

How Good is a Security Policy against Breaches?

Özgür Kafalı[†], Jasmine Jones^{*}, Megan Petruso^{*}, Laurie Williams, and Munindar P. Singh

> North Carolina State University Department of Computer Science [†]rkafali@ncsu.edu *Supported by REU grant at NCSU

> > February 2017

Policies vs Breaches

Design time Artifacts

Security Policies

Threat Models

Policies vs Breaches

Design time Artifacts

Security Policies

Run time Artifacts

Breaches

Threat Models

Dome proved proved Lugoz Lugoz Domerer price or price

Misuse Cases

Policies vs Breaches

Design time Artifacts

Security Policies

— Connection —

Run time Artifacts

Breaches

Case present Storg general Logos Desertes phic comp

Acces

Misuse Cases

Policies vs Breaches

Design time Artifacts

Security Policies

No such breach

Run time Artifacts

Breaches

Threat Models

Misuse Cases

A/D Trees

Policies vs Breaches

Design time Artifacts

Security Policies

No such breach

Severe sanction

Run time Artifacts

Breaches

Acces FHR

Misuse Cases

Özgür Kafalı

How Good is a Security Policy against Breaches?

Policies vs Breaches

Design time Artifacts

Security Policies

No such breach

Nothing worth protecting

Run time Artifacts

Breaches

Average Gases percent percent percent percent Lugost Devertor percent perce

Misuse Cases

Policies vs Breaches

Design time Artifacts

No such policy clause

Run time Artifacts

Breaches

Threat Models

Misuse Cases

A/D Trees

Özgür Kafalı

How Good is a Security Policy against Breaches?

Example

- <u>HHS breach incident</u>: In 2010, a failure to erase data contained on disposed photocopiers' hard drives led to the disclosure of patient records.
- HIPAA clause 45 CFR 164.310–(d)(2)(i): "Implement policies and procedures to address the final disposition of electronic protected health information, and/or the hardware or electronic media on which it is stored."

Example

- <u>HHS breach incident</u>: In 2010, a failure to erase data contained on disposed photocopiers' hard drives led to the disclosure of patient records.
- HIPAA clause 45 CFR 164.310–(d)(2)(i): "Implement policies and procedures to address the final disposition of electronic protected health information, and/or the hardware or electronic media on which it is stored."

Research Questions

- Representation: How can we formalize security policies and breaches to bring out their mutual correspondence?
- <u>Similarity</u>: What are the commonalities and differences between concepts in security policies and breach descriptions? How do those correspond to gaps in between?
- Analysis: How prevalent are accidental misuses among reported breaches, and do security policies account for them?

Fundamental Elements

Norms: Commitments, Authorizations, Prohibitions

- Represent policy clauses
- Represent breach incidents
- Breach ontology
- Coverage metric

Norms

- Generic form: *N*(SUBJECT, OBJECT, antecedent, consequent)
- *N* = {Commitment, Authorization, Prohibition}
- HIPAA clause 45 CFR 164.310–(d)(2)(i): "Healthcare workers must erase patients' PHI stored on disposed electronic media."

Commitment(HEALTHCARE_WORKER, COVERED_ENTITY, media_disposal, erase_PHI)

Ontologies: Healthcare Users

How Good is a Security Policy against Breaches?

• Norm similarity:

 $sim_{n_1,n_2} = (sim_{SBJ_1,SBJ_2} + sim_{OBJ_1,OBJ_2} + sim_{ant_1,ant_2} + sim_{con_1,con_2}) / 4$

• Norm similarity:

 $sim_{n_1,n_2} = (sim_{SBJ_1,SBJ_2} + sim_{OBJ_1,OBJ_2} + sim_{ant_1,ant_2} + sim_{con_1,con_2}) / 4$

Distance between concepts: Δ_{c1,c2} = edge_count(c1, c2)

• Norm similarity:

 $sim_{n_1,n_2} = (sim_{\text{SBJ}_1,\text{SBJ}_2} + sim_{\text{OBJ}_1,\text{OBJ}_2} + sim_{\text{ant}_1,\text{ant}_2} + sim_{\text{con}_1,\text{con}_2}) / 4$

- Distance between concepts: $\Delta_{c_1,c_2} = edge_count(c_1,c_2)$
- Similarity between concepts: $sim_{c_1,c_2} = \frac{1}{1+\Delta_{c_1,c_2}} \times sim_{c_1,c_2}^{prop}$

• Norm similarity:

 $sim_{n_1,n_2} = (sim_{\text{SBJ}_1,\text{SBJ}_2} + sim_{\text{OBJ}_1,\text{OBJ}_2} + sim_{\text{ant}_1,\text{ant}_2} + sim_{\text{con}_1,\text{con}_2}) / 4$

- Distance between concepts: Δ_{c1,c2} = edge_count(c1, c2)
- Similarity between concepts: $sim_{c_1,c_2} = \frac{1}{1 + \Delta_{c_1,c_2}} \times sim_{c_1,c_2}^{prop}$

• Policy coverage:
$$coverage = \frac{\sum_{b_i \in B} \begin{cases} 1 & \text{if } n_{\text{policy}} \text{ covers } n_{b_i} \\ sim_{n_{\text{policy}}, n_{b_i}} & \text{otherwise} \end{cases}}{|B|}$$

SEMAVER FRAMEWORK

Norm Coverage

Methodology

How Good is a Security Policy against Breaches?

Methodology

How Good is a Security Policy against Breaches?

Methodology

Methodology

How Good is a Security Policy against Breaches?

Methodology

HHS Breach Report

Category	Count	Description
Hacking	191	Adversary exploits vulnerability to access EHR
Theft	642	Employee discloses PHI
Loss	129	Electronic media containing PHI are lost
Unauthorized disclo- sure	338	PHI is disclosed due to unautho- rized access
Improper disposal	58	Employee fails to properly dispose PHI
Unclassified	219	Not classified by HHS

Classification of Breaches

1,577 breaches reported by HHS

- Hacking and Theft contain malicious misuses
- Loss, Unauthorized disclosure, and Improper disposal contain accidental misuses
- Unclassified: 68% accidental misuses and 13% malicious misuses

• Overall: 44% accidental misuses and 56% malicious misuses

RESULTS

Coverage by Breach Category

- 65% overall coverage by HIPAA
- Significantly better coverage for malicious misuses than accidental misuses

RESULTS

Similarity among Norm Elements

- Similarity between actors (subject/object) is higher than assets (antecedent/consequent)
- Consequent may be given a higher weight to provide a more realistic measure of coverage

CONCLUSIONS

Limitations

- Subjective modeling
- Assumptions on ontology, e.g., single inheritance, no instances
- Incompleteness of breaches
- Only applied to healthcare domain (though HIPAA is a dominant standard)

CONCLUSIONS

Future Work

- Guidelines for ontology development
- Automation and crowd for norm gathering
- Validation of coverage metric
- Narrowing the gaps with policy refinement