts to the Paci c Northwest to view a large clus-
ter of elements of interest (Fig. 5c–d). The user adds
(4, 3, 5, 4, 3) and (4, 3, 5, 3, 3), and rejects (4, 4, 5, 4, 3),
(3, 3, 5, 4, 2), and (2, 3, 5, 2, 4). At this point the assistant
begins to identify the correct interest rules (Table 3).
The number of training examples is reduced to 60, and
each of the four top interest rules reference dense cloud
coverage, A1 = 4.

Step Three. The user again follows the navigation graph
to South America to view a large AOI (Fig. 5e). Here,
the user adds (4, 3, 5, 5, 1) and removes (4, 6, 5, 5, 2) and
(4, 5, 5, 4, 3). In response, the preference model removes
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Fig. 4. A perceptual color and texture-based visualization of February’s historical climate patterns throughout the
world

TABLE 3
The top four rules after each step in the broad critiquing and ne focus example

Step Top Four Rules

1 (∗, ∗, ∗, ∗, 2), w = 1.40; (∗, ∗, ∗, {4, 5}, ∗), w = 1.40; (4, ∗, ∗, ∗, ∗), w = 1.18; (∗, ∗, 5, ∗, 2), w = 1.18
2 (4, ∗, ∗, {3, 4, 5}, ∗), w = 3.85; (4, ∗, ∗, ∗, ∗), w = 3.64; (4, ∗, 5, ∗, ∗), w = 3.14; (4, ∗, {4, 5}, ∗, ∗), w = 2.76
3 (4, {2, 3}, 5, ∗, ∗), w = 7.47; (4, {2, 3}, ∗, ∗, ∗), w = 7.47; (4, 3, 5, ∗, ∗), w = 4.52; (4, 3, ∗, ∗, ∗), w = 4.52
4 (4, 3, 5, ∗, ∗), w = 10.02; (4, 3, ∗, ∗, ∗), w = 10.02; (4, 3, 5, 3, ∗), w = 5.30; (4, 3, ∗, ∗, 3), w = 5.30
5 (4, 3, 5, {3, 4, 5}, ∗), w = 29.46; (4, 3, ∗, {3, 4, 5}, ∗), w = 29.46; (4, 3, ∗, ∗, ∗), w = 23.93; (4, 5, 5, ∗, ∗), w = 23.93

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Before and after visualizations, with the navigation graph overview inset in the top-left corner: (a–b) step one;
(c–d) step two; (e–f) step three; (g–h) step four
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Fig. 6. Visualization after tweaking at step ve

the entire AOI (Fig 5f), and reduces the number of
training examples to 25. The top four interest rules now
contain the appropriate attribute values for cloud coverage
and temperature, A1 = 4 and A2 = 3 (Table 3).

Step Four. The user moves to Europe to evaluate another
large AOI (Fig. 5g), adding (4, 3, 5, 3, 1) and (5, 3, 5, 4, 1),
and removing (3, 3, 5, 3, 1) and (4, 2, 4, 3, 2). The AOI
remains stable since most of its elements are of interest
to the user (Fig. 5h). Only 17 training examples remain.

Step Five. The user concludes by exploring Japan (Fig 6),
where elements (4, 1, 5, 3, 3), (4, 5, 5, 3, 1) and (1, 3, 5, 1, 3)
are rejected. This nal tweaking allows the preference
model to identify outliers in South America that were
missed during the user’s initial visit. At this point, more
complex rules are beginning to emerge, for example, a
possible correlation with moderate to high wind speed
and wet day frequency, A3 = {3, 4, 5} and A4 = {3, 4, 5}
(Table 3).

6.2 Implicit Focus and Explicit Critiquing

The second example demonstrates the use of implicit
focus events and explicit critiquing to de ne incomplete
training examples that capture complex preferences. The
goals are to con rm that areas in the Americas exist
with both high wet day frequency and low temperature:
A4 = {4, 5} and A5 = {1, 2}, and to see if other attributes
form patterns within these regions.

Step One. Following an initial view selection, the user
begins exploring in Central America, implicitly reject-
ing (3, 5, 3, 3, 3), (3, 6, 2, 2, 4), and (2, 6, 4, 2, 3). The user
locates and adds interesting element (2, 6, 5, 5, 1). Failing
to nd additional interesting elements, the user critiques
the element he just selected, indicating interests in the
values of wet day frequency and temperature range in a
ne critiquing window (Fig. 7a–b). The top four interest
rules are shown in Table 4. Although the model already
has a good estimate of the user’s preferences. more input

is needed to expand its interest rules.

Step Two. The user moves to the Great Lakes region
(Fig. 7c–d), adding (4, 3, 5, 5, 2), (4, 3, 5, 4, 2), (4, 3, 5, 4, 3),
(4, 2, 5, 4, 3), and (4, 3, 5, 4, 2) by exploring the local
neighborhood. More training examples are implicitly
added to T as the user examines the AOI. The interest
rules show how the new elements change the model
(Table 4). The top rules remain focused on A4 and A5,
but do not (yet) identify a dependency between them.

Step Three. The user shifts to northern Canada to in-
vestigate another AOI (Fig. 7e). Here, the user explicitly
removes (2, 1, 5, 2, 1). The new global graph shows how
this single rejection produces a signi cant change in
the preference model (Fig. 7f). The interest in numerous
elements decreased to a point where the model no longer
highlights them (Table 4). The model is again identifying
a dependency between A4 and A5.

Step Four. The user nishes by visiting the Paci c
Northwest (Fig. 7g–h). He adds (4, 4, 5, 5, 1), (4, 4, 4, 4, 1),
(4, 4, 2, 4, 2), (4, 4, 3, 4, 2), and (3, 4, 2, 4, 2), and removes
(4, 3, 4, 3, 2). After this input, the assistant continues to
report a strong link between high cloud coverage and
low temperature (Table 4). Unlike the previous example,
however, no other attribute patterns are reported, with
{A1, A2, A3} = {∗, ∗, ∗} in all four interest rules.

6.3 Feedback

Although we did not run formal validation studies,
anecdotal feedback from our colleagues was positive,
highlighting the following strengths of interest-driven
visualization:

• Pattern reporting. Select elements of interest, then
have the system report the attribute patterns that
distinguish the selected elements.

• Interesting regions. Automatically identify clusters
of interesting elements from a few exemplars, then
use the system to locate and analyze the clusters.

• Hypothesis testing. De ne a high level hypothesis
with a few explicit rules, identify elements of in-
terest based on the rules, use critiquing to remove
elements from this set that are not interesting, then
look at the rules that remain to see how they differ
from the original hypothesis.

7 CONCLUSIONS
The ability to locate and explore interesting offscreen
data is a critical problem for visualizing large datasets.
These datasets can overwhelm a user’s ability to see the
data at full detail in a single view, causing the user to
become disoriented and unsure about where to look next
in the visualization.
Previously we described a navigation assistant that

addresses these issues by building graphs of elements
of interest and exploring them with intelligent camera
planning [2]. This paper proposes replacing manual
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TABLE 4
The top four rules after each step in the implicit focus and explicit critiquing example

Step Top Four Rules

1 (∗, ∗, ∗, {4, 5}, 1), w = 4.31; (∗, ∗, ∗, ∗, 1), w = 4.26; (4, ∗, ∗, ∗, 1), w = 3.14; (∗, ∗, 5, ∗, 1), w = 3.11
2 (∗, ∗, ∗, ∗, 1), w = 4.39; (∗, ∗, 5, ∗, {1, 2}), w = 4.04; (∗, ∗, ∗, 5, ∗), w = 3.84; (∗, ∗, 5, ∗, 1), w = 3.82
3 (∗, ∗, ∗, 5, {1, 2}), w = 19.58; (∗, ∗, ∗, 5, ∗), w = 14.88; (∗, ∗, ∗, 5, 1), w = 12.37; ({3, 4}, ∗, ∗, 5, ∗), w = 11.99
4 (∗, ∗, ∗, {4, 5}, {1, 2}), w = 7.46; (∗, ∗, ∗, {4, 5}, ∗), w = 4.15; (∗, ∗, ∗, {4, 5}, 1), w = 3.98; (∗, ∗, ∗, 4, {1, 2}), w = 3.65

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Before and after visualizations, with the navigation graph overview inset in the top-left corner: (a) ne focus
critiquing; (b) after critiquing; (c–d) step two; (e–f) step three; (g–h) step four

identi cation of elements of interest with a preference
model that automatically de nes rules to locate the
elements. A boosted Bayesian network classi er is built
to achieve this goal. The BBNC is carefully designed
to consider uncertainty during classi cation. A simple
set of explicit operations allow a user to critique the
preference model. Common actions performed during
visualization implicitly capture additional details about
a user’s preferences. Two example visualization sessions
are described to demonstrate the capabilities of both the
BBNC and the navigation assistant.

7.1 Relevance to Visualization

The ability to capture a user’s interests is applicable to
a wide range of visualization techniques. We believe
our BBNC can be used in numerous situations where
understanding a user’s interests is important. For ex-
ample, a visualization algorithm could lter the data
it renders based on importance. Viewer interest could
serve as a semantic cue to determine whether to display

or hide elements during focus+context zooming. Elements
with strong viewer interest could act as representative
examples, allowing a dataset to be clustered into subsets
of interesting elements with distinguishable patterns in
their attribute values.
Our approach is designed to be exible in the types

of datasets it can analyze. If a viewer’s interests can
be de ned by combinations of the attribute values, our
preference algorithm will be able to extract rules that
identify interesting elements.
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