
It’s QEDs All the Way Down

David S. Hardin Konrad L. Slind

Trusted Systems Group
Advanced Technology Center

Rockwell Collins

c� 2016 Rockwell Collins. All rights reserved. 1 / 23

Introduction

Traditional Formal Verification efforts have suffered from a
fundamental issue: verification artifacts are only models of the
system that is to be verified

Many translators from engineering artifacts have been built; few are
themselves verified

Further, there has been no verified path from an executable
specification expressed in a theorem proving environment to
machine code

Many systems offer code generation, but not verified code
generation

But what if such a verified path existed, from engineering artifact
to formal reasoning to code generation, allowing “QEDs all the
way down”?
This talk reports on our experiences with such an environment

c� 2016 Rockwell Collins. All rights reserved. 2 / 23

Verification Tool Design Pattern

IDE AST IVL Solvers

Codegen

parse; edit

typecheck

counterexamples

IDE = Interactive Development Environment
AST = Abstract Syntax Tree
IVL = Intermediate Verification Language

c� 2016 Rockwell Collins. All rights reserved. 3 / 23

CakeML — https://cakeml.org

CakeML is a functional programming language with a
proven-correct compiler and runtime system
CakeML is based on a substantial subset of Standard ML
Its semantics is specified in higher-order logic
The compiler algorithm, also specified in higher-order logic, has
been proven to transform CakeML programs to semantically
equivalent machine code
The compiler implementation is a CakeML program that has been
verified by a bootstrap method that executes the compiler
specification on the compiler implementation to create a
proven-correct compiler binary
The correctness proofs use validated instruction set models

c� 2016 Rockwell Collins. All rights reserved. 4 / 23

https://cakeml.org

CakeML Use Case 1: Verified ML Compile, REPL

ML program CakeML Machine
Code

Read/Eval/Print
Loop

Verified
Bignums

Verified
GC

c� 2016 Rockwell Collins. All rights reserved. 5 / 23

CakeML Use Case 1

CakeML is utilized much as any other language compiler
Code generation is not yet on par with production compilers, but
improving
Read/Eval/Print Loop utilized for execution and validation testing
Verified runtime support, specifically for bignums and Garbage
Collection
x86, ARM, PowerPC instruction sets supported

c� 2016 Rockwell Collins. All rights reserved. 6 / 23

CakeML Use Case 2: Verified HOL Compile, REPL

HOL4 function

ML program CakeML Machine
Code

Read/Eval/Print
Loop

Verified
Bignums

Verified
GC

c� 2016 Rockwell Collins. All rights reserved. 7 / 23

From Logic to ML to Machine Code by Proof

Given : ML bigstep evaluation relation evaluate
Define: “Evaluating exp in environment env yields a value v with
property P” :

Eval env exp P = 9v . evaluate . . . env . . . exp (. . . v) ^ P(v)

P is used to relate values resulting from ML computation with the
corresponding logical objects (which stem from the original logic
definitions)

c� 2016 Rockwell Collins. All rights reserved. 8 / 23

Example Translation Theorem

Theorem about function application

` Eval env e1 ((a �! b) f) ^ Eval env e2 (a x)
)

Eval env (e1 e2) (b (f x))

“If e1 evaluates to a value denoted by function f , having
logical type a ! b; and e2 evaluates to an element x having
logical type a, then (e1 e2) evaluates to a value
corresponding to f x, having logical type b.”

Such theorems are proved for all the AST constructors, and used in a
bottom-up, syntax-directed manner for new function definitions

c� 2016 Rockwell Collins. All rights reserved. 9 / 23

Examples of Function) ML Translation

In the CakeML distribution:

(Okasaki) Queues (Bankers, Batched, Hood-Melville, Implicit,
Physicists, Real-time)
(Okasaki) Heaps (Binomial, Leftist, Pairing, Splay)
Ordered Sets (Red-Black, Unbalanced)
Crypto algorithms (AES, RC6, TEA)
Others (primality tester, copying garbage collector, parser
generator)
CakeML compiler itself

Our work: regex compiler (90 definitions, 650 lines of ML text)

c� 2016 Rockwell Collins. All rights reserved. 10 / 23

Example: Splay Heaps

datatype ↵ heap = Empty | Tree (↵heap) ↵ (↵heap)

Splay trees are a close relative of balanced binary search trees,
but they maintain no explicit balance information.
Instead, every operation blindly restructures the tree using some
simple transformations that tend to increase balance.
Every operation runs in O(log n) amortized time.
Well suited for implementing heaps.
Operations: insert, merge, findMin, delMin

c� 2016 Rockwell Collins. All rights reserved. 11 / 23

Some Splay Heap Theorems (Proved in HOL4)

` Jinsert x HK = {x}� JHK
` Jmerge H1 H2K = JH1K � JH2K
` JdelMin HK = JHK \{findMin H}
` isHeap H1 ^ isHeap H2) isHeap (merge H1 H2)
` H 6= Empty ^ isHeap H) isHeap (delMin H)
` H 6= Empty ^ isHeap H
) findMin H 2 JHK ^ 8y .y 2 JHK) findMin H y

J�K: map to multiset;
� : multiset union;
\ : multiset difference

c� 2016 Rockwell Collins. All rights reserved. 12 / 23

Example Translation : delMin
Removes smallest element from the heap, possibly doing some
rebalancing. The smallest element is leftmost in the tree. Expressed in
stylized HOL as follows:

delMin (Tree Empty x b) = b
delMin (Tree (Tree Empty x b) y c) = Tree b y c
delMin (Tree (Tree a x b) y c) = Tree (delMin a) x (Tree b y c)

Translation theorem:

` Eval env (Var delMin)
(((SPLAYHEAP a) x �! SPLAYHEAP a) delMin)

Constraint: x is a splayheap on which delMin is defined (patterns are
not complete)

c� 2016 Rockwell Collins. All rights reserved. 13 / 23

Generated ML for delMin

fun delMin x =

case x

of Empty => raise Bind

| Tree(v9,v8,v7) =>

case v9

of Empty => v7

| Tree(v6,v5,v4) =>

case v6

of Empty => Tree(v4,v8,v7)

| Tree(v3,v2,v1) =>

Tree(delMin (Tree(v3,v2,v1)),

v5,

Tree(v4,v8,v7));

c� 2016 Rockwell Collins. All rights reserved. 14 / 23

Application to Imperative Languages: Guardol

Guardol is a Domain-Specific Language for cross-domain guards:

Provides a single language to program many different guards
Integrates highly automated formal verification with development
Supports high-assurance code generation
Guardol is a traditional imperative language, but with ML-style
pattern matching
Regular Expression matching supported via the regex_match
primitive; verified compilation of regex_match to DFAs via
Brzozowski’s derivative method accomplished in HOL4

c� 2016 Rockwell Collins. All rights reserved. 15 / 23

Sound Code Generation for Guardol

Decompilation maps from Guardol operational semantics to HOL
datatypes and functions (By formal proof)
Translation maps from HOL datatypes and functions to ML
datatypes and functions (By formal proof)
By transitivity we obtain a verified map from Guardol to CakeML,
and so to binary (By formal correctness proof of CakeML compiler
(POPL 2014))
By the proofs, we have that the behavior of the binary in the
CakeML REPL has the properties proved about the Guardol
source program

c� 2016 Rockwell Collins. All rights reserved. 16 / 23

Guardol Sound Code Generation Toolchain

IDE HOL4
AST

HOL4
IVL RADA

CakeML Machine
Code

decompile (`)

translate (`)

c� 2016 Rockwell Collins. All rights reserved. 17 / 23

Results

We have utilized verified regex DFA compilation to produce
high-assurance, high-performance hardware-based regular
expression guards

Able to guard UDP packets at Gigabit Ethernet line speed rate

We generated verified x86 binaries for regular expression guards
using CakeML, and validated the x86 code using test cases
executed in the CakeML REPL
We have instantiated the Verification Tool Design Pattern for other
imperative languages, namely sizable subsets of the Swift and
Rust languages

c� 2016 Rockwell Collins. All rights reserved. 18 / 23

Current Work: Regex Extensions I

To support numeric intervals we added the following “interval”
form to the regex parser:
\i{lo,hi}

allowing much more precise time specs, e.g.:
\i{1,31}\i{1,12}\i{1970,2025}\i{0,23}\i{0,59}\i{0,59}

Intervals can utilize a variety of number representations: e.g., 255
can take either 3 bytes (ASCII) or 2 bytes (twos-complement
integer) or 1 (unsigned)
Capturing intervals with regexs is by no means original (J.R. Büchi
wouldn’t have been surprised by this in 1960)
Doesn’t seem commonly supported in regex packages, which
require monstrous regexs to match even simple intervals

c� 2016 Rockwell Collins. All rights reserved. 19 / 23

Current Work: Regex Extensions II

We want to check the generated monstrous regexs via proof
The above regex (call it r) generates the proof obligation

8s. regex_match(r , s) ()
9w1w2w3w4w5w6.

s = w1w2w3w4w5w6 ^
1 N(w1) 31 ^
1 N(w2) 12 ^
1970 N(w3) 2025 ^
0 N(w4) 23 ^
0 N(w5) 59 ^
0 N(w6) 59

Which should be automatically proved (work in progress)

c� 2016 Rockwell Collins. All rights reserved. 20 / 23

Current Work: Regex Extensions III

This translation-validation style approach extends the assurance
story of the regex compiler to the extended language including
intervals
Currently applying to generate a software guard for GPS
messages over CANBUS
Other applications: filtering UTF-8 encoded strings, scenarios
requiring “full packet inspection” of messages involving numbers

c� 2016 Rockwell Collins. All rights reserved. 21 / 23

Future Work

Explore use of refinement in the theorem prover, similar to Eric
Smith’s work, to produce higher-performance verified binaries
from specifications in logic
Explore use of idioms such as ACL2’s single-threaded object
(stobj) syntactic restrictions to allow in-place updates
Continue to work with CakeML team to improve the compiler, and
support other mainstream languages

c� 2016 Rockwell Collins. All rights reserved. 22 / 23

THE END

c� 2016 Rockwell Collins. All rights reserved. 23 / 23

