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Krenz Security Architecture
Programatica case study

Peter D. White

Lunch is next!
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Outline

 Application case studies
 The separation concept
 The Krenz concept
 Krenz and NetTop
 Building the Krenz specification
 The recursive graph concept
 The theorem proving effort

– Hol proof of: deepen . flatten = id
 Next steps
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Application case studies

Separation and Krenz
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Krenz application of Programatica

 Provide an industrial strength test case for 
Programatica
– Specification and program development
– Theorem proving

 Provide the foundation for a Krenz kernel
– Security policy model useable both by Krenz and 

NetTop
– Kernel implementation with a Posix like interface



4/24/20115

The separation concept

Getting closer to 
lunch
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Process Protection

 Protection can be used to 
prevent direct interaction of 
processes

– Separate logical address 
space

– File system permissions
 Lots of communication 

pathways exist via the kernel 
itself

– Resource limits
– Resource availability

 E.g. ports, sockets
– Unadvertised 

communications paths

Kernel

Process A Process B

Firewall
Prevented by
Kernel

Lots of 
these exist
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Process Separation

 Still use process 
protection mechanisms

– Separate logical address 
space

– File system permissions

 No communication 
pathways exist via the 
kernel itself

– This implies a careful 
design of the kernel to 
meet the separation policy

Kernel

Process A Process B

Firewall
Prevented by
Kernel

None of 
these exist
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A separation policy

 The kernel permits 
interaction between 
processes if and only if 
explicitly allowed by the 
policy

 The policy is a directed 
graph of processes

– The example here has 
only three nodes and one 
edge

PA

Step

Start

PB

StepStart

PC

Step
Start

System
Start

Step

Some processes are permitted to affect 
each other, some are not

Process B is permitted 
to influence Process C
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Why a separation kernel?

 For high confidence 
applications

– High assurance of red black 
separation

– High assurance of fault 
tolerance

 In the absence of separation
– Cause and effect tend to be 

local, however
– Anything could affect 

anything

Process A Process B

Firewall

Prevented by Kernel; 
critical security or 
safety properties of 
process B cannot be 
affected by process A
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The Krenz Concept

Enhancing the 
separation concept
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The Krenz concept

 Replace communication 
policy with filtered 
communication policy

– Communication from A to B 
is permitted only if filtered by 
the A  B filter.

 Krenz policy is also a directed 
graph, with a property (filter) 
associated with each edge

 Krenz policy was partly a 
result of an industry survey to 
determine information 
security needs

Filter

A  B

Filter

B  A

Process A

Process B
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Why the Krenz Concept?

 Separation policies are 
good at:

– Prohibiting some flows of 
information completely

– Permitting some flows of 
information without 
restriction

 Separation is the basis 
for establishing security 
and safety critical 
properties

 A Krenz policy is good 
at:

– Prohibiting some types of 
information flows (e.g. 
viruses)

– Permitting information 
flows with restriction (e.g. 
encryption, signature, …)

 The Krenz policy 
captures naturally what 
most security policies 
are about
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Krenz and NetTop

A brief diversion from 
the Programatica 
work
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Krenz and NetTop

 NetTop provides separation 
between virtual machines hosted 
on Linux

 NetTop permits a communication 
pipeline between virtual machine 
when specified by policy

 The Krenz security concept is a 
match for what NetTop does

 Krenz can provide a model for 
how NetTop can be used to 
construct networks in accordance 
with a security policy

 Historical note: Krenz resulted 
partly from an attempt to provide 
cots OS and applications with a 
high degree of assurance

NetTop Kernel

Virtual
Machine A

Virtual
Machine B

Firewall

These 
should not 
exist

Communication 
Pipeline With filters
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Building the Krenz specification

The recursive graph 
concept
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Haskell construction of the Krenz

 A directed graph data type is 
defined, and Krenz and 
Separation are defined in 
terms of the Graph data type

 However: want to apply the 
Krenz concept to a graph of 
coalitions

– Each coalition is a network, 
with its own Krenz policy
 Each network has sub 

networks, with their own 
Krenz policy

– Each sub network has 
platforms, with their own 
Krenz policy

 …

Krenz Concept Separation Concept

Graph data type

Layered Krenz Concept Layered Separation
Concept

Simple graph data type inadequate 
for the layered Krenz

Simple graph data type provide a 
basis for the separation and Krenz 
specifications



4/24/201117

The recursive graph concept
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Krenz Concept Separation Concept

Recursive Graph data type

Layered Krenz Concept Layered Separation Concept

Krenz 
Assurance 
Concept

Layered Krenz 
Assurance 
Concept

Grothendieck topology
Providing the basis for 
recursive graph pattern 
matching (based on the 
work of Y.V. Srinivas)

A lot hinges on how well recursive graphs are defined!

The hierarchy of data types
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Recursive Graph Structure

Currently not allowed

Not legal, violates
“locality”
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1

2
4

3,2

3,1 3,3

3,4,1

5,1

3,4,2

5,2
6

5,3

5,4,1 5,4,2

5,4,4 5,4,2

Flattened Recursive Graph
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Programatica property

 Naïve property:
– deepen . flatten = id

 However, the flatten function was defined with 
an accumulator argument, to keep track of 
where it is in the flattening process. A less 
naïve property to prove is:
– !a. deepen . (flatten a) = id
– Actual statement: !a g. deepen (flatten a g) = g
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Graphs defined inductively (Martin Erwig)

 Building blocks
– type Node a = (Int, a)
– type Edge b= (Int, Int, b)
– type Adj b = [(b, Node)] – Edges listed by their labels
– type Context a b = (Adj b, Node a, Adj b, b)
– type Decomp a b = (Mcontext a b, Graph a b)
– type Graph a b = -- abstract type

 Constructors
– empty :: Graph a b
– embed :: Context a b -> Graph a b -> Graph a b

 A graph is built inductively by adding contexts.
 A context is a new node, with a list of predecessor and a list of 

successor nodes (which should already be in the graph)

 Destructors
– match :: Node -> Graph a b -> Decomp a b
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Recursive graphs defined inductively
– type NodeComponent = Integer

– type NodeName = [NodeComponent]

– data RecursiveNode a b =
SimpleNode    NodeName a |
RecursiveNode NodeName (RecursiveGraph a b) a

data RecursiveEdge b = RecursiveEdge {

reSource    :: NodeName,

reUplink    :: NodeName, -- For going up in the graph

reDownlink  :: NodeName, -- For going down in the graph

reSink      :: NodeName,

reEdgeLabel :: b

}

– data RecursiveContext a b = RecursiveContext {
preds :: [RecursiveEdge b], -- List of predecessors
node  :: RecursiveNode a b, -- Node to add
succs :: [RecursiveEdge b]  -- List of successors
}

– type Decomp a b =

– (Maybe (RecursiveContext a b), RecursiveGraph a b)

– data RecursiveGraph a b =
EmptyRecursiveGraph |
RecursiveGraph (RecursiveGraph a b) (RecursiveContext a b)

– See also well formed graph
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The recursive graph concept
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RecursiveEdge [3] [3] [5] [1] b

RecursiveEdge [1] [] [3] [2] b

RecursiveEdge [2] [4] [] [3] b
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Hol version of Recursive Graph
– val x = Hol_datatype

`RecursiveNode = SimpleNode of int list => 'a |
RecursiveNode of int list => RecursiveGraph => 'a;

RecursiveEdge =
<|source:   NodeName;
uplink:   NodeName;
downlink: NodeName;
sink:     NodeName;
edgeLabel: 'b
|>;

RecursiveAdjacency = RecursiveAdjacency of RecursiveEdge list;
RecursiveContext =
<|preds:   RecursiveEdge list;
newnode: RecursiveNode;
succs:   RecursiveEdge list
|>;

RecursiveGraph = EmptyRecursiveGraph |
RecursiveGraph of RecursiveGraph => RecursiveContext;

Decomp =
<|flag: bool;
component: RecursiveContext;
subgraph:  RecursiveGraph
|>`

Here be monsters: The type of RecursiveEdge is ``:NodeName -> 
NodeName -> NodeName -> NodeName -> 'a -> ('b, 'a) 
RecursiveEdge`` Note that there are two parameters (‘b, ‘a) according to 
the output, but there is really only one parameter in the definition.
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The theorem proving effort

Hol proof of: deepen . 
flatten = id
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Thinking about inductive proof

 The flatten and deepen functions follow the recursive 
structure of the graph itself

 This structure carries all the way down through recursive 
context, recursive edge, and recursive node (backup slides)

flatten :: NodeName ->           -- Node name at next higher level
RecursiveGraph a b -> -- Graph to flatten
RecursiveGraph a b    -- Flattened graph

flatten _context EmptyRecursiveGraph = EmptyRecursiveGraph
flatten context (RecursiveGraph g rc) =

RecursiveGraph (flatten context g) (flattenContext context rc)

-- Deepen a flattened graph, restoring its recursive structure.
deepen :: (Show a, Show b) =>

RecursiveGraph a b -> -- Graph to deepen
RecursiveGraph a b    -- Resulting deepened graph

deepen EmptyRecursiveGraph = EmptyRecursiveGraph
deepen (RecursiveGraph g rc) = RecursiveGraph (deepen g) (deepenContext rc)
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Well formed recursive graph

 Did not explicitly think about this until time to prove theorems
 The theorem to be proved is true only for well formed graphs
 Well formed node

– Length of nodename is 1
– Subgraph is well formed

 Well formed edge
– Source and sink lengths are 1
– Up ++ src, down ++ snk have no common prefix

 Well formed context
– Predecessor edges, Successor edges, and node are all well formed

 Well formed graph
– Graph and context are well formed



4/24/201129

Well formed recursive graph
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RecursiveEdge [2] [4] [4] [1] b
Path up = [4,2]
Path down = [4,2]
Common prefix = 4
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Theorem proving summary

 Hol automatically adjusted formulas with 
overlapping patterns
– Haskell:

 last [h] = h
 last (h : t) = last t – overlaps on lists of length 1

– Hol:
 last [h] = h (* length one list *)
 last (h ::v2:: v3) = last (v2 :: v3) (* length >= 2 *)

– Caused some rethinking of the proofs
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Theorem proving summary

 Recursive edge problem
– (RecursiveEdge src up dn snk b) given type with 

two type variables `a and `b. The type is too general
 “Ill formed induction” on graphs

– Had to create my own subgraph relation, prove it is 
well founded, and construct an induction theorem

– Later, discovered TypeBase.induction_of (valOf 
(TypeBase.read "RecursiveGraph"));
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Errors found

 The common prefix of 
two node names of 
length one should be 
null, even when the two 
nodenames are the 
same.

– Common prefixes can be 
eliminated

 The node name in a 
recursive node was not 
being addressed

1

RecursiveEdge [1] [] [] [1] b
Path up: [] ++ [1] = [1]
Path down: [] ++ [1] = [1]
Common prefix: [1]
Oops!
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Next steps

A secure Posix or 
Linux like separation 
kernel
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Problems with Linux assurance

 Monolithic kernel: A large amount of code 
running in kernel mode, all of which can corrupt 
the kernel

 Configurable and dynamic device drivers
 Some interfaces provide “covert” information 

flows
 Process fork: Result in child process that is 

clone of parent
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Haskell solutions: Kernel 
architecture

 Construct a Kernel with device drivers that are threads 
in the ST monad (State monad)

– Device driver state is guaranteed not corruptible by other 
kernel threads

– Device driver can run concurrently with other kernel threads
 Linux provides standard interfaces to device drivers

– Formulate this standard interface as a type, then the device 
driver is guaranteed to be a function only of:
 The interface provided by the kernel
 Its own state
 Its input from the kernel
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Haskell solutions: Kernel 
architecture

 Modular kernel
– Provide virtual file system as separate module

 Formulate types to ensure that the virtual file system cannot 
corrupt other part of the kernel, and cannot be corrupted by other 
parts of the kernel

– Provide kernel IO as separate module
 ibid

 Lazy IO
– Many sophisticated kernel features are instances of lazy 

evaluation:
 File system page with dirty bit
 Demand paging
 Copy on write for process cloning
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Solutions: Posix API and 
separation

 Provide additional checks to those in standard Posix, 
to increase separation between processes

 Provide a comprehensive list of covert channels, by 
showing that the operation of a process is a function 
only of:

– Its own state
– Its input
– A list of functions of the kernel state

 (e.g. disk full, socket usage, …)
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Summary
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Summary

 Program development:
– Design with properties is a powerful technique

 Theorem proving:
– Want a simple minded embedding into the theorem prover
– Test before proof: It is easier to prove the correctness of 

correct code
– Make a Hol theories for the Haskell prelude, and many Haskell 

libraries, with lots of pre proven theorems.
– A Haskell to Hol translator would have avoided the recursive 

edge problem
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Summary

 Krenz development
– Krenz provides a good model for secure systems
– We will build a prototype Posix / Linux like kernel

 Subset of Posix interfaces
 Only a few higher level device drivers
 Kernel architecture providing dynamic loading of kernel 

modules, with type safety providing assurance that the new 
modules do not corrupt the kernel
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Backup slides
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Thinking about inductive proof
 The structure of flatten and deepen carry all the way down

deepenContext :: (Show a, Show b) =>
RecursiveContext a b -> RecursiveContext a b

deepenContext (RecursiveContext preds (SimpleNode nn a) succs) =
RecursiveContext
(deepenEdges preds)
(SimpleNode (deepenNodeName nn) a)
(deepenEdges succs)

deepenContext (RecursiveContext preds (RecursiveNode nn sub a) succs) =
RecursiveContext
(deepenEdges preds)
(RecursiveNode nn (deepen sub) a)
(deepenEdges succs)

flattenContext :: NodeName -> RecursiveContext a b -> RecursiveContext a b
flattenContext context (RecursiveContext preds (SimpleNode nn a) succs) =

RecursiveContext
(flattenEdges context preds)
(SimpleNode (flattenNodeName context nn) a)
(flattenEdges context succs)

flattenContext context
(RecursiveContext preds (RecursiveNode nn sub a) succs) =

RecursiveContext
(flattenEdges context preds)
(RecursiveNode nn (flatten (context ++ nn) sub) a)
(flattenEdges context succs)

A mistake: Should have made a “flattenNode” 
function for this, to conceal details during 
proof of flattenContext.
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Thinking about inductive proof
 The structure of flatten and deepen carry all 

the way down
deepenEdge :: RecursiveEdge b -> RecursiveEdge b
deepenEdge (RecursiveEdge source _up _down sink b) =

let cp = commonPrefix source sink
in RecursiveEdge

(deepenNodeName source)          -- Deep source is one long
(init (drop (length cp) source)) -- Deep up
(init (drop (length cp) sink))   -- Deep down
(deepenNodeName sink)            -- Deep sink is one long
b

deepenEdges :: [RecursiveEdge b] -> [RecursiveEdge b]
deepenEdges edges = map deepenEdge edges

flattenEdge :: NodeName -> RecursiveEdge b -> RecursiveEdge b
flattenEdge context (RecursiveEdge source up down sink b) =

RecursiveEdge
(flattenNodeName (context ++ up) source)
[]
[]
(flattenNodeName (context ++ down) sink)
b

flattenEdges :: NodeName -> [RecursiveEdge b] -> [RecursiveEdge b]
flattenEdges context edges = map (flattenEdge context) edges

Node name components are added 
to the end as the graph gets deeper. 
The proofs might have been simpler 
if they were added at the beginning
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Embedding in Hol, a simple minded approach

 Straight translation to Hol works because I did not 
use existential types, monads, …

(* Need some Haskell stuff (we take it for granted) *)
val init_def = Define `(init [x] = [])

/\ (init (h::t) = h :: (init t))`;
(* Observe the "h::v2::v3 in the Hol output, this is caused by

the pattern overlap from the Haskell prelude *)
val last_def = Define `(last [x] = x)

/\ (last (h::t) = last t)`;
(*  If you put the first equation last, the definition does not 
work, (Hol bug????) *)
val drop_def = Define `((drop (SUC n) (h::t)) = (drop n t))

/\ (drop ZERO xs = xs)
/\ (drop n NIL = NIL)
/\ (drop 0 NIL = NIL)` handle e => raise e;

Note that init and last are partial functions
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Embedding in Hol, a simple minded approach

 Some curious features of the Hol output

> val init_def =
|- (init [x] = []) /\ (init (h::v2::v3) = h::init (v2::v3))
: Thm.thm

- <<HOL message: inventing new type variable names: 'a.>>
Equations stored under "last_def".
Induction stored under "last_ind".
> val last_def =

|- (last [x] = x) /\ (last (h::v2::v3) = last (v2::v3))
: Thm.thm

- <<HOL message: inventing new type variable names: 'a.>>

There are overlapping patterns in the Haskell definitions for init and 
last, and this becomes a concern for theorem proving in Hol
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A first proof
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> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!a b. ~(b = []) ==> (last (APPEND a b) = last b)         

1 subgoal:
> val it =

last (APPEND a b) = last b
------------------------------------

~(b = [])

2 subgoals:
> val it =

!h. last (APPEND (h::a) b) = last b
------------------------------------

0.  ~(b = [])
1.  last (APPEND a b) = last b

last (APPEND [] b) = last b
------------------------------------

~(b = [])

Goal proved.
[.] |- last (APPEND [] b) = last b

Remaining subgoals:
> val it =

!h. last (APPEND (h::a) b) = last b
------------------------------------

0.  ~(b = [])
1.  last (APPEND a b) = last b

1 subgoal:
> val it =

!h. last (h::APPEND a b) = last b
------------------------------------

0.  ~(b = [])
1.  last (APPEND a b) = last b

1 subgoal:
> val it =

!h. last (h::APPEND a b) = last b
------------------------------------

0.  ~(b = [])
1.  last (APPEND a b) = last b
2.  APPEND a b = x::y

1 subgoal:
> val it =

last (x::y) = last b
------------------------------------

0.  ~(b = [])
1.  last (APPEND a b) = last b
2.  APPEND a b = x::y

Goal proved.
[...] |- last (x::y) = last b

Goal proved.
[...] |- !h. last (h::APPEND a b) = last b

Goal proved.
[..] |- !h. last (h::APPEND a b) = last b

Goal proved.
[..] |- !h. last (APPEND (h::a) b) = last b

Goal proved.
[.] |- last (APPEND a b) = last b

> val it =
Initial goal proved.
|- !a b. ~(b = []) ==> (last (APPEND a b) = last b)

REPEAT STRIP_TAC

Induct_on ‘a’

PROVE_TAC [APPEND]

‘?x y. APPEND a b = x :: y’ by 
PROVE_TAC[NOT_NULL_STRUCT,APPEND,APPEND_eq_
NIL]

ASM_REWRITE_TAC [APPEND]

ASM_REWRITE_TAC [last_DEF]

PROVE_TAC []

An experience with Hol
Haskell version: if b /= [] then last (a ++ b) = last b

With the Haskell version (last h:t = last t) we could rewrite this 
easily. With the Hol version (last (h :: v2 :: v3) = last (v2 :: v3)) there 
is a little more work to do.
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An oversight

 Using “Induct_on g” for g of type graph resulting in “ill formed 
induction theorem”

 I did not know about the following theorem:
val graphInduct = TypeBase.induction_of (valOf (TypeBase.read 
"RecursiveGraph"));

- > val graphInduct =
|- !P0 P1 P2 P3 P4.

(!N a. P0 (SimpleNode N a)) /\
(!R. P3 R ==> !a N. P0 (RecursiveNode N R a)) /\
(!N N0 N1 N2 b. P1 (RecursiveEdge N N0 N1 N2 b)) /\
(!l R l0. P4 l /\ P0 R /\ P4 l0 ==> P2 (RecursiveContext l R l0)) /\
P3 EmptyRecursiveGraph /\
(!R R0. P3 R /\ P2 R0 ==> P3 (RecursiveGraph R R0)) /\ P4 [] /\
(!R l. P1 R /\ P4 l ==> P4 (R::l)) ==>
(!R. P0 R) /\ (!R. P1 R) /\ (!R. P2 R) /\ (!R. P3 R) /\ !l. P4 l

: Thm.thm
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An oversight

 I spent most of my time proving my own well founded induction 
theorem for graphs

 The “recursive edge problem” came into play
– Could not easily prove that:

 deepenEdge (flattenEdge c e) = (deepenEdge o (flattenEdge c)) e
– One side of the equation got typed as (‘a, ‘b) RecursiveEdge, while 

the other side got typed as (‘a, ‘c) RecursiveEdge
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A better proof

 Fixed the RecursiveEdge problem, by putting 
RecursiveEdge in a separate Hol_datatype 
declaration

 Used the induction theorem for graphs 
provided by Hol, eliminating the need for well 
founded induction proof

 Resulting .sml file is half as long as the first 
proof
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Krenz System Site

Covers and matching 
rules
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Krenz Subgraph / matching

Node1

Node2

Node3

Filter1

Filter2

Filte

Filter4

 Node n can match collection of 
nodes [m], together with the 
edges between nodes in [m]

 When n matches N, and m 
matches M, then the edge (n,m) 
can match all the edges from N 
to M

 Node cannot match filter
 Filter f from n to m can match 

sequence of filters F from N to 
M if the I/O property of the 
sequence F is stronger than 
(implies) the I/O property of the 
filter f

 Filter f from n to m can match 
several filters from N to M 
(same restriction as above)

Pattern

Node1
Node2

Target

Filter1

No match!

Question: Is the more complicated Krenz system (in green) an instance of 
the simpler Krenz system (in Lilac). 
Alternative formulation: Does the complicated Krenz system (in green) 
adhere to the Krenz policy (in Lilac).
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Composition of covers

Node1

Node2
Pattern

Node1

Node2

Intermediate

Subcover

Cover

Filter1

Node1

Node2

Node3

Filter1

Filter2

Filter3

Filter4

Filter1

Filter2

Cover fails

Target

Notice the concept of a recursive graph arising naturally when 
the question of adherence to a Krenz policy is raised
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Composed cover (Filter3 deleted)

Pattern

Node1

Node2

Cover

Filter1

Node1

Node2

Node3

Filter1Filter2

Filter4

Target
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Grothendieck topology

axioms
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Axioms for a Grothendieck topology

 Stated as properties in tool 0
 A Grothendieck topology J on a category C is 

an assignment to each object a of C, a set J(a)
of sieves on a, called covering sieves (or just 
covers), such that:



4/24/201157

Axiom 1:  Identity Cover

 Identity Cover:
– For any object a, the maximal sieve    {f | cod(f) = a}

is in J(a)
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Axiom 2: Stability under change of baseIf R is in J(a), and f::ba is an arrow of C, then the sieve 
f*(R ) = {g::cb | f . g is in R} is in J(b)

h4 h5 h6 h7

g1 g2 g3

R = {h1, … , h7}

cover for b
f*(R) = {g1,g2, g3}

image of b

b
f

a
taken from Srinivas thesis
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Axiom 3: Stability under refinement
If R is in J(a) and S is a sieve on a such that for each arrow f::ba

in R, if f*(S) in J(b), then S is in J(a)
cover for  by b1 cover for by b2

f1*(S) = {g1,g2,g3}
f2*(S) = {g4,g5}

composed cover for a
S = { h1, . . . , h5 }

g1
g2

g3 g4 g5

b1 b2

cover for a
R = { f1 ,  f2 }

f1 f
2

a

a

taken from Srinivas thesis
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Recursive Graph as CategoryCPath  p 

Cnode n  p CEdge e p

CRecursiveGraph rg n e p 

Category (GraphCategory n e p) s rg mor 

Set s rg 

RecursiveGraphHomoMorphism
mor rg n e p

from the Edison library

To use all of this machinery requires placing the 
recursive graph in the setting of category theory
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