
Is Certified Software Actually Correct?
(What does “certified” mean?)
(What does “correct” mean?)

Brian Larson

May 1, 2011

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 1 / 25

Certificate

A certificate is a document attesting to some fact(s).

What would a certificate for software attest to?

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 2 / 25

Must Distinguish Validation from Verification

Verification says merely that software meets its specification.

Validation says that the specification meets requirements, and that
the requirements meet the design intent.

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 3 / 25

Validation Will Always Be Human

Validation will always be inherently subjective.

Formal methods can help make requirements and specifications
complete and unambiguous.

Will, intent, and need are inherently human.

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 4 / 25

Regulatory Approval vs. Certification

FAA "certifies" aircraft, engines, and propellers. Only whole
systems; no composition of certified subsystems. Certificates
attest to airworthiness.

FDA "approves" medical devices. Although demanding evidence
of safety and efficacy for approval, the FDA certifies nothing.

NRC (operating license for NPPs individually? designs?
significant upgrades?)

(If some kind of certification could limit liability of medical device makers, they will
embrace certification enthusiastically.)

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 5 / 25

Certifying Verification

Verification can be made precise.

Software certificates attest to conformance to specification.

Formal methods can give higher confidence than testing alone.

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 6 / 25

Verification is Objective; Validation is Subjective

Verification can be objective; validation will always be inherently
subjective.

Validation is crucial, of course.

Validation ≡ Systems Engineering

See INCOSE Handbook for state-of-practice systems
engineering.

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 7 / 25

Zhong Shao’s Paper

Certified Software, Zhong Shao, in Communication of the ACM,
December 2010

“Some think that this paper misses the essential difference between
correctness and certification."

Shao specifically limits software certification to verification.

Shao’s certificates attest to conformance to specification (correctness)
not fitness for purpose, safety, or efficacy.

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 8 / 25

Proof ≡ Truth

Since proofs are incontrovertible mathematical truths,
once a software component is certified, its trustworthiness
(with respect to its specification) would presumably last for
eternity.1

1p.61
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 9 / 25

Nobody Knows How Today’s Software Works

For most of today’s software, especially low-level forms
like operating systems, nobody knows precisely when, how,
and why they actually work. They lack rigorous formal
specifications and were developed mostly by large teams of
developers using programming languages and libraries with
imprecise semantics.2

2p. 56
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 10 / 25

Lack of Metrics

Metrics are still lacking for measuring software
dependability, making it difficult to compare different
techniques and build steady progress in the field.
Dependability often includes attributes like reliability,
safety, availability, and security.
A program with one bug is not necessarily 10 times more
secure than a program with 10 bugs.
A system’s reliability depends on its formal specification,
which is often nonexistent.3

3p.57
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 11 / 25

Dependability

Worse, software dependability is often confused with the
dependability of the software’s execution environment, which
consists of not just hardware devices but also human
operators and the physical world.

Since the dependability of the execution environment is
often beyond human control, many people view software as a
complex biological system, rather than as a rigorous
mathematical entity.4

4p.57
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 12 / 25

System Software

A software application’s dependability also relies on the
dependability of its underlying system software, including OS
kernel, device driver, hypervisor, garbage collector, and
compiler.

These low-level programs are often profoundly complex
and bug-prone, but little has been done to make them truly
dependable.5

5p.57
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 13 / 25

Last-Mile Problem

Most software-verification research concentrates on
high-level models rather than on actual programsÑvaluable
for finding bugs but leaving a big gap that must be closed
before meaningful dependability claims can be made about
actual software.

Failure to reason about actual code also has serious
implications for maintainability; for example, it is difficult for
programmers to pinpoint the source and a fix when a new bug
is identified and ensure that subsequent updates (to actual
code) will not break the code’s high-level model. 6

Model-checking just checks models–not the actual program.

Compilers and run-time services need verification to same level as
application code.

Version control to ensure code in field is code verified.
6p.58

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 14 / 25

Certify Verification of Executable Machine Code

With a formal specification stating its desirable behavior,
we can (at least in theory) rigorously “certify" that the
machine executable behaves as expected. 7

7p.58
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 15 / 25

Shao Certifies Limited Dependability Claims

8

8p.59
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 16 / 25

Mechanized Metalogic

Much of the current work on certified software is carried
out in the Coq proof assistant. Coq itself provides a rich
higher-order logic with powerful inductive definitions, both
crucial to writing modular proofs and expressive
specifications. 9

9p.60
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 17 / 25

Not All Software Needs Highest Confidence

When dependability is not an issue, the software can be
used as is, assuming proper isolation from the rest of the
system; when programmers really care about dependability,
they must provide the formal machine-checkable proof.

[B]uilding certified software does not mean that
programmers must verify the correctness of every component
or algorithm used in its code; for example, in micro-kernels or
virtual-machine monitors, it is often possible for programmers
to verify a small set of components that in turn perform
run-time enforcement of security properties on other
components. 10

For medical devices, SOUP for TCP/IP stack and software radio,
conventional verification (testing) of history and paramter setting, proof
for therapy decisions (1% of code in can).

10p.61
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 18 / 25

Automation and Proof Engineering

The end goal of certified software is a machine-checkable
dependability metric for high-assurance software systems.

Certified software advocates the use of an expressive
metalogic to capture deep invariants and support modular
verification of arbitrary machine-code components.

Machine-checkable proofs are necessary for allowing third
parties to quickly establish that a software system indeed
satisfies a desirable dependability claim.

Automated proof construction is extremely important and
desirable but should be done only without violating the overall
integrity and expressiveness of the underlying verification
system.11

11p.65
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 19 / 25

SMT Solvers only First-Order

Existing automated theorem provers and Satisfiability
Modulo Theories solvers work on only first-order logic, but
this limited functionality conflicts with the rich metalogic (often
making heavy use of quantifiers) required for modular
verification of low-level software.12

12p.65
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 20 / 25

Higher-Order Theorem Provers and Proof Assistants
are Painful

Proof tactics in existing proof assistants (such as Coq)
must be written in a different “untyped" language, making it
painful to develop large-scale proofs.13

13p.65
Brian Larson () Is Certified Software Actually Correct? May 1, 2011 21 / 25

Current Proof Tools

either too weak (SMT), or too hard to use (Coq)

reason about a model–not the program itself

can’t prove temporal behavior with respect to an environment
needed by cyber-physical systems.

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 22 / 25

Summary

Software Certificates Attest to Verification, NOT Validation
(validation is always system-level; software conformance to specification is one
small part of overall fitness of purpose)

Software Certificates Vary in Strength
(type-checked, tested, SAVI-integrable, model-checked,
total-correctness-proved)

Verification Power in Proportion to Dependability Need
(SOUP for TCP/IP stack, automated regression testing for history and
programming, sampled and compared with model simulation, correctness proofs
for therapy decisions)

Prove (only) Crucial Dependability Properties of Critical Code
(cost-effective to ensure critical fraction of code is defect-free)

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 23 / 25

Is Certified Software Actually Correct?

Not necessarily.

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 24 / 25

Can Systems Using Incorrect Software be
Dependable, Safe, Secure, and Effective?

Yes!

A bug in the SOUP need not spoil the whole meal.

Brian Larson () Is Certified Software Actually Correct? May 1, 2011 25 / 25

	Certified Software, Zhong Shao, CACM Dec. 2010

