Enabling a Cyber-Resilient and Secure Energy Infrastructure with Software-Defined Networking

Dong (Kevin) Jin Department of Computer Science Illinois Institute of Technology SoS Lablet/R2 Monthly Meeting, Jan 2017

OF TECHNOLOGY

Part of the SoS Lablet with

David Nicol

- Bill Sanders
- Matthew Caesar

• Brighten Godfrey

Project Progress

Publications in the current quarter (Oct – Dec 2016)

- Jiaqi Yan and Dong Jin. "A Lightweight Container-based Virtual Time System for Software-defined Network Emulation," Journal of Simulation, November 2016
- Xin Liu and Dong Jin. "ConVenus: Congestion Verification of Network Updates in Software-defined Networks." Winter Simulation Conference (WSC), December 2016
- Ning Liu, Adnan Haider, Dong Jin and Xian-He Sun. "A Modeling and Simulation of Extreme-Scale Fat-Tree Networks for HPC Systems and Data Centers," ACM Transactions on Modeling and Computer Simulation (TOMACS), December 2016

Project Progress

Paper submitted in the current quarter (Oct – Dec 2016)

- Dong Jin, Zhiyi Li, Christopher Hannon, Chen Chen, Jianhui Wang, Mohammad Shahidehpour, Cheol Won Lee and Jong Cheol Moon. "Towards a Resilient and Secure Microgrid Using Software-Defined Networking," IEEE Transactions on Smart Grid, Special section on Smart Grid Cyber-Physical Security (Second round review)
- Christopher Hannon, Jiaqi Yan, Dong Jin, Chen Chen, and Jianhui Wang. "Combining Simulation and Emulation Systems for Smart Grid Planning and Evaluation," ACM Transactions on Modeling and Computer Simulation (TOMACS)
- Christopher Hannon, Dong Jin, Chen Chen, and Jianhui Wang, "Ultimate Forwarding Resilience in OpenFlow Networks," ACM SIGCOMM Symposium on SDN Research 2016

Industrial Control Systems (ICS)

- Control many critical infrastructures
 - e.g., power grids, gas and oil distribution networks, wastewater treatment, transportation systems ...
- Modern ICSes increasingly adopt Internet technology to boost control efficiency, e.g., smart grid

DE TECHNOLOGY

Cyber Threats in Power Grids

(S) THE DAILY **SIGNAL**

Ukraine Goes Dark: Russia-Attributed Hackers Take Down Power Grid

Riley Walters / January 13, 2016 / 1 comments

Picture source: 1. National Cybersecurity and Communications Integration Center (NCCIC). ICS-CERT Monitor Sep 2014 – Feb 2015 2. http://dailysignal.com/2016/01/13/ukraine-goes-dark-russia-attributed-hackers-take-down-power-grid/

Protection of Industrial Control Systems

- Commercial of-the-shelf products
 - e.g., firewalls, antivirus software
 - fine-grained protection at single device only
- How to check system-wide requirements
 - Security policy (e.g., access control)
 - Performance requirement (e.g., end-to-end delay)
- How to safely incorporate existing networking technologies in control system infrastructures?

Problem Statement

- Minimize the gaps with an SDN-enabled communication architecture for ICS
- Create innovative SDN-aware applications for ICS security and resiliency
 - Real-time network verification
 - Self-healing network management
 - Context-aware intrusion detection
 - Many more ...

ICS – industrial control system

SDN – software-defined networking

SDN Architecture

An SDN-Enabled Power Grid

Current Power Grid: Potential Cyber Attacks and Their Implications Future SDN-enabled Power Grid: A Cyber-Attack-Resilient Platform

Transition to an SDN-Enabled IIT Microgrid

- Real-time reconfiguration of power distribution assets
- Real-time islanding of critical loads
- Real-time optimization of power supply resources

12

Transition to an SDN-Enabled Microgrid

- SDN-based Applications
 - Real-time Verification
 - Self-healing PMU
- Hybrid Testbed
 - SDN emulation + Power Distribution System
 Simulation

Application 1: Network Verification – Motivation

89% of operators never sure that config changes are bug-free¹

82% concerned that changes would cause problems with existing functionality¹

- Unauthorized access
- Unavailable critical services
- System performance drop
 - Instability
 - Loss of load
 - Synchronization Failure

- 1. Survey of network operators: [Kim, Reich, Gupta, Shahbaz, Feamster, Clark, USENIX NSDI 2015]
- 2. Pictures borrowed from VeriFlow slides [Khurshid, Zou, Zhou, Caesar, Godfrey NSDI 2013]

ILLINOIS INSTITUTE

Verification System Design

- Dynamic Network Data (topology, forwarding tables ...)
- Dynamic Application Data (control updates ...)
- User-specified Policy (security, performance ...)

Network-Layer Verification

Prior Work

- FlowChecker
 [Al-Shaer et al.,SafeConfig2010]
- HeaderSpaceAnalysis
 [Kazemian et al.,NSDI2012]
- Anteater [Mai et al.,SIGCOMM2011]
- VeriFlow [Khurshid et al., NSDI2012]

Pictures borrowed from VeriFlow slides [Khurshid, Zou, Zhou, Caesar, Godfrey NSDI 2013]

Challenges — Timing Uncertainty

Old config: Switch A => Switch B New config: Switch B => Switch A

Challenges — Timing Uncertainty

Old config: Switch A => Switch B New config: Switch B => Switch A

Challenges — Timing Uncertainty

Uncertainty-aware Modeling

- Naively, represent every possible network state O(2ⁿ)
- Uncertain graph: represent all possible combinations

Update synthesis via verification

Enforcing dynamic correctness with heuristically maximized parallelism

OK, but...

Can the system "deadlock"?

- Proved classes of networks that never deadlock
- Experimentally rare in practice!
- Last resort: heavyweight "fallback" like consistent updates [Reitblatt et al, SIGCOMM 2012]

Application 2: Self-Healing Phasor Measurement Unit (PMU) Networks

- Isolate compromised devices
- "Self-heal" the network by quickly re-establishing routes
 - To restore power system observability
 - Using an integer linear program model

Self-Healing Phasor Measurement Unit (PMU) Networks

A Hybrid Testing Platform

Power Distribution System Simulation + SDN-based Network Emulation

A Hybrid Testing Platform

- Challenges
 - Temporal fidelity in network emulation
 - Synchronization between two sub-systems
 - Emulation executing "native" software to produce behavior in wall-clock time
 - Simulation executing model software to produce behavior in virtual time

Integration Emulation & Simulation

Issue: Temporal Fidelity in emulation ordinary emulators embedded in real-time, but simulators speak in virtual time

Integration Emulation & Simulation

Suppose the medium is shared access... Suppose the packets all join the same queue....

Wrong behaviors due to the emulator's serialization of the time

Our approach: Virtual Time in Emulation

When the emulator is embedded in virtual time, time stamps on messages are closer to reality

Virtual Time System Architecture for a Container-based Network Emulator

Source code: https://github.com/littlepretty/VirtualTimeForMininet

Virtual Time to Emulation Fidelity Enhancement

Virtual Time for Simulation/Emulation Synchronization

t_{Ei} emulation time (wall clock time) Synchronization Event ↓↑↑ t_{Si} execution time of simulation (wall clock time) t_{S'i} time simulator returns after synchronization event

DSSNet Use Case

Future Work

- More SDN-aware applications to enable a cyberresilient and secure energy Infrastructure
 - e.g., Specification-based Intrusion Detection
- Network layer → Application layer → Cross-layer verification
- In-house research idea → Real system deployment
 IIT Microgrid
 - First Cluster of Microgrids in US (12MW IIT + 10MW Bronzeville)

