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Functional Correctness

Specification

Code

What

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66



NICTA Copyright 2010 From imagination to impact 12

Functional Correctness

Specification

Code

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66



NICTA Copyright 2010 From imagination to impact 13

*conditions apply

Specification

Proof

Code



NICTA Copyright 2010 From imagination to impact 13

*conditions apply

Specification

Proof

Expectation

Assumptions

Code



NICTA Copyright 2010 From imagination to impact 13

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)
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Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis
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• C refines A if all behaviours of C are contained in A

• Sufficient: forward simulation
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Old Story: Refinement

A

C
s’

s

t’

t

S S
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Two Teams

Formal Methods Practitioners

Kernel Developers

Exterminate All 
OS Abstractions!

(Engler 95)

The Power of 
Abstraction

(Liskov 09)
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Design for Verification

Reducing Complexity

Hardware
• drivers outside kernel

Concurrency
• event based kernel

• limit preemption

Code
• derive from functional representation
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C subset

Everything from C standard 

• including: 
- pointers, casts, pointer arithmetic
- data types
- structs, padding
- pointers into structs
- precise finite integer arithmetic

• plus compiler assumptions on:
- data layout, encoding, endianess

• minus:
- goto, switch fall-through
- reference to local variable
- side-effects in expressions
- function pointers (restricted)
- unions 
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Common Criteria

EAL Requirem. Funct Spec TDS Implem.

EAL1  Informal   

EAL2  Informal Informal  

EAL3  Informal Informal  

EAL4  Informal Informal Informal

EAL5  Semiformal Semiformal Informal

EAL6 Formal Semiformal Semiformal Informal

EAL7 Formal Formal Formal Informal

L4.verified Formal Formal Formal Formal

26
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Did you find any Bugs?

Bugs found

  during testing:  16

  during verification:
• in C:           160

• in design: ~150

• in spec:    ~150

                        460 bugs

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort
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Take-Grant model

30

Lipton and Snyder:

• entities represented as nodes of a graph
• capabilities represented as edges of a graph
• rights are contained in capabilities

e3

e2e1

e0Grant Read, 
Write

Create

Read 
Write
Take
Grant
Create

The Rights:
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Operations Summary

34

e

e1
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Grant ∈ c1

c2

diminish c2 R

GrantCreate

e e1
c1

Remove Delete
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all rights

n
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Questions

35

For any state in the future:

• Can entity E do X?
• Can E gain authority to do X?

• Can E gain more authority than it has? 

• How much more?

• Can information flow from A to B?
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Subsystems:	

 subsys s x = {e. s ⊢ e ↔∗ x}

	

 Theorems:	

 s′ ∈ execute cmds s ∧ s′ ⊢ x ↔∗ y ⇒ s ⊢ x ↔∗ y

	

 	

 s′ ∈ execute cmds s ∧ c :> subsys-caps s x ⇒ c :> subsys-caps s′ x
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Example
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e0 e1

C

C

e3
R

e2

e4

R, W

e5

e6

e7

R, W,
G, C7

R, W,
G, C6

R, W,
G, C
3

R, W,
G, C5 R, W,

G, C4

R, W,
G, C2

R, W,
G, C0

R
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Take-Grant Summary

• Simple capability model

• Decidable access control
– Basic information flow model
– Isolated subsystems

• Proof in progress: 
– seL4 implements this model

39
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Trustworthy Embedded Systems

41

• L4.verified: 
functional correctness for 
10,000 loc

• Next step: 
formal guarantees for 
> 1,000,000 loc
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How?

Exploit:

• seL4 isolation
• verified 

properties
• MILS 

architectures
Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy 
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

42
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Global picture

  Build system with minimal TCB
  Formalise and prove security properties about architecture
  Prove correctness of trusted components 
  Prove correctness of setup

43
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Example System

44

• Multilevel Secure Access Device 

SAC 

Information Provider A Information Provider B 

Terminal 

User 

Network A Network B 

Network Interface B 

Terminal Network Interface 

Network Interface A 

Terminal Network 

No information flow
between providers A and B

through SAC

even if they collaborate
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– Filter Manager (FM)
– Filter
– Driver for D

• (and)
– kernel
– booter
– hardware

FM SAC-C  

Net-A Net-B 

NIC-A NIC-B 

Filter 

TIMER Driver-A Driver-B 
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NIC-D 

• Minimal TCB:



NICTA Copyright 2010 From imagination to impact

First Design

45

– Filter Manager (FM)
– Filter
– Driver for D

• (and)
– kernel
– booter
– hardware

FM SAC-C  

Net-A Net-B 

NIC-A NIC-B 

Filter 

TIMER Driver-A Driver-B 

Driver-D 

DT 

CO
M

PO
N

EN
TS

 

NIC-D 

SAC-Controller:
Embedded Linux + 
Web Server UI

• Minimal TCB:



NICTA Copyright 2010 From imagination to impact

First Design

46

– Filter Manager (FM)
– Filter
– Driver for D

• (and)
– kernel
– booter
– hardware

FM SAC-C  

Net-A Net-B 

NIC-A NIC-B 

Filter 

TIMER Driver-A Driver-B 

Driver-D 

DT 

CO
M

PO
N

EN
TS

 

NIC-D 

• Minimal TCB?



NICTA Copyright 2010 From imagination to impact

We can do better!

47

– Router Manager (RM)

• (and)
– kernel
– booter
– hardware

• Even smaller TCB

CT DT 

Net-A Net-B 

NIC-C 

NIC-A NIC-B 

NIC-D 

BO
OT

ER
 

x8
6 se

L4
 

CO
M

PO
N

EN
TS

 

NIC-A 

RM SAC-C  R 

TIMER 

NIC-C = Control Network Card 
NIC-D = Data Network Card 
CT = Control Terminal 
DT = Data Terminal 

Net-A = Network A 
Net-B = Network B  
NIC-A = Network Card for Network A 
NIC-B = Network Card for Network B 

R= Router 
RM = Router Manager 
SAC-C = SAC Controller 

has access to
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Security Goal
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Goal:   No information flowing between providers A and B

info
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Security Goal
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Net-A Net-B
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1

R-code
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(R-
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r
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Goal:   No information flowing between providers A and B

info

Assumption:   Info flow through front-end terminal is trusted
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Security Goal

RM

SAC-C 

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

1

R-code

(R)

(R-
mem) TIMER

c

r
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TIMER
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r
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c

rw

Approach:
- data from Net-A confidential; should not be read by Net-B
- label-based security:

entities tagged ‘contaminated’ if may contain data from Net-A
NIC-A always contaminated

-  Goal: prove NIC-B never contaminated (always ‘not contaminated’)
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Security Analysis
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Life Cycle
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R-code
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rw

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> None
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

r R

w W

r R

w W



NICTA Copyright 2010 From imagination to impact
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SAC-C 

CT DT

Net-A Net-B

rw

RW

rw

2

TIMER

c

r

NIC-C

NIC-B
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NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> None
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle

r R
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 RM receives request 
to switch to Net-A

rw

NIC-C
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R-code

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> None
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle
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RM creates a new 
Router instance R

rwcg
(and gets full rights to 

the newly created 
object)

NIC-C
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r

cr
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TIMER
CHIP

RW
(R-

mem)

R-code

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {}, not_contaminated  )
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle
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w W
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RM initializes the 
Router instance
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NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {}, not_contaminated  )
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle
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RM grants to R its 
rights to

NIC-A, NIC-D,

R-mem, R-code 
TIMER, and itself
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TIMER
CHIP

RW
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NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated  )
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle
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RM
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RWcg

 DT starts to communicate 
with Net-A, through R.

This may imply the 
creation of new objects 

using R-mem and granting 
caps to them.

NIC-C

NIC-B

NIC-D

rw

r

 R-mem 

R

RWCGc

rw

rw

TIMER
CHIP

RWr
R-code

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, contaminated )
R_mem_id!    -> Some ( {…}, contaminated  )
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle
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CT sends a request 
to switch to Net-B 

(while DT still 
communicates with 
Net-A through R)
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TIMER
CHIP
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8

R-code

 R-mem 

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, contaminated )
R_mem_id!    -> Some ( {…}, contaminated  )
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle

r R

w W
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NIC-B
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RWCGc

 RM receives request 
to switch to Net-B

rw

R

RWcg

Rrw

TIMER
CHIP

RW

9

R-code

 R-mem 

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, contaminated )
R_mem_id!    -> Some ( {…}, contaminated  )
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle

r R

w W

r R
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RM
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Net-A Net-B
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rw

R

TIMER
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r

NIC-C

NIC-B

NIC-D

rw

r

c

rw

RM revokes all caps 
given to R

(using the cap used to 
create R)

r

rw

TIMER
CHIP

RW

C

10

R-code

 R-mem 

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {}, contaminated )
R_mem_id!    -> Some ( {…}, contaminated  )
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle

r R

w W

r R

w W



RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {}, contaminated )
R_mem_id!    -> Some ( {}, contaminated  )
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )NICTA Copyright 2010 From imagination to impact
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TIMER
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NIC-C

NIC-B

NIC-D

rw

r

C

rw

RM revokes 
caps of R-mem

(using create cap to 
R-mem)

r

rw

TIMER
CHIP

RW
R-code

 R-mem 

NIC-A

Life Cycle
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RM

SAC-C 
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Net-A Net-B
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RM deletes R and R-
mem

r
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TIMER
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RW
R-code

(R-
mem)

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> None
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle

r R

w W

r R

w W
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RM flushes 
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NIC-D

r
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TIMER
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RW
R-code

(R-
mem)

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> None
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle

r R

w W

r R

w W
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RM

SAC-C 

CT DT

Net-A Net-B
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R

TIMER

C

r
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RM creates a new 
Router instance R

rwcg
(and gets full rights to 

the newly created 
object)

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {}, not_contaminated )
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle

r R

w W

r R
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RM

SAC-C 

CT DT

Net-A Net-B
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R

TIMER

r

r

rw

c

RM grants to R its 
rights to

NIC-B, NIC-D,

R-mem, R-code, 
TIMER and itself

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW

rWcg

R-code
(R-

mem)

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {}, not_contaminated )
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle
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w W
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RM grants to R its 
rights to

NIC-B, NIC-D,

R-mem, R-code, 
TIMER and itself
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RM

SAC-C 

CT DT

Net-A Net-B

rw
rw
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R

TIMER

r

r

rw

rwcG

c

rw rwcg

NIC-C

NIC-B

NIC-D

r

rw

rw
c

r

cr

rrw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

RM_id  !    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated )
SAC_C_id      -> Some ( {rw_to_NIC_C, r_to_TIMER}, not_contaminated )
TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated )
R_mem_id!    -> None
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
NIC_C_id !    -> Some ( {}, not_contaminated )
NIC_D_id !    -> Some ( {}, not_contaminated )
R_code_id     -> Some ( {}, not_contaminated )
TIMER_CHIP_id -> Some ( {}, not_contaminated )

Life Cycle
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DT starts to communicate 
with Net-B, through R.

This may imply the 
creation of new objects 

using R-mem and granting 
some caps to them. 
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R

TIMER

r
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TIMER_id!    -> Some ( {rw_to_TIMER_CHIP}, not_contaminated )
R_id!    -> Some ( {rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated )
R_mem_id!    -> Some ( {…}, not_contaminated )
NIC_A_id      -> Some ( {}, contaminated )
NIC_B_id !    -> Some ( {}, not_contaminated )
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So far
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So far

• Can build systems with
– large untrusted components
– plus few small, trusted components
– trusted = needs behaviour spec
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So far

• Can build systems with
– large untrusted components
– plus few small, trusted components
– trusted = needs behaviour spec

• Use take-grant to model security
– can simulate system
– modelling already finds bugs
– high-level proof in Isabelle/HOL or SPIN
– includes behaviour of trusted component
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Future
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Future

• Need to 
verify low-level design
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Future

• Need to 
verify low-level design

• Building tool-chain for:
– describing cap layout 

(capDL)
– generating booter
– generating booter proof
– abstraction to take-grant
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More Future
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More Future

• Verify 
Trusted Component
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More Future

• Verify 
Trusted Component

• Refine to C:
– interface with kernel
– use most abstract level 

possible
– make sure sec property

preserved by refinement
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Summary

Formal proof all the way from spec to C. 

Formal Code Verification up to 10kloc:

It works.
It’s feasible.
It’s cheaper.

(It’s fun, too)

• 200kloc handwritten, machine-checked proof

• ~460 bugs (160 in C)

• Verification on code, design, and spec
• Systems with trusted components
• The future: formal proof for large systems down to code



Thank You

L4.verified


