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background

Formal Methods are increasingly used to produce
high-assurance software

FM tools are themselves complex and so error-prone

Agencies such as the FAA require them to be qualified
(DO-330, DO-333)

FM tools often rely on external, third-party FM tools
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research questions

1. How to reduce the burden of FM tool qualification?

2. How to incorporate untrusted FM tools in highly trusted
ones?

A possible answer: Proof-producing FM tools
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traditional qualification: an
example



alt-ergo

SMT Solver

Université Paris-Sud, INRIA, CNRS, OCamlPro
∙ Project leaders: Sylvain Conchon, Évelyne Contejean
∙ Current developer: Mohamed Iguernlala
∙ Contributors: Stéphane Lescuyer, Alain Mebsout

(Almost) Purely functional, written in OCaml

Fairly small: ∼ 10kloc

Implementation close to formal description

Correctness proof of core in Coq
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alt-ergo: features

Typed polymorphic first-order logic

Theories:

∙ equality over uninterpreted symbols (EUF)
∙ linear arithmetic (on Q LRA, and Z LIA)
∙ non-linear arithmetic (on Q NRA, and Z NIA)
∙ Records (and pairs)
∙ Bit Vectors (concat and extract)
∙ Associative/Commutative symbols (AC)
∙ Functional arrays
∙ Enumerated datatypes
∙ Quantifiers (∀, ∃)
∙ …
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alt-ergo: qualification

Context:

∙ Airbus, for use on A350
∙ Verification of C code (pre-flight inspection) with Frama-C

What was qualified:

∙ Version 0.94
∙ Propositional engine
∙ Equality modulo AC engine
∙ Polymorphic types component
∙ Quantifiers compoment
∙ Arithmetic sub-solver (real and integer)
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alt-ergo: qualification package (inria)

Rigorous description of qualified modules (65 pp. French
text + inference rules)

Each section gives precise functional tool requirements (TR)

Version of Alt-Ergo with traces for TRs

Disable all unqualified features

∼ 600 tests for the TRs (correctness and coverage)
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lessons from alt-ergo’s qualification

Challenges

Non-trivial process

A few (2-3) man months

Identifying inference rules and relevant TRs to cover whole
tool

Needs to be redone for any future versions

Collateral Benefits

Allowed to completely review (and sometimes improve) code
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smt solvers

Now a fundamental component of several FM techniques
and tools

Implement complex and sophisticated algorithms

The major ones are rather large
(100-250K lines of optimized C/C++ code)

Bugs are still discovered in mature solvers

Traditional qualification process is infeasible

High-assurance of other tools (e.g., Isabelle, Coq) is
compromised when they use them
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how to trust smt solver answers?

Require an externally-checkable certificate of correctness:

sat answer −→ satisfying assignment
unsat answer −→ proof of unsatisfiability

Formal certificates

∙ increase trust in the results produced by the solver
∙ shift focus of trust to a much simpler certificate checker
∙ can supplement traditional qualification processes
∙ partially address objectives in DO-330 (6.1.3.1.i, …)
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proof-producing smt solvers



cvc4

Major SMT solver
∙ Project leaders: Clark Barrett (NYU), Cesare Tinelli (Iowa)
∙ Main developers: Kshitij Bansal, Morgan Deters, Liana Hadarean, Dejan

Jovanović, Tim King, Tianyi Liang, Andrew Reynolds

Rich set of theories and functionality

Started large instrumentation effort to make it
proof-producing

Effort underway, with many components now
proof-producing

Proofs in LFSC format
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cvc4 proof infrastructure

  

PropEnginePropEngine

toCNF

CDCL SAT

TheoryEngineTheoryEngine

core bit-vectors
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uf

propagation
conflict
lemma
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lfsc checker

Proof checker generator
∙ Project leaders: Aaron Stump (Iowa), Cesare Tinelli (Iowa)
∙ Main developers: Andrew Reynolds

Based on Edinburgh Logical Framework (LF)

Geared toward SMT solvers

Takes both a proof system and a proof object in it

Efficient (side conditions compiled)

Small (3.5kloc C++) and fast
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lfsc language

Extension of LF with computational side-conditions

Support for dependent types

e.g. Πx:Int. BV[x]

Proof rules are typing declarations

t1 = t2 t2 = t3
t1 = t3

eq_trans
Πt1:term. t2:term. t3:term.

Πu1:holds[t1 = t2].
Πu2:holds[t2 = t3]. holds[t1 = t3]
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lfsc syntax example: types and function symbols

Term : Sort → Type
BV : Int → Type
and : Πn:Int. Term[BV[n]] → Term[BV[n]] → Term[BV[n]]

(declare Term (! t Sort Type))

(declare BV (! n Int Sort))

(declare and
(! n Int
(! x (Term (BV n))
(! y (Term (BV n))

(Term (BV n))))))
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lfsc syntax example: rules

t1 = t2 t2 = t3
t1 = t3

eq_trans

(declare eq_trans
(! s Sort
(! t1 (Term s)
(! t2 (Term s)
(! t3 (Term s)
(! u1 (Holds (= t1 t2))
(! u2 (Holds (= t2 t3))

(Holds (= t1 t3))))))))
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lfsc syntax example: side conditions

concat : Πm,n:int. Term[BV[n]] → Term[BV[n]] → Term[BV[n+m]]

(declare concat
(! m int
(! n int
(! p int
(! t1 (Term (BV m))
(! t2 (Term (BV n)) (! s (^ (plus m n) p))

(Term (BV p)))))))))
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lfsc syntax example: rules with side-conditions

v ∨ l1 ∨ . . . ∨ ln ¬v ∨ l′1 ∨ . . . ∨ l′n
l1 ∨ . . . ∨ ln ∨ l′1 ∨ . . . ∨ l′n

Res

(declare Res
(! c1 Clause
(! c2 Clause
(! c3 Clause
(! v Var
(! u1 (Holds c1)
(! u2 (Holds c2)
(! s (^ (resolve c1 c2 v) c3))

(Holds c3))))))))
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lfsc challenges

How to minimize

∙ instrumentation effort for proof generation
∙ proof-generation overhead
∙ proof-object size
∙ proof-checking time
∙ trusted core

(proof checker code + proof rules + side condition code)

How to import LFSC proofs in tools such as interactive theorem
provers
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importing lfsc proofs in coq

Possible approaches:

1. Write a dedicated certified checker in Coq

2. Produce a Coq proof script from LFSC proofs

3. Define an embedding of LFSC into Coq

1 → 3 More ambitious, less efficient
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importing lfsc proofs in coq

Our current approaches:

1. Extend dedicated certified checker SMTCoq (by C. Keller)

Challenges

∙ Convert LFSC proofs to SMTCoq proofs
∙ Add to SMTCoq support for LFSC side conditions
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certifying model checkers



model checkers

Model checkers are major class of formal verification tools

They implement complex and sophisticated algorithms

Many rely on external reasoners such as SAT/SMT solvers

Traditional qualification process is expensive

Proof-certificates help here too
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trusting a model checker

1. Trusted Logic The logics used by the model checker are trusted.

2. Valid Model The model and properties accurately depict the system
under scrutiny in the semantic given by the logic of the
model checker.

3. Correct Translation The input system is correctly translated to its internal rep-
resentation.

4. Correct Algorithms The model checking algorithms are sound for the models
and properties expressible in the supported logic.

5. Correct Implementation The model checking algorithms are correctly imple-
mented.

6. Trusted Components
and Libraries

If the model checker makes use of external libraries, their
implementation is trusted, and if the model checker uses
external tools, they are trusted to be correct.

7. Correct Compilation The model checker and its components are correctly com-
piled to executable machine code.

8. Correct Execution The machine correctly runs the executable.

9. Trusted IO The parsing and output of the model checker are trusted
and interpreted correctly. 26
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kind 2

SMT-based safety checker for reactive systems
∙ Project leader: Cesare Tinelli
∙ Main developers: Adrien Champion, Alain Mebsout, Christoph Sticksel

Multiple and concurrent verification engines

Supports modular / compositional reasoning

Uses SMT solvers CVC4 and Z3

Models specified in an extension of Lustre language
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kind 2 system overview

Kind 2

BMC k-induction PDR Inv Gen

SMT SMT SMT SMT

Invariant 
manager

Lustre
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proved correct vs certificate producing

Model checkers answers: yes / no
∙ no −→ counterexample to safety property P of system S
∙ yes −→ ?

Prove once and for all that

∀S,P. MC(S,P) = yes =⇒ S |= □P

A formal proof of correctness of a model checker like Kind 2
is a hard task
∙ use of large external lib/tools like SMT solvers
∙ complex and heavily optimized
∙ concurrent architecture
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proved correct vs certificate producing

Model checkers answers: yes / no
∙ no −→ counterexample to safety property P of system S
∙ yes −→ ?

When the answer is yes, have the model checker return each
run, a certificate C(S,P) such that

C(S,P) valid =⇒ S |= □P

Works if the certificate is small and easily verifiable
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certificates in kind 2

Kind 2
core

Lustre 
input file

smt2

C(S, P )

S, P

CVC4LFSC
proof

LFSC 
theories 

signatures

LFSC
(k-)induction 

signature

LFSC
Checker

TransSys

S = (I, T,Q)

P

Property
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certificates in kind 2

C(S,P) = (k, ϕ)

where ϕ is k-inductive for S and entails the property P

∙ only engine = k-induction −→ (k,P)

∙ only engine = PDR −→ (1,P ∧ φ)

∙ works for (k-inductive) automatically generated invariants

(max(k1, . . . , kn, kϕ), I1 ∧ . . . ∧ In ∧ ϕ)

∙ simplification through a posteriori induction check with
unsat cores extraction and fixpoint
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preliminary results

Benchmark Kind 2
time k size gen time check

(CVC 4)

simple_counter.lus 0.16 1 2 0.02 0.01
add_two.lus 0.15 1 1 0.02 0.01
dfa.lus 0.15 1 4 0.03 0.02
inv_gen.lus 0.21 1 2 0.03 0.01
triangle_peg_impossible.lus 7.47 9 1 20.17 5.70
bridge_and_torch.lus 3.50 3 23 0.31 0.21
pilot_flying.lus 13.96 1 50 0.20 0.22
pid.lus 8.73 24 1 4.69 3.64
microwave.kind.lus 2.32 2 23 0.21 0.32
active-standby.kind.lus 7.88 1 20 0.44 0.84

WBS.lus 806 26 91 866 2036 (Z3)

Leader_Selection.lus 1247 41 31 1026 4049 (Z3)

Pilot_Flying.lus 3342 52 83 5581 10628 (Z3)

times in s
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frontend certificates in kind 2
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frontend certificates in kind 2 (cont.)

Translation from one formalism to another are sources of error

In Kind 2,

∙ input models and properties are encoded as SMT formulas
∙ several intermediate representations
∙ many simplifications

(slicing, path compression, encodings, …)

How to trust the translation from Lustre to SMT ?
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frontend certificates in kind 2: a comparative approach

Use two different front ends
∙ One from Kind 2
∙ The other from a comparable tool: JKind (from Rockwell-Collins)

Compare their resulting transition systems and properties

Prove the two systems behaviorially equivalent

Produce a proof certificate

Check the proof certificate as usual
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frontend certificates in kind 2: a comparative approach

Previous certification chain for Kind 2

Lustre 
input file

JKind
frontend

Kind 2
frontend S1 = (I1, T1)

P1

X1 = X in

1 ]Xout

1

S2 = (I2, T2)

X2 = X in

2 ]Xout

2

P2

X
obs

= X1 ]X2

S
obs

P
obs

(X
obs

) = X1 ⇠ X2

Frontend certificate (FEC)

Kind 2
core

Native input

smt2

C(S
obs

, P
obs

)

SMT2 Frontend
certificate certificate

(FECC)

CVC4 LFSC+
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frontend certificates in kind 2: a comparative approach

FEC: Frontend Certificate

∙ Observational equivalence between internal transition
systems of

Kind 2: S1 = (x̄1ȳ1, I1, T1)

JKind: S2 = (x̄2ȳ2, I2, T2)

FECC: Frontend Certificate Certificate

∙ SMT2 certificate obtained from the execution of Kind 2 on
the FEC Sobs
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preliminary results

Benchmark Kind 2
time

FEC FECC

gen size MC k gen k size check (Z3)

simple_counter.lus 0.16 0.73 2 0.16 1 0.02 1 4 0.01

add_two.lus 0.15 0.74 4 0.18 1 0.02 1 4 0.01

dfa.lus 0.16 0.73 4 0.17 1 0.02 1 4 0.01

inv_gen.lus 0.22 0.72 3 0.16 1 0.02 1 4 0.01

triangle_peg_im … 7.90 1.08 158 1.53 1 0.42 1 158 0.44

bridge_and_torc … 1.04 0.80 62 0.24 1 0.12 1 62 0.05

pilot_flying.lus 19.83 1.05 107 0.38 1 0.24 1 107 0.12

pid.lus 8.81 0.80 15 0.18 1 0.04 1 15 0.02

microwave.kind.lus 2.57 1.07 46 35.7 6 1.07 3 79 0.81

active-… 6.54 1.19 75 3.50 1 1.31 1 56 0.67

times in s
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summary of current progress

Three certificates:

∙ the certificate of invariance of the property (SMT-LIB 2)

∙ the frontend certificate (FEC) of observational equivalence
between Kind 2 and JKind (Kind 2 System)

∙ the corresponding frontend certificate certificate
(FECC) (SMT-LIB 2)
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trusting a certifying model checker

1. Trusted Logic The logics used by the model checker are trusted.

2. Valid Model The model and properties accurately depict the sys-
tem under scrutiny in the semantic given by the logic
of the model checker.

3. Correct Certificate The certificate produced by the model checker is suf-
ficient to convince that the properties are true of the
system under scrutiny.

4. Correct Certificate
Checker

The program that checks the certificates is sound and
correctly implemented (and compiled/executed).

5. Trusted IO The parsing and output of the certificate checker are
trusted.
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ongoing and future work

Complete instrumentation of CVC4 to produce LFSC proofs

Complete extension of SMTCoq to CVC4 theories

Extend SMTCoq to process side conditions

Produce SMTCoq proofs from same instrumentation

Evaluate proof-producing module and proofs objects
experimentally

Evaluate proof-producing approach for Kind 2
experimentally

41



links

CVC4: http://cvc4.cs.nyu.edu/web/

LFSC: https://github.com/CVC4/CVC4/tree/master/
proofs/lfsc_checker

Kind 2: http://kind.cs.uiowa.edu

Alt-Ergo: http://alt-ergo.lri.fr/

JKind: https://github.com/agacek/jkind

SMTCoq: https://github.com/smtcoq/smtcoq
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Thank you
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