
4/24/20111

Krenz Security Architecture
Programatica case study

Peter D. White

Lunch is next!

4/24/20112

Outline

 Application case studies
 The separation concept
 The Krenz concept
 Krenz and NetTop
 Building the Krenz specification
 The recursive graph concept
 The theorem proving effort

– Hol proof of: deepen . flatten = id
 Next steps

4/24/20113

Application case studies

Separation and Krenz

4/24/20114

Krenz application of Programatica

 Provide an industrial strength test case for
Programatica
– Specification and program development
– Theorem proving

 Provide the foundation for a Krenz kernel
– Security policy model useable both by Krenz and

NetTop
– Kernel implementation with a Posix like interface

4/24/20115

The separation concept

Getting closer to
lunch

4/24/20116

Process Protection

 Protection can be used to
prevent direct interaction of
processes

– Separate logical address
space

– File system permissions
 Lots of communication

pathways exist via the kernel
itself

– Resource limits
– Resource availability

 E.g. ports, sockets
– Unadvertised

communications paths

Kernel

Process A Process B

Firewall
Prevented by
Kernel

Lots of
these exist

4/24/20117

Process Separation

 Still use process
protection mechanisms

– Separate logical address
space

– File system permissions

 No communication
pathways exist via the
kernel itself

– This implies a careful
design of the kernel to
meet the separation policy

Kernel

Process A Process B

Firewall
Prevented by
Kernel

None of
these exist

4/24/20118

A separation policy

 The kernel permits
interaction between
processes if and only if
explicitly allowed by the
policy

 The policy is a directed
graph of processes

– The example here has
only three nodes and one
edge

PA

Step

Start

PB

StepStart

PC

Step
Start

System
Start

Step

Some processes are permitted to affect
each other, some are not

Process B is permitted
to influence Process C

4/24/20119

Why a separation kernel?

 For high confidence
applications

– High assurance of red black
separation

– High assurance of fault
tolerance

 In the absence of separation
– Cause and effect tend to be

local, however
– Anything could affect

anything

Process A Process B

Firewall

Prevented by Kernel;
critical security or
safety properties of
process B cannot be
affected by process A

4/24/201110

The Krenz Concept

Enhancing the
separation concept

4/24/201111

The Krenz concept

 Replace communication
policy with filtered
communication policy

– Communication from A to B
is permitted only if filtered by
the A B filter.

 Krenz policy is also a directed
graph, with a property (filter)
associated with each edge

 Krenz policy was partly a
result of an industry survey to
determine information
security needs

Filter

A B

Filter

B A

Process A

Process B

4/24/201112

Why the Krenz Concept?

 Separation policies are
good at:

– Prohibiting some flows of
information completely

– Permitting some flows of
information without
restriction

 Separation is the basis
for establishing security
and safety critical
properties

 A Krenz policy is good
at:

– Prohibiting some types of
information flows (e.g.
viruses)

– Permitting information
flows with restriction (e.g.
encryption, signature, …)

 The Krenz policy
captures naturally what
most security policies
are about

4/24/201113

Krenz and NetTop

A brief diversion from
the Programatica
work

4/24/201114

Krenz and NetTop

 NetTop provides separation
between virtual machines hosted
on Linux

 NetTop permits a communication
pipeline between virtual machine
when specified by policy

 The Krenz security concept is a
match for what NetTop does

 Krenz can provide a model for
how NetTop can be used to
construct networks in accordance
with a security policy

 Historical note: Krenz resulted
partly from an attempt to provide
cots OS and applications with a
high degree of assurance

NetTop Kernel

Virtual
Machine A

Virtual
Machine B

Firewall

These
should not
exist

Communication
Pipeline With filters

4/24/201115

Building the Krenz specification

The recursive graph
concept

4/24/201116

Haskell construction of the Krenz

 A directed graph data type is
defined, and Krenz and
Separation are defined in
terms of the Graph data type

 However: want to apply the
Krenz concept to a graph of
coalitions

– Each coalition is a network,
with its own Krenz policy
 Each network has sub

networks, with their own
Krenz policy

– Each sub network has
platforms, with their own
Krenz policy

 …

Krenz Concept Separation Concept

Graph data type

Layered Krenz Concept Layered Separation
Concept

Simple graph data type inadequate
for the layered Krenz

Simple graph data type provide a
basis for the separation and Krenz
specifications

4/24/201117

The recursive graph concept

5

2

1
2

4
1 3

4

21

4 3

4
2

3

6

2
1

1

3

Level 1

Level 2

Level 3

4/24/201118

Krenz Concept Separation Concept

Recursive Graph data type

Layered Krenz Concept Layered Separation Concept

Krenz
Assurance
Concept

Layered Krenz
Assurance
Concept

Grothendieck topology
Providing the basis for
recursive graph pattern
matching (based on the
work of Y.V. Srinivas)

A lot hinges on how well recursive graphs are defined!

The hierarchy of data types

4/24/201119

5

2

1
2

4
1 3

4

21

4 3

4
2

3

6

2

1

1

3

Level 1

Level 2

Level 3

Recursive Graph Structure

Currently not allowed

Not legal, violates
“locality”

4/24/201120

1

2
4

3,2

3,1 3,3

3,4,1

5,1

3,4,2

5,2
6

5,3

5,4,1 5,4,2

5,4,4 5,4,2

Flattened Recursive Graph

4/24/201121

Programatica property

 Naïve property:
– deepen . flatten = id

 However, the flatten function was defined with
an accumulator argument, to keep track of
where it is in the flattening process. A less
naïve property to prove is:
– !a. deepen . (flatten a) = id
– Actual statement: !a g. deepen (flatten a g) = g

4/24/201122

Graphs defined inductively (Martin Erwig)

 Building blocks
– type Node a = (Int, a)
– type Edge b= (Int, Int, b)
– type Adj b = [(b, Node)] – Edges listed by their labels
– type Context a b = (Adj b, Node a, Adj b, b)
– type Decomp a b = (Mcontext a b, Graph a b)
– type Graph a b = -- abstract type

 Constructors
– empty :: Graph a b
– embed :: Context a b -> Graph a b -> Graph a b

 A graph is built inductively by adding contexts.
 A context is a new node, with a list of predecessor and a list of

successor nodes (which should already be in the graph)

 Destructors
– match :: Node -> Graph a b -> Decomp a b

4/24/201123

Recursive graphs defined inductively
– type NodeComponent = Integer

– type NodeName = [NodeComponent]

– data RecursiveNode a b =
SimpleNode NodeName a |
RecursiveNode NodeName (RecursiveGraph a b) a

data RecursiveEdge b = RecursiveEdge {

reSource :: NodeName,

reUplink :: NodeName, -- For going up in the graph

reDownlink :: NodeName, -- For going down in the graph

reSink :: NodeName,

reEdgeLabel :: b

}

– data RecursiveContext a b = RecursiveContext {
preds :: [RecursiveEdge b], -- List of predecessors
node :: RecursiveNode a b, -- Node to add
succs :: [RecursiveEdge b] -- List of successors
}

– type Decomp a b =

– (Maybe (RecursiveContext a b), RecursiveGraph a b)

– data RecursiveGraph a b =
EmptyRecursiveGraph |
RecursiveGraph (RecursiveGraph a b) (RecursiveContext a b)

– See also well formed graph

4/24/201124

The recursive graph concept

5

2

1
2

4
1 3

4

21

4 3

4
2

3

6

2
1

1

3

Level 1

Level 2

Level 3

RecursiveEdge [3] [3] [5] [1] b

RecursiveEdge [1] [] [3] [2] b

RecursiveEdge [2] [4] [] [3] b

4/24/201125

Hol version of Recursive Graph
– val x = Hol_datatype

`RecursiveNode = SimpleNode of int list => 'a |
RecursiveNode of int list => RecursiveGraph => 'a;

RecursiveEdge =
<|source: NodeName;
uplink: NodeName;
downlink: NodeName;
sink: NodeName;
edgeLabel: 'b
|>;

RecursiveAdjacency = RecursiveAdjacency of RecursiveEdge list;
RecursiveContext =
<|preds: RecursiveEdge list;
newnode: RecursiveNode;
succs: RecursiveEdge list
|>;

RecursiveGraph = EmptyRecursiveGraph |
RecursiveGraph of RecursiveGraph => RecursiveContext;

Decomp =
<|flag: bool;
component: RecursiveContext;
subgraph: RecursiveGraph
|>`

Here be monsters: The type of RecursiveEdge is ``:NodeName ->
NodeName -> NodeName -> NodeName -> 'a -> ('b, 'a)
RecursiveEdge`` Note that there are two parameters (‘b, ‘a) according to
the output, but there is really only one parameter in the definition.

4/24/201126

The theorem proving effort

Hol proof of: deepen .
flatten = id

4/24/201127

Thinking about inductive proof

 The flatten and deepen functions follow the recursive
structure of the graph itself

 This structure carries all the way down through recursive
context, recursive edge, and recursive node (backup slides)

flatten :: NodeName -> -- Node name at next higher level
RecursiveGraph a b -> -- Graph to flatten
RecursiveGraph a b -- Flattened graph

flatten _context EmptyRecursiveGraph = EmptyRecursiveGraph
flatten context (RecursiveGraph g rc) =

RecursiveGraph (flatten context g) (flattenContext context rc)

-- Deepen a flattened graph, restoring its recursive structure.
deepen :: (Show a, Show b) =>

RecursiveGraph a b -> -- Graph to deepen
RecursiveGraph a b -- Resulting deepened graph

deepen EmptyRecursiveGraph = EmptyRecursiveGraph
deepen (RecursiveGraph g rc) = RecursiveGraph (deepen g) (deepenContext rc)

4/24/201128

Well formed recursive graph

 Did not explicitly think about this until time to prove theorems
 The theorem to be proved is true only for well formed graphs
 Well formed node

– Length of nodename is 1
– Subgraph is well formed

 Well formed edge
– Source and sink lengths are 1
– Up ++ src, down ++ snk have no common prefix

 Well formed context
– Predecessor edges, Successor edges, and node are all well formed

 Well formed graph
– Graph and context are well formed

4/24/201129

Well formed recursive graph

5

2

1
2

4
1 3

4

21

4 3

4
2

3

6

2
1

1

3

Level 1

Level 2

Level 3

RecursiveEdge [2] [4] [4] [1] b
Path up = [4,2]
Path down = [4,2]
Common prefix = 4

4/24/201130

Theorem proving summary

 Hol automatically adjusted formulas with
overlapping patterns
– Haskell:

 last [h] = h
 last (h : t) = last t – overlaps on lists of length 1

– Hol:
 last [h] = h (* length one list *)
 last (h ::v2:: v3) = last (v2 :: v3) (* length >= 2 *)

– Caused some rethinking of the proofs

4/24/201131

Theorem proving summary

 Recursive edge problem
– (RecursiveEdge src up dn snk b) given type with

two type variables `a and `b. The type is too general
 “Ill formed induction” on graphs

– Had to create my own subgraph relation, prove it is
well founded, and construct an induction theorem

– Later, discovered TypeBase.induction_of (valOf
(TypeBase.read "RecursiveGraph"));

4/24/201132

Errors found

 The common prefix of
two node names of
length one should be
null, even when the two
nodenames are the
same.

– Common prefixes can be
eliminated

 The node name in a
recursive node was not
being addressed

1

RecursiveEdge [1] [] [] [1] b
Path up: [] ++ [1] = [1]
Path down: [] ++ [1] = [1]
Common prefix: [1]
Oops!

4/24/201133

Next steps

A secure Posix or
Linux like separation
kernel

4/24/201134

Problems with Linux assurance

 Monolithic kernel: A large amount of code
running in kernel mode, all of which can corrupt
the kernel

 Configurable and dynamic device drivers
 Some interfaces provide “covert” information

flows
 Process fork: Result in child process that is

clone of parent

4/24/201135

Haskell solutions: Kernel
architecture

 Construct a Kernel with device drivers that are threads
in the ST monad (State monad)

– Device driver state is guaranteed not corruptible by other
kernel threads

– Device driver can run concurrently with other kernel threads
 Linux provides standard interfaces to device drivers

– Formulate this standard interface as a type, then the device
driver is guaranteed to be a function only of:
 The interface provided by the kernel
 Its own state
 Its input from the kernel

4/24/201136

Haskell solutions: Kernel
architecture

 Modular kernel
– Provide virtual file system as separate module

 Formulate types to ensure that the virtual file system cannot
corrupt other part of the kernel, and cannot be corrupted by other
parts of the kernel

– Provide kernel IO as separate module
 ibid

 Lazy IO
– Many sophisticated kernel features are instances of lazy

evaluation:
 File system page with dirty bit
 Demand paging
 Copy on write for process cloning

4/24/201137

Solutions: Posix API and
separation

 Provide additional checks to those in standard Posix,
to increase separation between processes

 Provide a comprehensive list of covert channels, by
showing that the operation of a process is a function
only of:

– Its own state
– Its input
– A list of functions of the kernel state

 (e.g. disk full, socket usage, …)

4/24/201138

Summary

4/24/201139

Summary

 Program development:
– Design with properties is a powerful technique

 Theorem proving:
– Want a simple minded embedding into the theorem prover
– Test before proof: It is easier to prove the correctness of

correct code
– Make a Hol theories for the Haskell prelude, and many Haskell

libraries, with lots of pre proven theorems.
– A Haskell to Hol translator would have avoided the recursive

edge problem

4/24/201140

Summary

 Krenz development
– Krenz provides a good model for secure systems
– We will build a prototype Posix / Linux like kernel

 Subset of Posix interfaces
 Only a few higher level device drivers
 Kernel architecture providing dynamic loading of kernel

modules, with type safety providing assurance that the new
modules do not corrupt the kernel

4/24/201141

Backup slides

4/24/201142

Thinking about inductive proof
 The structure of flatten and deepen carry all the way down

deepenContext :: (Show a, Show b) =>
RecursiveContext a b -> RecursiveContext a b

deepenContext (RecursiveContext preds (SimpleNode nn a) succs) =
RecursiveContext
(deepenEdges preds)
(SimpleNode (deepenNodeName nn) a)
(deepenEdges succs)

deepenContext (RecursiveContext preds (RecursiveNode nn sub a) succs) =
RecursiveContext
(deepenEdges preds)
(RecursiveNode nn (deepen sub) a)
(deepenEdges succs)

flattenContext :: NodeName -> RecursiveContext a b -> RecursiveContext a b
flattenContext context (RecursiveContext preds (SimpleNode nn a) succs) =

RecursiveContext
(flattenEdges context preds)
(SimpleNode (flattenNodeName context nn) a)
(flattenEdges context succs)

flattenContext context
(RecursiveContext preds (RecursiveNode nn sub a) succs) =

RecursiveContext
(flattenEdges context preds)
(RecursiveNode nn (flatten (context ++ nn) sub) a)
(flattenEdges context succs)

A mistake: Should have made a “flattenNode”
function for this, to conceal details during
proof of flattenContext.

4/24/201143

Thinking about inductive proof
 The structure of flatten and deepen carry all

the way down
deepenEdge :: RecursiveEdge b -> RecursiveEdge b
deepenEdge (RecursiveEdge source _up _down sink b) =

let cp = commonPrefix source sink
in RecursiveEdge

(deepenNodeName source) -- Deep source is one long
(init (drop (length cp) source)) -- Deep up
(init (drop (length cp) sink)) -- Deep down
(deepenNodeName sink) -- Deep sink is one long
b

deepenEdges :: [RecursiveEdge b] -> [RecursiveEdge b]
deepenEdges edges = map deepenEdge edges

flattenEdge :: NodeName -> RecursiveEdge b -> RecursiveEdge b
flattenEdge context (RecursiveEdge source up down sink b) =

RecursiveEdge
(flattenNodeName (context ++ up) source)
[]
[]
(flattenNodeName (context ++ down) sink)
b

flattenEdges :: NodeName -> [RecursiveEdge b] -> [RecursiveEdge b]
flattenEdges context edges = map (flattenEdge context) edges

Node name components are added
to the end as the graph gets deeper.
The proofs might have been simpler
if they were added at the beginning

4/24/201144

Embedding in Hol, a simple minded approach

 Straight translation to Hol works because I did not
use existential types, monads, …

(* Need some Haskell stuff (we take it for granted) *)
val init_def = Define `(init [x] = [])

/\ (init (h::t) = h :: (init t))`;
(* Observe the "h::v2::v3 in the Hol output, this is caused by

the pattern overlap from the Haskell prelude *)
val last_def = Define `(last [x] = x)

/\ (last (h::t) = last t)`;
(* If you put the first equation last, the definition does not
work, (Hol bug????) *)
val drop_def = Define `((drop (SUC n) (h::t)) = (drop n t))

/\ (drop ZERO xs = xs)
/\ (drop n NIL = NIL)
/\ (drop 0 NIL = NIL)` handle e => raise e;

Note that init and last are partial functions

4/24/201145

Embedding in Hol, a simple minded approach

 Some curious features of the Hol output

> val init_def =
|- (init [x] = []) /\ (init (h::v2::v3) = h::init (v2::v3))
: Thm.thm

- <<HOL message: inventing new type variable names: 'a.>>
Equations stored under "last_def".
Induction stored under "last_ind".
> val last_def =

|- (last [x] = x) /\ (last (h::v2::v3) = last (v2::v3))
: Thm.thm

- <<HOL message: inventing new type variable names: 'a.>>

There are overlapping patterns in the Haskell definitions for init and
last, and this becomes a concern for theorem proving in Hol

4/24/201146

A first proof

4/24/201147

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!a b. ~(b = []) ==> (last (APPEND a b) = last b)

1 subgoal:
> val it =

last (APPEND a b) = last b

~(b = [])

2 subgoals:
> val it =

!h. last (APPEND (h::a) b) = last b

0. ~(b = [])
1. last (APPEND a b) = last b

last (APPEND [] b) = last b

~(b = [])

Goal proved.
[.] |- last (APPEND [] b) = last b

Remaining subgoals:
> val it =

!h. last (APPEND (h::a) b) = last b

0. ~(b = [])
1. last (APPEND a b) = last b

1 subgoal:
> val it =

!h. last (h::APPEND a b) = last b

0. ~(b = [])
1. last (APPEND a b) = last b

1 subgoal:
> val it =

!h. last (h::APPEND a b) = last b

0. ~(b = [])
1. last (APPEND a b) = last b
2. APPEND a b = x::y

1 subgoal:
> val it =

last (x::y) = last b

0. ~(b = [])
1. last (APPEND a b) = last b
2. APPEND a b = x::y

Goal proved.
[...] |- last (x::y) = last b

Goal proved.
[...] |- !h. last (h::APPEND a b) = last b

Goal proved.
[..] |- !h. last (h::APPEND a b) = last b

Goal proved.
[..] |- !h. last (APPEND (h::a) b) = last b

Goal proved.
[.] |- last (APPEND a b) = last b

> val it =
Initial goal proved.
|- !a b. ~(b = []) ==> (last (APPEND a b) = last b)

REPEAT STRIP_TAC

Induct_on ‘a’

PROVE_TAC [APPEND]

‘?x y. APPEND a b = x :: y’ by
PROVE_TAC[NOT_NULL_STRUCT,APPEND,APPEND_eq_
NIL]

ASM_REWRITE_TAC [APPEND]

ASM_REWRITE_TAC [last_DEF]

PROVE_TAC []

An experience with Hol
Haskell version: if b /= [] then last (a ++ b) = last b

With the Haskell version (last h:t = last t) we could rewrite this
easily. With the Hol version (last (h :: v2 :: v3) = last (v2 :: v3)) there
is a little more work to do.

4/24/201148

An oversight

 Using “Induct_on g” for g of type graph resulting in “ill formed
induction theorem”

 I did not know about the following theorem:
val graphInduct = TypeBase.induction_of (valOf (TypeBase.read
"RecursiveGraph"));

- > val graphInduct =
|- !P0 P1 P2 P3 P4.

(!N a. P0 (SimpleNode N a)) /\
(!R. P3 R ==> !a N. P0 (RecursiveNode N R a)) /\
(!N N0 N1 N2 b. P1 (RecursiveEdge N N0 N1 N2 b)) /\
(!l R l0. P4 l /\ P0 R /\ P4 l0 ==> P2 (RecursiveContext l R l0)) /\
P3 EmptyRecursiveGraph /\
(!R R0. P3 R /\ P2 R0 ==> P3 (RecursiveGraph R R0)) /\ P4 [] /\
(!R l. P1 R /\ P4 l ==> P4 (R::l)) ==>
(!R. P0 R) /\ (!R. P1 R) /\ (!R. P2 R) /\ (!R. P3 R) /\ !l. P4 l

: Thm.thm

4/24/201149

An oversight

 I spent most of my time proving my own well founded induction
theorem for graphs

 The “recursive edge problem” came into play
– Could not easily prove that:

 deepenEdge (flattenEdge c e) = (deepenEdge o (flattenEdge c)) e
– One side of the equation got typed as (‘a, ‘b) RecursiveEdge, while

the other side got typed as (‘a, ‘c) RecursiveEdge

4/24/201150

A better proof

 Fixed the RecursiveEdge problem, by putting
RecursiveEdge in a separate Hol_datatype
declaration

 Used the induction theorem for graphs
provided by Hol, eliminating the need for well
founded induction proof

 Resulting .sml file is half as long as the first
proof

4/24/201151

Krenz System Site

Covers and matching
rules

4/24/201152

Krenz Subgraph / matching

Node1

Node2

Node3

Filter1

Filter2

Filte

Filter4

 Node n can match collection of
nodes [m], together with the
edges between nodes in [m]

 When n matches N, and m
matches M, then the edge (n,m)
can match all the edges from N
to M

 Node cannot match filter
 Filter f from n to m can match

sequence of filters F from N to
M if the I/O property of the
sequence F is stronger than
(implies) the I/O property of the
filter f

 Filter f from n to m can match
several filters from N to M
(same restriction as above)

Pattern

Node1
Node2

Target

Filter1

No match!

Question: Is the more complicated Krenz system (in green) an instance of
the simpler Krenz system (in Lilac).
Alternative formulation: Does the complicated Krenz system (in green)
adhere to the Krenz policy (in Lilac).

4/24/201153

Composition of covers

Node1

Node2
Pattern

Node1

Node2

Intermediate

Subcover

Cover

Filter1

Node1

Node2

Node3

Filter1

Filter2

Filter3

Filter4

Filter1

Filter2

Cover fails

Target

Notice the concept of a recursive graph arising naturally when
the question of adherence to a Krenz policy is raised

4/24/201154

Composed cover (Filter3 deleted)

Pattern

Node1

Node2

Cover

Filter1

Node1

Node2

Node3

Filter1Filter2

Filter4

Target

4/24/201155

Grothendieck topology

axioms

4/24/201156

Axioms for a Grothendieck topology

 Stated as properties in tool 0
 A Grothendieck topology J on a category C is

an assignment to each object a of C, a set J(a)
of sieves on a, called covering sieves (or just
covers), such that:

4/24/201157

Axiom 1: Identity Cover

 Identity Cover:
– For any object a, the maximal sieve {f | cod(f) = a}

is in J(a)

4/24/201158

Axiom 2: Stability under change of baseIf R is in J(a), and f::ba is an arrow of C, then the sieve
f*(R) = {g::cb | f . g is in R} is in J(b)

h4 h5 h6 h7

g1 g2 g3

R = {h1, … , h7}

cover for b
f*(R) = {g1,g2, g3}

image of b

b
f

a
taken from Srinivas thesis

4/24/201159

Axiom 3: Stability under refinement
If R is in J(a) and S is a sieve on a such that for each arrow f::ba

in R, if f*(S) in J(b), then S is in J(a)
cover for by b1 cover for by b2

f1*(S) = {g1,g2,g3}
f2*(S) = {g4,g5}

composed cover for a
S = { h1, . . . , h5 }

g1
g2

g3 g4 g5

b1 b2

cover for a
R = { f1 , f2 }

f1 f
2

a

a

taken from Srinivas thesis

4/24/201160

Recursive Graph as CategoryCPath p

Cnode n p CEdge e p

CRecursiveGraph rg n e p

Category (GraphCategory n e p) s rg mor

Set s rg

RecursiveGraphHomoMorphism
mor rg n e p

from the Edison library

To use all of this machinery requires placing the
recursive graph in the setting of category theory

4/24/201161

	Krenz Security Architecture�Programatica case study
	Outline
	Application case studies
	Krenz application of Programatica
	The separation concept
	Process Protection
	Process Separation
	A separation policy
	Why a separation kernel?
	The Krenz Concept
	The Krenz concept
	Why the Krenz Concept?
	Krenz and NetTop
	Krenz and NetTop
	Building the Krenz specification
	Haskell construction of the Krenz
	The recursive graph concept
	The hierarchy of data types
	Recursive Graph Structure
	Flattened Recursive Graph
	Programatica property
	Graphs defined inductively (Martin Erwig)
	Recursive graphs defined inductively
	The recursive graph concept
	Hol version of Recursive Graph
	The theorem proving effort
	Thinking about inductive proof
	Well formed recursive graph
	Well formed recursive graph
	Theorem proving summary
	Theorem proving summary
	Errors found
	Next steps
	Problems with Linux assurance
	Haskell solutions: Kernel architecture
	Haskell solutions: Kernel architecture
	Solutions: Posix API and separation
	Summary
	Summary
	Summary
	Backup slides
	Thinking about inductive proof
	Thinking about inductive proof
	Embedding in Hol, a simple minded approach
	Embedding in Hol, a simple minded approach
	A first proof
	An experience with Hol
	An oversight
	An oversight
	A better proof
	Krenz System Site
	Krenz Subgraph / matching
	Composition of covers
	Composed cover (Filter3 deleted)
	Grothendieck topology
	Axioms for a Grothendieck topology
	Axiom 1: Identity Cover
	Axiom 2: Stability under change of base
	Axiom 3: Stability under refinement
	Recursive Graph as Category
	Slide Number 61

