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Abstract

The cyber threat landscape, controlled by organized crime and nation states, is evolving rapidly towards
evasive, multi-channel attacks, as impressively shown by malicious operations such as GhostNet, Aurora,
Stuxnet, or Night Dragon over the past two years. As threats blend across diverse data channels, their
detection requires scalable distributed monitoring and cross-correlation with a substantial amount of
contextual information. With threats evolving more rapidly, the classical defense lifecycle of post-mortem
detection, analysis, and signature creation becomes less e↵ective.

In this paper, we present a highly-scalable, run-time extensible, and dynamic cybersecurity analytics
platform. It is specifically designed and implemented to deliver generic capabilities as a basis for fu-
ture cybersecurity analytics that e↵ectively detect threats across multiple data channels while recording
relevant context information, and that support automated learning and mining for new and evolving
malware behaviors. Our implementation is based on stream-computing middleware that has proven high
scalability, and that enables cross-correlation and analysis of millions of events per second with millisec-
ond latency. We summarize the lessons we have learned over the past three years of applying stream
computing to monitoring malicious activity across multiple data channels (e.g., DNS, NetFlow, ARP,
DHCP, HTTP) in a production network of about fifteen thousand nodes.

1 Introduction

Modern corporate computer networks have evolved over the past decade from a well-perimeterized layout
to a complex of networks that interconnect multiple physical locations, scattered across the Internet. As
the productivity of organizations increasingly depends on the availability of their networks, the ability to
monitor, analyze, and understand the security impact of network activities has become more important than
ever.

Existing monitoring and analytics systems are built on the assumption that all communications and
threats can be observed as they enter a network at a small number of vantage points [3, 5, 7, 8, 16, 26–33].
This assumption is no longer satisfied in modern networks. Static, well-defined security perimeters have
disappeared due to heterogeneous connectivity methods to the Internet, due to extensive use of tunneling
protocols (such as VPNs), and due to growing numbers and increasing diversity of mobile devices (laptops,
phones, iPads). At the same time, attackers show increased sophistication and skills in how they combine
and evolve existing attacks, in how they employ complex evasive techniques to hide their activities, and
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Figure 1: Stream computing for cybersecurity analytics.

in how they use vulnerable systems as intermediate stepping stones to achieve their goals [9]. In parallel,
attackers make increasing use of data-driven attacks [4] by exploiting application-level flaws (e.g., web browser
vulnerabilities) and targeted social engineering that are invisible to traditional, packet inspection-based
systems [24,25].

In this paper, we present our approach to an extensible, high-performance cybersecurity analytics plat-
form. We turn to the concepts of stream computing as the mechanism for developing and deploying cyber-
security analytics that e�ciently cross-correlate multiple data sources, and that detect complex intrusion
models in near real-time while retaining the benefit of the recent advances in intrusion modeling, analysis,
and performance. Our architecture is able to scale to vast amounts of data in real time, to cross-correlate
and aggregate di↵erent types of data streams at distributed processing nodes, to handle context-sensitive in-
formation centrally while propagating updates to all units, and to incorporate analytics that can be adapted
and deployed on the fly. In Figure 1, we schematically depict an overview of our architecture. The core
concept in our approach is that of event processing in stream computing (e.g., streams of DNS events, HTTP
events, network flows, application logs). Sensors located physically close to the data sources perform an ini-
tial processing of incoming raw data streams and forward relevant feature streams into the core of the system.
An automated orchestration of data and update streams take care that relevant contextual information is
routed to all processing units in a timely manner.

Building on stream-processing middleware, we pursue a novel approach to designing, implementing, and
deploying a monitoring and processing infrastructure for cybersecurity analysis. The key insight in our ap-
proach is the decoupling of the analysis interface from the deployment mechanism. In other words, a security
analyst can write algorithms for analyzing network tra�c without depending on physical network topology
details, whereas a security administrator can deploy the analytics without having to rewrite the algorithms.
Our approach is informed by the lessons we learned over three years from experimenting with stream-
computing-based analytics for cybersecurity threat detection and tra�c monitoring in dynamic network
topologies. The analytics are expressed as algorithms over event streams, and the network is instrumented
by sensor elements that consume, combine, and produce event streams. This conceptual modularization
and separation of processing promotes parallelizable analytics that allow our approach to scale with the
tra�c volume, with the network topology, and with the amount of correlations across tra�c data features,
as event-processing sensors and analytics can be added, moved, and removed in real time. In this paper, we
make the following contributions:

• A novel, flexible architecture for cybersecurity monitoring and analysis in highly-dynamic networks
that enables multi-channel data analysis and correlation.

• A scalable implementation of the architecture on top of a general-purpose stream-processing engine.
We extended the stream-processing engine to locate and combine streams as they become available
from the underlying network.
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• An evaluation that supports the scalability and real-time goals of the architecture based on our expe-
rience with running prototypes, focusing on botnet detection.

2 Background & Requirements

Conventional cybersecurity analytics systems are challenged to detect recent generations of attacks for mul-
tiple reasons. First, many systems monitor only a single or few data sources and are therefore limited in the
breadth of their view of ongoing activities. For example, many intrusion detection systems deployed today
monitor network packet-level interactions at a single vantage point, e.g., the network perimeter [24, 25].
These systems are however oblivious to threats that circumvent the detection, e.g., by entering the network
on a mobile device such as a laptop, a USB stick, via social engineering, or through a VPN tunnel. Moreover,
existing analytics systems have limited ability to e�ciently correlate events across multiple data channels
and measurement points in real time. As a consequence, important context information is unavailable to the
detection and alerting routines. In computer networks, the lifetime of context information is generally short,
and its usefulness degrades rapidly. For example, as the majority of end-user devices become mobile, IP ad-
dress and switching information may be stale only minutes after it became available to an analytics system:
the source IP address of a suspicious network packet loses meaning if it cannot be attributed to a device (or
an end user). Accurate attribution of events by combining historical and real-time information is therefore
critical when analyzing and responding to ongoing threats. This is a particularly di�cult problem when
analyzing event streams from multiple channels that have heterogeneous formats and identifiers. Moreover,
given that attacks may evolve quickly, new detection algorithms must be implemented and deployed rapidly.
Current security analytics systems lack this flexibility and extensibility.

The limitations of existing cybersecurity analytics systems in response to the threat landscape encoun-
tered today, have led us to formulate a set of requirements that the next-generation analytics platform should
satisfy:

Multi-channel data and context. As the techniques to evade detection become more sophisticated, the
ability to combine multiple data channels (or sources) becomes indispensable. The data channels in-
clude, e.g., network packet content, flow-level tra�c information, address-to-device mappings, network
topology information, authentication logs, application logs, or business process dependencies. Such
contextual information is critical when attributing a network packet to a specific originating device,
user, or process.

Event correlation and history. The analysis of di↵erent event channels requires methods to correlate
events across multiple data sources e�ciently and at high data rates. The combination of the channels
enables the construction of the “bigger picture” of activities, which brings an isolated action into the
context of a chain of events. While an attack may “fly under the radar” on each individual channel, the
correlated view across multiple channels can expose the malicious activities and intents. In addition to
the real-time event streams, e�cient access to historical data is required to derive models for behavior-
based anomaly detectors and to perform forensic analysis.

Scalability and timeliness. To cope with a large set of high-rate event channels, an analytics platform
must be able to scale up on the fly. Traditionally, scalability is achieved with two methods: (1)
increased processing capacity and (2) concurrent event processing. To sustain a long-term increase in
data rates, concurrent processing has proven to be more desirable. In particular, an architecture based
on a distributed processing system enables early pre-processing of events at their origin. The results of
the analytics should be provided in near real-time to data consumers. This is necessary so as to allow
for an immediate alert of administrators and timely response to an ongoing threat (e.g., additional
data collection).

Extensibility. As the threat landscape changes, e.g., due to a newly-discovered vulnerability or an evolving
attack, new data channels and algorithms need to be dynamically added to the analytics system.
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Figure 3: Processing data in a stream-based fashion.

Extensibility captures the ease of designing and adding new algorithms as well as the ease of connecting
them to the appropriate data channels, without jeopardizing the normal operation of the system.

2.1 Illustrative Example

In the following example, we illustrate the utility of multiple information sources to detect botnet activity.
We use this example later in this paper to demonstrate the ease of designing and implementing detectors on
top of our platform.

In Figure 2, we schematically depict the typical activities after a botnet infection of an end user machine,
e.g., a laptop. In step 1, the machine is infected by botnet malware which propagates, e.g., through e-mail,
a malicious website, or a worm. Once the malware is activated on the victim’s machine, it announces its
availability to receive orders from an elaborate command and control (C&C) infrastructure. This infras-
tructure typically hides behind a complex domain name update mechanism, which frequently changes the
IP addresses with fluxing domain names [23]. This mechanism allows attackers to conceal their activities
behind a resilient infrastructure. After resolving the IP address of the C&C site in the domain name system
(DNS) in step 2, the malware contacts the C&C site and obtains commands or additional malware code to
be installed (steps 3 and 4). From this point onwards, the victim’s machine is remotely controlled (a bot)
and may be employed to conduct various activities such as transmission of Spam, execution of a scan, or
participation in a distributed denial of service attack (step 5).

2.2 Stream-based Event Processing

Our platform builds on the concepts of stream computing. The concept is similar to a typical database
management system in that both implement middleware for application development. However, stream
processing and database management focus on di↵erent parts of the problem, or at least are solving the
problem in di↵erent ways. While a database management system is a platform for developing applications
to store and process data, stream processing platforms are used to develop on-the-fly, incremental processing
of data as it arrives.

In stream computing, events (called tuples) are processed in real time, filtered, combined, or otherwise
transformed to obtain new event streams that contain information of interest. As depicted schematically in
Figure 3, data processing is organized and programmed in terms of data flows that connect data sources,
sinks, and operators. Operators may be distributed over multiple physical nodes, and produce streams based
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on the consumption of other streams, where a stream is a sequence of records or events. Operators may make
use of external input to enrich a data stream (e.g., annotate or classify data) or receive feedback streams
from other operators. The stream processing infrastructure takes care of the routing and allocation of the
streams across the operators and physical nodes. It comes with a standard set of these operators along with
the ability to create new operators.

Stream computing gives us the power to build cybersecurity analytics that reason about behaviors com-
posed of many events across time and across data sources, in a highly scalable way and with a flexible
programming model. Moving to a new computing model for cybersecurity analytics is, however, non-trivial.
Streaming concepts such as event windows, aggregators, processing elements, stream joining and stream
splitting, do not map directly to programming models known in the security domain. As we will present in
Sections 4 and 5, we have developed an architecture and implemented a prototype that we currently use on
a real network to better understand the benefits of stream computing for cybersecurity analytics.

3 Related Work

In this section we compare our own distributed architecture with existing IDS approaches, and we compare
our own results with those from existing approaches for the detection of botnets and malicious domain names.

3.1 Distributed Intrusion Detection

Distributed IDSes were proposed to combine the alert information from multiple detection sensors placed
around the network and on its hosts. In 1991, DIDS was designed to perform distributed monitoring of a
heterogeneous network of computers and to aggregate user-login audit information [27]. Subsequent work
expanded on this concept by using hierarchical aggregation to improve scalability, as done in GrIDS [29]
and AAFID [5], by using a peer-to-peer system to propagate alerts, as done in the CSM framework [31],
in Crosbie and Spa↵ord’s IDS [7], or by using a combination of hierarchical and P2P alert aggregation,
as done in CARDS [32], in DOMINO [33], and in Aussibal and Gallon’s IDS [3]. In the commercial space,
software such as ArcSight [16] and NetWitness [26] implement a similar IDS architecture based on a two-level
hierarchy (or, more simply, a hub-and-spoke scheme).

Common to all of these architectures are two conceptual tiers, one of data collection and one of alert
correlation. First, host and network activity data is collected from local sensors in network segments of
interest, then possibly aggregated and filtered in the sensor, and then analyzed locally to determine whether
the activity is suspicious. Second, in the case of a suspicious activity, an alert and maybe its supporting
data are sent to a central system that decides whether this alert is relevant, given the data reported from
many other sensors. This two-tier architecture forces a security analyst into an unnatural separation of the
detection task of two distinct components, one for local analysis and one for global analysis.

Our cybersecurity analytics platform avoids this issue by providing a unified one-network abstraction for
designing the detection analytics, as if the complete network is as readily accessible as a local area network.
At deployment time, our analytics are distributed across the network to achieve the desired performance and
scalability. In our experience, this provides a significant simplification of the detection task since it matches
the global view of the attacker (whose goal is to subvert the network in any way to achieve his goal) to the
view of the defender (whose goal is to defend each part of the network).

A second improvement in our cybersecurity analytics platform is the fact that we do not impose any
particular structure on how the analytics actually communicate with each other. Thus the security analyst
can decide whether a strict hierarchy or a loose P2P community or any hybrid in between is preferable.

3.2 Botnet Detection Analytics

Early botnet detection systems relied primarily on static models. For example, Goebel and Holz [10] recognize
IRC-based bots by looking for suspicious IRC nicknames in plaintext tra�c. On a larger scale, Karasaridis et
al. [20] combined network IDS alarm events with network flow information to identify botnets with centralized
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command and control (C&C) in a tier-1 ISP network. BotHunter [12] uses customized IDS rules and event
correlation to recognize specific stages in bot life cycle models from initial infection to attack propagation.
Without reproducing these systems in their entirety, our experimental evaluation in Section 5 shows that
even a basic streams platform can easily handle static models and event correlation at comparable levels of
complexity and tra�c volume.

More recent botnet detection approaches take advantage of machine learning to detect botnet members by
the similarities in their behavior. For example, BotSni↵er [13] uses an IDS to detect both attack/spam tra�c
and potential command/control tra�c, and uses spatial-temporal correlation of network activity to recognize
coordinated bot activity. BotMiner [11] cross-correlates clusters of IDS events with clusters of tra�c in
netflow logs, and TAMD [34] detects bots by aggregating network tra�c with similar communication patterns.
Our streams platform currently implements correlation over a time window that is limited by available (non-
persistent) memory. For long-term correlations, we are implementing a data-at-rest component. This will
form the basis for dynamic models based on machine learning, and will allow us to perform analyses of
communication graphs similar to BotGrep [22] and Graption [19].

3.3 DNS Analytics

Currently, botnets deploy multiple DNS-based techniques to increase their availability: especially popular
are domain flux, where the domain name is generated with a pseudo-random algorithm, and fast flux, where
DNS servers reply with a frequently-changing list of IP addresses. Early fast-flux detection approaches, such
as [15, 23], relied on a limited number DNS response properties such as TTL, multiplicity of IP addresses
and their ASN numbers, and third-party black- and whitelists. Our experiences in Section 5 show that the
streams platform easily supports quick experiments with similar static models.

Later implementations of DNS reputation systems use a more general approach that is based on machine
learning. EXPOSURE [6] and Notos [2] are examples of DNS reputation systems that periodically train a
classifier on labeled DNS tra�c, using lists of known-benign and known-malicious domains. We are currently
implementing the data-at-rest component that will enable analyses over long-term data, including dynamic
modeling approaches based on machine learning.

4 Architecture

The architecture of our cybersecurity analytics platform revolves around the requirements identified earlier
in Section 2. We structure the discussion in this section along two dimensions, analytics programming and
analytics runtime. A security analyst is tasked with developing new detectors, and requires a platform
that provides multi-channel data, correlation capabilities, and both real-time and historical data. A secu-
rity administrator is tasked with deploying the cybersecurity platform, and requires scalability, timeliness,
and distributed-processing capabilities. We note that extensibility is a desirable feature for both analytics
development and analytics execution.

4.1 Analytics Programming

A security analyst develops detectors by dividing the detection task into logical steps, implementing each
step as a component that receives input data and creates output data (alerts or aggregated data for later
processing stages), and then combining the components by connecting output and input interfaces. The
division of the implementation into components allows reuse of these components, such that detectors that
depend on common input data can share the components that produce that data. This natural approach to
implementing analytics that detect network intrusion behavior patterns informed our view of the program-
ming model of such analytics. Fundamentally, a detector running on our cybersecurity analytics platform
consists of data sources that produce time-ordered series of events and of analytic components that process
events to produce other events.
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A data source is simply a (possibly infinite) series of events that are ordered in time. Data sources
include, for example, a router generating Netflow/IPFIX records, a Unix server generating syslog entries,
and a packet-capture tool generating raw network packets. Data sources have unique identifiers and are
homogenous in the type of events they generate. An event is a data item with multiple attributes, a
timestamp, and a data-source identifier. For example, an event of the network flow type may have ten
attributes: a source IP address, a source port number, a destination IP address, a destination port number,
a protocol identifier, a count of incoming octets, a count of outgoing octets, an application protocol identifier,
and, of course, a timestamp and a data-source identifier. The data-source identifier allows the analyst to
discriminate events of the same type from di↵erent data sources.

An analytic component processes events of a particular type and generates other events. Analytic com-
ponents can act as simple filters that discard irrelevant events from their input, they can remember past
events and use them in processing the current event, or they can aggregate events into time-based summaries.
Because events are both the input and the output of an analytic component, components can be chained
together to form long processing pipelines. Furthermore, the analyst has the option to merge events from
multiple sources or multiple analytics and to create processing loops where an analytic component receives
some events from another analytic component that is further downstream.

Data sources and analytic components form a processing graph, whose root nodes are data sources and
interior and leaf nodes are analytic components. Connecting data sources and analytic components to each
other is based on the event types ingested by analytics and produced by sources and analytics. For example,
one can write an analytic component that inspects flow events without explicitly specifying the data sources
for such events. The platform merges events from multiple and flow data sources dynamically as such sources
become available and automatically routes them to the analytic component.

4.2 Analytics Runtime

The runtime environment has to allow both single-event processing (in the style of Snort [25] and related
IDSes) and the processing of large sets of events (e.g., “compute statistical models from 3 years of DNS
tra�c”). To achieve this level of flexibility we introduce two runtime systems that individually each address
one style of analytics and together form a functionally complete infrastructure. The first system is a stream-
processing engine, which performs real-time computation over data streams, and the second system is a
Map-Reduce engine [8], which performs batch computation over stored historical data (i.e., data-at-rest).
Additionally a visualization system retrieves the results from the stream-processing and the Map-Reduce
engines and presents them graphically to an analyst. We illustrate in Figure 4 the main components of the
cybersecurity analytics platform architecture. Not depicted is an event routing layer, which ensures that the
appropriate events are connected to the correct analytic components.

4.2.1 Stream Computing for Real-Time Analytics

A stream-processing engine is a system designed to feed continuous, high-speed data streams through com-
plex data-processing pipelines. Its design makes it particularly suitable for real-time analysis of network
tra�c and host events. A data stream corresponds naturally to events produced by data sources in our
platform. The pipelines in a stream-processing engine are formed by connecting stream operators, which
are grouped into processing elements when running on the same machine. Processing elements serve as the
functional containers both for our data sources and for our analytic components and are distributed across
many machines. Finally, the property-based routing of a stream-processing engine allows the association of
properties with streams and the automatic connection of streams to processing elements based on requested
properties.

In the cybersecurity analytics platform, the interaction between data streams, processing elements, and
property-based routing is straightforward. Initially, event streams are instantiated for raw network tra�c,
e.g., each monitoring point produces one event stream. Processing elements filter, transform, or otherwise
modify these raw event streams to derive event streams with higher information content. Each of these
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Figure 4: The high-level architecture of the cybersecurity analytics platform.

derived streams can be tagged with one or more properties; processing elements can then use these tags to
locate event streams of interest.

4.2.2 Map-Reduce for Data-At-Rest Analytics

The data-at-rest analytics component is work in progress and will complete the overall architecture. Real-
time, low-latency analysis of network tra�c often requires the complementary strength of long-term or
historical analysis. Due to hardware resource limits it is not feasible, for example, to cache in memory and
analyze one year’s worth of HTTP tra�c. The o✏ine cybersecurity-analysis component is being designed
and implemented to process large amounts of stored network data and derive network behavior models
that can then be operated in real time by the stream-processing engine of the platform. The stored data
is accumulated output from streaming analytic components of the cybersecurity analytics platform, thus
forming a feedback loop between the streaming analytics that analyze instantaneous data and summarize it
for o✏ine use, and the o✏ine analytics that extract trends from historical data and that produce behavioral
models to inform the streaming analytics.

4.3 Discussion

We now revisit the requirements set out in Section 2 and discuss how our cybersecurity analytics architecture
fulfills them.

Multi-channel data and context are supported by the capability to connect various data sources
dynamically and to merge related event streams before they are input into an analytic component. Thus
changes to the physical network topology are addressed in real time in the cybersecurity engine.

The event correlation and history requirements are realized by the property-based routing layer and
by the data-at-rest environment underlying the Map-Reduce system. The property-based stream routing
layer acts as a “glue” between analytics, which as a result can easily combine and correlate data to derive
higher-level information.

Scalability and timeliness are respectively achieved by distributing the analytics and by employing
the event-driven stream-processing engine. Analytics are distributed both in the stream-processing system
and in the Map-Reduce system, thus ensuring scalability across the real-time volume of network data sources
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and the massive volume of data-at-rest. The facts that the stream-processing engine is event-driven, and that
it can handle high volumes of streaming data, both guarantee timeliness of identifying suspicious activities
and generating alerts.

Extensibility arises from the ease with which an analyst can connect fine-grained analytics together and
can add analytics that reuse output event streams. The reuse of analytics reduces the overhead at deployment
time and increases operational flexibility (i.e., adding, removing, and updating of analytics are done at the
level of individual analytic components/processing elements), all while the cybersecurity analytics platform
is running.

5 Implementation

We chose IBM InfoSphere Streams [18] as the underlying stream-processing platform. InfoSphere Streams
is a high-performance software platform for developing applications for real-time analysis and processing of
structured and unstructured data. The strength of InfoSphere Streams stems both from its ability to create
distributed and scalable applications and from its well-suited domain-specific Streams Processing Language
(SPL) [14].

As a general platform, InfoSphere Streams has been applied across a wide variety of industries including
government, telecommunications, financial markets, health care, energy and utilities, and manufacturing.
Measurements on quad-core 3.0GHz machines with 256-byte messages and an application with simple an-
alytics have shown that InfoSphere Streams achieves throughput rates of over 400 000 messages per second
on a single machine, and over 1.3 million messages per second on six machines with an average latency lower
than 120µs on Ethernet networks [17].

5.1 Platform Extensions

We extended the InfoSphere Streams platform to make it fit our needs, using the APIs provided by the
platform. First, we created new source operators to process raw network tra�c and convert it directly into
Streams tuples (cf. Section 5.2). This avoids the cost of an extra data conversion step. Second, we created
new operators to expose dynamic property-based streams bindings, which were not exposed in the streams
programming language. By exposing these bindings we are able to allow operators to configure their input
streams based on their location, so that they can consume data streams local to them. Third, we enhanced
the operator placement functionality to provide more flexible run-time control. This extension allows us to
ensure that operators are placed close to the data sources and the data they are processing, and reduces
communication overhead between physical nodes.

5.2 Data-Collection Plane

A common issue with analyzing data from di↵erent sources is the need to bring the data into a normalized
format. In some cases, we use custom operators, implemented in C++, which extend existing InfoSphere
Streams operators. The custom operators decode the raw input events and convert them into tuples. In
other cases, we leverage Streams built-in input methods (such as CSV input) and provide external adapters
for further processing units.

In the following, we describe the data-channel operators we implemented in our system:

Name Service (DNS) records present a valuable source of information about network activity. DNS
messages are ingested into the system using the port mirroring feature of network switches. All network
tra�c to and from DNS servers is mirrored to a network tap system. The packets are captured on the
tap using the packet capturing (PCAP) facility. The PCAP-encapsulated DNS messages are fed into
the streams platform, where IP address and domain name mappings are extracted and converted into
streams tuples.
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Address Resolution Protocol (ARP) messages provide a mapping between MAC addresses and IP ad-
dresses. ARP messages are captured using PCAP and are fed directly into a custom stream operator
for conversion into tuples. We use ARP queries instead of responses; queries are broadcast to everyone
and contain the MAC to IP mapping of the requesting system.

Dynamic Host Configuration Protocol (DHCP) messages, similar to ARP messages, provide a map-
ping between MAC addresses and IP addresses. We use DHCP messages to complement coverage of
the ARP-based mappings of hosts with dynamically assigned IP addresses. The ingest of DHCP is
handled in a manner similar as DNS, using port mirroring and PCAP at the DHCP servers.

Netflow/IPFIX records provide important summary properties of network tra�c flows and are consumed
by multiple methods in our implementation. A modified NFdump collector [1] is used for traditional
Netflow records. Instead of archiving the records, the records are passed into the streams system,
where they are converted to tuples. Syslog-based collection of Netflow records is also supported. In
addition, a custom flow collector is used for Netflow and IPFIX messages to provide full flexibility. The
flow records from this collector are passed into streams, where they are again converted into streams
tuples.

Hypertext Transfer Protocol (HTTP) data is collected by mirroring the tra�c from the desired net-
work link and reassembling the TCP streams. For these streams, a custom stream operator filters and
extracts the relevant HTTP header fields of all web requests and responses, including the URL, content
types, user agent and server version strings, and cookies.

In addition to the channel operators described above, we are experimenting with operators ingesting
non-network centric channels such as syslog and user authentication logs to our platform.

5.3 Analytics Plane

One of the design goals for the platform is to avoid sending large amounts of data to the central location.
This is realized by filtering and aggregating near the data source taps, and by co-locating analytics which do
not require a global view near those data source taps. An example of such reduction is for detecting fluxing
domain names. One of the core inputs to any such analytic is the set of name to IP address mappings. At the
DNS data input, the vast majority of these inputs are duplicates due to names that are looked up frequently
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(for example, www.google.com). The reduction step at the DNS sensor removes these duplicates within a
time window, which significantly reduces the amount of data that is sent to the central fluxing analytic.

Another design goal is ease of adding new functionality. This is achieved by making heavy use of run-
time import and export of data streams. Our operators are small, typically processing one or two imported
streams and exporting one or more result streams. This allows us to replace or augment functionality in the
running system by replacing or adding operators incrementally.

The import and export of data streams also allows us to have the same operator instantiated multiple
times. Through an architected schema for stream properties, we can create processing clusters which import
and export certain streams from the other operators in the same cluster. For example, we use this to
create a cluster of operators on a DNS tap to perform all local processing on that system. All operators in
that DNS cluster can be submitted on to a di↵erent DNS tap and will cluster together on that tap. Any
globally-exported streams from these clusters are available to the central analytics.

5.4 Example: Fluxing Domain Analytics

The purpose of our fluxing domain analytics is to detect queries for domain names that appear to be
mechanically-generated, or that appear to have a large and continuously-evolving IP address footprint. Both
techniques are popular in the deployment of botnet C&C infrastructure.

Figure 5 shows a graphical view of the stream-processing graph. The vertical dashed line separates the
analytics on the left, which are running remotely near the data sources, from the centralized analytics on
the right.

DNS messages flow into the DNS PCAP operator, which separates the queries and responses into di↵erent
output streams. The response messages are streamed to the DNSARecord operator. This operator is re-
sponsible for eliminating duplicate name-to-address mappings within a given time window (we use a 24-hour
window). The name-to-address mappings flow to the central CollectARecords operator which is responsible
for collecting name-to-address mappings from all network taps. Note that we only show one DNS tap here,
but typically there would be multiple. The collected mappings are then annotated with additional features
(such as ASN, country code, etc.) and are then sent to the various fluxing analytics. When an analytic flags
a name as fluxing, it writes the name to one stream and the set of associated IP addresses to another.

The names flow into the DNSWatchNames operator which is receiving the DNS query messages. This
operator runs at the data source. When a client queries a name that has been flagged, the information
is sent to the central ticketing system. Likewise, the IP addresses flow into a NFWatchAddresses operator
which matches NetFlow records against the flagged addresses. Flows matching flagged addresses result in
a message to the ticketing system. The DHCP and ARP operators provide the ticketing system with IP
address-to-MAC address mappings which identify the physical host and its owner. The ticketing system uses
these to coalesce tickets based on the MAC address.

The following example illustrates the DNSWatchNames operator (cf. Figure 5) which imports two streams
from other operators. Note that the code samples leave out the boilerplate code and are simplified for
brevity’s sake. The first is a stream of DNS names which the system is interested in, i.e., names which have
been flagged as fluxing. The second imported stream contains all the queries. Note that the first import is
global, while the second is local to only the queries on the local tap. Localization is not a feature of streams,
but is implemented through designed usage of imports and runtime operator placement.

# DNSWatchNames operator

import stream MonitoredNamesIn(schemaFor(MonitoredNames))

tapping ‘‘stream[class=’MonitoredNames’]’’

import stream QueriedNamesIn(schemaFor(QueriedNames))

tapping ‘‘stream[class=’QueriedName’ & tap=’thisTapID’]’’

export properties [class:‘‘QueryMatchedNames’’]

stream CheckNames(schemaFor(QueryMatchedNames)) :=

Match(QueriedNamesIn; MonitoredNamesIn) [ JoinKey1: RRName; JoinKey2: domainName ] {}
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The output of this operator can be imported by another operator simply by tapping stream[class=

’QueryMatchedNames’]. Connections between operators are managed by the Streams platform, and the
order of operator submissions does not matter. To simplify the coding, as well as provide some compile-time
checking, we leverage the M4 macro utility [21]. The example above simplifies to the code shown next.

# DNSWatchNames operator, simplified

Import_MonitoredNames_As(MonitoredNamesIn)

Configure_Import_QueriedNames_As(QueriedNamesIn)

Export_QueryMatchedNames_From(CheckNames) :=

Match(QueriedNamesIn; MonitoredNamesIn) [ JoinKey1: RRName; JoinKey2: domainName ] {}

As a more concrete example, the following shows a simple ASN-based detector for fluxing names (cf.
Figure 5). Any domain with IP addresses in more than five ASNs will be emitted to an exported stream of
monitored names, which in turn is imported in the code sample above.

# Fluxing analytics operator

Import_DNSARecords_As(ARecordsIn)

stream ARecordAddASN(domainName: String, address: String, ASN: Integer) :=

Functor(ARecordsIn)[] { ASN := getASN(address) }

stream ARecordCounts(domainName: String, addresses: StringList,

uniqueASNs: IntegerList, ASNcount: Integer) :=

Collect(ARecordAddASN)

[GroupBy: domainName;Emit:60;Expire:604800]

{ domainName := ~OneOf(domainName),

addresses := ~Unique(address),

uniqueASNs := ~Unique(ASN),

ASNcount := ~UniqCount(ASN)}

Export_MonitoredNames_From(FluxingName)

Export_MonitoredAddresses_From(FluxAddr) :=

Functor(ARecordCounts) [ ASNcount > 5 ] {}

We can easily expand the system by creating new operators that tap into existing streams. Note that the
previous code sample is actually exporting two data streams from the final operator (i.e., ARecordAddASN
and ARecordCounts). One stream has the names, while the other has the addresses. We can create a new
analytic that reports names that have matching addresses other than the reported name:

# Sample new operator

Import_MonitoredAddresses_As(MonitoredAddrIn)

Import_DNSARecords_As(ARecordsIn)

stream CandidateMatches(domainName: String, address: String, flaggedName: String) :=

Match(ARecordsIn; MonitoredAddrIn)

[ JoinKey1: domainName; JoinKey2: domainName ]

{ domainName := $1.domainName, flaggedName := $2.domainName }

Export_OverlapAddress_From(CandidateMatches) :=

Functor(CandidateMatches) [ domainName != flaggedName ] {}

When we submit this operator into the system, the streams infrastructure will automatically connect it
to the appropriate streams of data, and begin processing.
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5.5 User Interface

We implemented a web-based user interface that runs on top of the analytics plane, and that enables analysts
and administrators to interact with the cybersecurity platform. The front-end user interface, implemented
in JavaScript, connects to a back-end asynchronous communication infrastructure that passes requests to
the centralized analytics and the remote analytics.

In the current version of the platform, we implemented a number of interactive modules for event moni-
toring, context-sensitive drill-down on DNS and network flow data, geographic mapping of communication
peers, and ticket handling. Moreover, an additional set of modules enable administrators to monitor the
platform performance in detail, including the performance (e.g., throughput, tuple rates) of individual data
streams as well as the performance of the physical machines in the distributed setup.

5.6 Discussion

Our platform is able to scale to a large number of data sources, while correlating over multiple di↵erent types
of data. By performing discovery on live streams of data, our platform minimizes the delay from the time
that an issue is discovered (such as a malicious fluxing domain name) to the time that additional monitoring
is turned on for clients a↵ected by that issue.

As the examples illustrate, we prefer to implement the analytics with a large number of small operators,
instead of using one large operator to implement everything related to, say, DNS. We find that small,
single-function, operators take better advantage of the dynamic and extensible aspects of the system. New
functionality can be added incrementally to the running system simply by submitting operators that leverage
output streams of existing operators. Improved analytics can be leveraged by starting the operator with the
enhancements and stopping the old one, without impacting the rest of the system.

6 Performance Evaluation

In this section, we evaluate the performance of the cybersecurity engine described in Section 5. We describe
the data sets and testbed first, then the results of a performance evaluation.

6.1 Data Set and Evaluation Testbed

The evaluation testbed includes a medium-sized corporate production network comprising about twelve
thousand nodes, including server and end-user work stations, laptops, and mobile devices. In our current
deployment the central analytics are hosted on two blade servers (each with two 2.5GHz dual-core CPUs and
40GB main memory) that are connected over an Ethernet backplane. The remote analytics run on server
systems (each with two 2GHz quad-core CPUs and 24GB main memory) and are deployed in proximity to
the data sources.

In Table 1 we list the input rates that the taps deployed in our testbed observe on average per day. We
distinguish the byte rate and the event rate of the incoming data stream. In the DNS streams we observe an
average of 340 000 unique fully qualified names every day with an average of about 110 000 unique primary-
level domains. Our current deployment captures network flows originating from the border routers of the
network, observing all tra�c that enters and leaves the network. The testbed has been continuously expanded
over the last three years to incorporate new data sources.

6.2 Performance Results

We evaluated the performance of the implementation in two ways in our testbed. To understand the perfor-
mance limits of the analytics, we injected events from an archive collected over the last years and measured
the throughput of the streams along the operators. Separate from this stress test, we constantly measured
the performance of the system under the real load observed in our testbed. In this section, we present the
results of both evaluations.
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Tap Ingress Rate Ingress Event Rate
(in MB) (in thousands)

DNS tap 1 19,300 (� = 4,755) 122,648 (� = 30,221)
DNS tap 2 349 (� = 123) 1,860 (� = 652)
Flow tap 1 1,468 (� = 657) 12,123 (� = 5,424)
Flow tap 2 1,788 (� = 927) 14,764 (� = 7,649)
DHCP tap 1 31 (� = 22) 93 (� = 65)
DHCP tap 2 54 (� = 38) 163 (� = 114)
HTTP tap 1 3,649 (� = 1,896) 6,473 (� = 3,363)
ARP tap 1 5 (� = 1) 87 (� = 18)
ARP tap 2 31 (� = 12) 557 (� = 219)

Table 1: Input data rates (average and standard deviation per day) for the remote analytics in our testbed.
Tap 1 captures Intranet tra�c, tap 2 captures DMZ tra�c.

Aggregated Data Stream Egress Rate Egress Event Rate
(in MB) (in thousands)

DNS (tap 1+tap 2) 84 (� = 19) 1,020 (� = 220)
Flow (tap 1+tap 2) 367 (� = 193) 3,369 (� = 1,969)
DHCP+ARP (tap 1+tap 2) 150 (� = 41) 1,684 (� = 465)

Table 2: Aggregated data rates (per day) between remote analytics and centralized analytics. “Egress” refers
to event streams from taps to centralized analytics.

DNS analytics stress test. A stream of raw DNS messages (request and response) were sent over the
network to a single blade. The tap read the messages from the wire and injected them into the platform.
The operators deployed in the evaluation included all analytical steps described in Section 5.4. We measured
peak throughput rates as high as 50 000 to 70 000 DNS messages a second on a single blade. To process
more DNS tra�c, additional blades may be operated in parallel as performance scales linearly due to the
inherent parallelism of the stream-computing programming model. In the production network, we did not
observe message rates exceeding 6 550 DNS messages per second.

Filtering and data reduction. By filtering data near the source, our remote analytics significantly
reduced the amount of tra�c which was routed into the central analytics (cf. Section 5.3). In Table 2, we
report the event and byte rates originating from the remote analytics measured in our testbed. Monitoring
of the network links at the central analytics during peak hours indicates an inbound data rate of 96 kB/s
and an outbound data rate (back to remote analytics) of 23 kB/s. These rates include the actual tuple data,
administrative messages for the middleware, as well as any encapsulation overhead. During the same time
period, the remote analytics were processing an aggregate 34 MB/s of incoming data.

While the data reduction is significant, one could envision that a large number of data sources would
still result in a significant amount of tra�c destined for the central analytics. In such a scenario, multiple
“localized central” analytics could be deployed that each handle a subset of the data source outputs, reducing
that data before forwarding it to the central analytics.

CPU and memory utilization. We monitored CPU and memory utilization at the central analytics
site. With the data rates as shown in Table 2, the aggregate memory used by the central analytics amounted
to 1.1GB. About 50% of this memory was used by the DNS A-record aggregator CollectARecords, while
the rest was evenly distributed across other jobs. The CPU used by the central analytics averaged 1 520
seconds of CPU per day. Again, the DNS A-record aggregator was responsible for half of the total whereas
the rest was spread across the other jobs.
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7 Lessons Learned

In this section, we summarize the most relevant lessons we learned while designing, implementing, and
deploying our cybersecurity analytics platform on top of the stream-processing engine.

1. Stream processing suits cybersecurity analytics.
The natural flow of events from network and system activity is modeled as streams of tuples that
travel through the analytics graph. Stream processing supports easy incremental deployment of new
analytics that tap into existing streams. This frees the analyst from having to worry about how to get
data and allows him to focus on the detection logic.

The native concurrency in stream processing leads to a highly scalable analytics solution. Furthermore,
the distribution of analytics makes up for the often long distances between data sources (taps) and
centralized global analytics, allowing us to filter and aggregate data on or close to the taps. The
self-managing middleware abstracts from physical distribution of data sources and processing nodes,
further simplifying the task of the analyst.

2. Window size matters in real-time analytics.
The amount of history kept across the processing of events (often expressed as the size of the “time
window”) has significant performance implications. High-speed streaming analytics require a large
amount of state to achieve their optimal detection rate. This state information must be kept in
memory to maintain adequate performance levels. A large amount of memory may be required when
multiple analytics share, due to data locality, the same physical system.

3. Real-time analysis is necessary, yet not su�cient.
Irrespective of how much data real-time analytics can keep with their state, an advanced attacker might
be able to avoid detection by being patient enough to deploy their attack over many months or even
years. It is thus necessary to complement real-time analytics based on stream processing with o✏ine
analytics based on massively scalable batch processing (e.g., Map-Reduce). O✏ine analytics can then
correlate data from many di↵erent time frames and build models of expected, benign behavior and
of anomalous, malicious behavior. These models in turn can be deployed as real-time analytics, thus
completing the feedback loop between real-time and o✏ine.

4. Distributed processing needs security hardening.
Distributed processing for cybersecurity applications, whether based on stream processing or on Map-
Reduce, requires management beyond what is normally provided by the middleware. Monitoring and
management of CPU, memory, and disk utilization, restarting down systems, etc., are needed in order
to keep the system functioning as a whole. Furthermore, as the middleware is now part of the trusted
computing base of the cybersecurity analytics platform, it has to be enhanced to withstand and recover
from direct (denial-of-service) and algorithmic attacks.

8 Future Directions

We are currently extending the described streaming analytics with massive-scale data-at-rest analytics for
three reasons. First, we wish to overcome the limitations of real-time processing in detecting attacks that
stretch their behavior over extensive time windows. Second, data-at-rest will enable the application of
automatic forensic capabilities to attacks long after they occur, and the estimation of the impact, progression,
and motives of attackers. Third, we aim to extract dynamically evolving malicious-behavior models based on
data mining and machine learning, models which can be automatically translated into streaming analytics to
improve coverage of future detection. Another focus is on integrating privacy-aware algorithms that preserve
the privacy of users with minimal impact on detection accuracy.
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9 Conclusions

We have presented an extensible, high-performance analytics platform based on a general-purpose real-time
streams processing engine. The first benefit of our enhanced engine is a separation of analytics development
from deployment. This frees analysts from concerns about physical network topologies, and allows admin-
istrators to deploy analytics without concerns about stream-processing connection topologies. Second, our
unified network view is a major improvement over conventional distributed IDSes that separate local alert
generation from global event correlation. Other major benefits of general-purpose stream processing are
incremental analytics deployment and reusability.

We have shown that the platform is scalable and that it can correlate vast amounts of information
across multiple channels in real time. We evaluated our approach in the context of botnet detection, and
showed that a basic streams processing system can easily implement the complexity and performance levels
of existing systems that are based on static analytics. We are confident that the data-at-rest component will
provide the power that is needed for the next step, adaptive analytics that capture the ever-changing nature
of cyber threats.
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