
L4.verified
Gerwin Klein

NICTA Copyright 2010 From imagination to impact

The Team

2

NICTA Copyright 2010 From imagination to impact

The Team

2

NICTA Copyright 2010 From imagination to impact 3

NICTA Copyright 2010 From imagination to impact

1 microkernel

0 bugs

 8,700 l nes of Ci

qed

*conditions apply

*

3

NICTA Copyright 2010 From imagination to impact 2

The Goal

NICTA Copyright 2010 From imagination to impact 11

NICTA Copyright 2010 From imagination to impact 12

NICTA Copyright 2010 From imagination to impact 13

NICTA Copyright 2010 From imagination to impact

The Problem

8

NICTA Copyright 2010 From imagination to impact

Motivation

Annoying Problem Real Problem

9

NICTA Copyright 2010 From imagination to impact

Small Kernels

10

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

Hardware

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

Platforms:
- ARMv6 (verified)
- x86
- x86/IOMMU
- x86/SMP

NICTA Copyright 2010 From imagination to impact

Small Kernels

10

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

Platforms:
- ARMv6 (verified)
- x86
- x86/IOMMU
- x86/SMP

The Proof

The Proof

NICTA Copyright 2010 From imagination to impact 12

Functional Correctness

Specification

Code

Proof

NICTA Copyright 2010 From imagination to impact 12

Functional Correctness

Specification

Code

What

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2010 From imagination to impact 12

Functional Correctness

Specification

Code

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2010 From imagination to impact 13

*conditions apply

Specification

Proof

Code

NICTA Copyright 2010 From imagination to impact 13

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

NICTA Copyright 2010 From imagination to impact 13

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

NICTA Copyright 2010 From imagination to impact

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

14

Implications

Specification

C Code

NICTA Copyright 2010 From imagination to impact

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

14

Implications

Specification

C Code

NICTA Copyright 2010 From imagination to impact

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

14

Implications

Specification

C Code

NICTA Copyright 2010 From imagination to impact

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

14

Implications

Specification

C Code

NICTA Copyright 2010 From imagination to impact 15

Proof Architecture

Specification

Proof

C Code

NICTA Copyright 2010 From imagination to impact

Proof Architecture

16

C Code

Design

Specification

NICTA Copyright 2010 From imagination to impact

Proof Architecture

16

C Code

Design

Specification

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

16

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

16

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2010 From imagination to impact

Proof Architecture

16

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

16

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact 17

System Model

idle

event

idle
event

kernel exit

States:
User, Kernel, Idle

U

I

K

Events:
Syscall, Exception, IRQ, VM Fault

kernel mode

NICTA Copyright 2010 From imagination to impact 17

System Model

idle

event

idle
event

kernel exit

States:
User, Kernel, Idle

U

I

K

Events:
Syscall, Exception, IRQ, VM Fault

kernel mode

• C refines A if all behaviours of C are contained in A

• Sufficient: forward simulation

NICTA Copyright 2010 From imagination to impact 18

Old Story: Refinement

A

C
s’

s

t’

t

S S

NICTA Copyright 2010 From imagination to impact

NICTA Copyright 2010 From imagination to impact seL4

Designing and Formalising a
Microkernel

Designing and Formalising a
Microkernel

NICTA Copyright 2010 From imagination to impact 21

Two Teams

Formal Methods Practitioners

Kernel Developers

NICTA Copyright 2010 From imagination to impact 21

Two Teams

Formal Methods Practitioners

Kernel Developers

Exterminate All
OS Abstractions!

(Engler 95)

The Power of
Abstraction

(Liskov 09)

NICTA Copyright 2010 From imagination to impact 22

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

NICTA Copyright 2010 From imagination to impact 22

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

NICTA Copyright 2010 From imagination to impact 23

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

NICTA Copyright 2010 From imagination to impact 24

Design for Verification

Reducing Complexity

Hardware
• drivers outside kernel

Concurrency
• event based kernel

• limit preemption

Code
• derive from functional representation

NICTA Copyright 2010 From imagination to impact 25

C subset

Everything from C standard

• including:
- pointers, casts, pointer arithmetic
- data types
- structs, padding
- pointers into structs
- precise finite integer arithmetic

• plus compiler assumptions on:
- data layout, encoding, endianess

• minus:
- goto, switch fall-through
- reference to local variable
- side-effects in expressions
- function pointers (restricted)
- unions

NICTA Copyright 2010 From imagination to impact

Common Criteria

EAL Requirem. Funct Spec TDS Implem.

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal

EAL5 Semiformal Semiformal Informal

EAL6 Formal Semiformal Semiformal Informal

EAL7 Formal Formal Formal Informal

L4.verified Formal Formal Formal Formal

26

NICTA Copyright 2010 From imagination to impact 27

Did you find any Bugs?

Bugs found

 during testing: 16

 during verification:
• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

NICTA Copyright 2010 From imagination to impact 27

Did you find any Bugs?

Bugs found

 during testing: 16

 during verification:
• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

Access Control

Access Control

NICTA Copyright 2010 From imagination to impact

Proof Architecture

29

C Code

Design

Specification

NICTA Copyright 2010 From imagination to impact

Proof Architecture

29

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

29

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Take-Grant model

30

Lipton and Snyder:

• entities represented as nodes of a graph
• capabilities represented as edges of a graph
• rights are contained in capabilities

e3

e2e1

e0Grant Read,
Write

Create

Read
Write
Take
Grant
Create

The Rights:

NICTA Copyright 2010 From imagination to impact

Operations - Create

31

Create new entitye

(n)
Create ∈ c1

NICTA Copyright 2010 From imagination to impact

Operations - Create

31

Create new entitye

Create ∈ c1

all rights

n

NICTA Copyright 2010 From imagination to impact

Operations - Grant

32

e

e1

e2

Grant ∈ c1

c2

Grant c2 to e1

 with mask R

NICTA Copyright 2010 From imagination to impact

Operations - Grant

32

e

e1

e2

Grant ∈ c1

c2

di
m

in
is

h
c 2

 R

Grant c2 to e1

 with mask R

NICTA Copyright 2010 From imagination to impact

Operations - Remove/Delete

33

e e1
c1

e2
c2

e e1
c1

e2

Remove capability c2

Delete entity e2

Create ∈ c2

NICTA Copyright 2010 From imagination to impact

Operations - Remove/Delete

33

e e1
c1

e2

e e1
c1

e2

Remove capability c2

Delete entity e2

Create ∈ c2

(e2)

NICTA Copyright 2010 From imagination to impact

Operations - Remove/Delete

33

e e1
c1

e2

e e1
c1

Remove capability c2

Delete entity e2

Create ∈ c2

NICTA Copyright 2010 From imagination to impact

Operations Summary

34

e

e1

e2

Grant ∈ c1

c2

diminish c2 R

GrantCreate

e e1
c1

Remove Delete

e

Create ∈ c1

all rights

n

e
Create ∈ c1

NICTA Copyright 2010 From imagination to impact

Operations Summary

34

e

e1

e2

Grant ∈ c1

c2

diminish c2 R

GrantCreate

e e1
c1

Remove Delete

e

Create ∈ c1

all rights

n

(e1)e
Create ∈ c1

NICTA Copyright 2010 From imagination to impact

Questions

35

For any state in the future:

• Can entity E do X?
• Can E gain authority to do X?

• Can E gain more authority than it has?

• How much more?

• Can information flow from A to B?

NICTA Copyright 2010 From imagination to impact

Leaking authority

36

Grant x can leak to y

x

y

NICTA Copyright 2010 From imagination to impact

Leaking authority

36

Grant x can leak to y

x

y

	

 Leak:	

 s ⊢ x → y ≡ grant-cap y :< caps-of s x

NICTA Copyright 2010 From imagination to impact

Leaking authority

36

Grant x can leak to y

x

y

	

 Leak:	

 s ⊢ x → y ≡ grant-cap y :< caps-of s x

	

Connected:	

 s ⊢ x ↔ y ≡ s ⊢ x → y ∨ s ⊢ y → x

NICTA Copyright 2010 From imagination to impact

Leaking authority

36

Grant x can leak to y

x

y

	

 Leak:	

 s ⊢ x → y ≡ grant-cap y :< caps-of s x

	

Connected:	

 s ⊢ x ↔ y ≡ s ⊢ x → y ∨ s ⊢ y → x

	

Subsystems:	

 subsys s x = {e. s ⊢ e ↔∗ x}

NICTA Copyright 2010 From imagination to impact

Leaking authority

36

Grant x can leak to y

x

y

	

 Leak:	

 s ⊢ x → y ≡ grant-cap y :< caps-of s x

	

Connected:	

 s ⊢ x ↔ y ≡ s ⊢ x → y ∨ s ⊢ y → x

	

Subsystems:	

 subsys s x = {e. s ⊢ e ↔∗ x}

	

 Theorems:	

 s′ ∈ execute cmds s ∧ s′ ⊢ x ↔∗ y ⇒ s ⊢ x ↔∗ y

	

 	

 s′ ∈ execute cmds s ∧ c :> subsys-caps s x ⇒ c :> subsys-caps s′ x

NICTA Copyright 2010 From imagination to impact

Explicit information flow

37

x

y0

y1

Grant
Read z

Read

Write

NICTA Copyright 2010 From imagination to impact

Explicit information flow

37

Like Bishop’s analysis of islands, examine information flow between subsystems

x

y0

y1

Grant
Read z

Read

Write

NICTA Copyright 2010 From imagination to impact

Explicit information flow

37

Like Bishop’s analysis of islands, examine information flow between subsystems

	

 Flow:	

 s ⊢ x ↝ y = ∃ x’ ∈ subsys s x. ∃ y’ ∈ subsys s y.
	

 	

 	

 read-cap x’ :< caps-of s y’ ∨ write-cap y’ :< caps-of s x’

x

y0

y1

Grant
Read z

Read

Write

NICTA Copyright 2010 From imagination to impact

Explicit information flow

37

Like Bishop’s analysis of islands, examine information flow between subsystems

	

 Flow:	

 s ⊢ x ↝ y = ∃ x’ ∈ subsys s x. ∃ y’ ∈ subsys s y.
	

 	

 	

 read-cap x’ :< caps-of s y’ ∨ write-cap y’ :< caps-of s x’

	

 Theorems:	

 s′ ∈ execute cmds s ∧ ¬ s ⊢ x ↝∗ y ⇒ ¬ s ′ ⊢ x ↝∗ y

x

y0

y1

Grant
Read z

Read

Write

NICTA Copyright 2010 From imagination to impact

Example

38

e0 e1

C

C

e3
R

e2

e4

R, W

e5

e6

e7

R, W,
G, C7

R, W,
G, C6

R, W,
G, C
3

R, W,
G, C5 R, W,

G, C4

R, W,
G, C2

R, W,
G, C0

R

NICTA Copyright 2010 From imagination to impact

Take-Grant Summary

• Simple capability model

• Decidable access control
– Basic information flow model
– Isolated subsystems

• Proof in progress:
– seL4 implements this model

39

What’s next?

What’s next?

NICTA Copyright 2010 From imagination to impact

Trustworthy Embedded Systems

41

• L4.verified:
functional correctness for
10,000 loc

• Next step:
formal guarantees for
> 1,000,000 loc

NICTA Copyright 2010 From imagination to impact

How?

Exploit:

• seL4 isolation
• verified

properties
• MILS

architectures
Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

42

NICTA Copyright 2010 From imagination to impact

Global picture

 Build system with minimal TCB
 Formalise and prove security properties about architecture
 Prove correctness of trusted components
 Prove correctness of setup

43

NICTA Copyright 2010 From imagination to impact

Example System

44

• Multilevel Secure Access Device

SAC

Information Provider A Information Provider B

Terminal

User

Network A Network B

Network Interface B

Terminal Network Interface

Network Interface A

Terminal Network

No information flow
between providers A and B

through SAC

even if they collaborate

NICTA Copyright 2010 From imagination to impact

First Design

45

– Filter Manager (FM)
– Filter
– Driver for D

• (and)
– kernel
– booter
– hardware

FM SAC-C

Net-A Net-B

NIC-A NIC-B

Filter

TIMER Driver-A Driver-B

Driver-D

DT

CO
M

PO
N

EN
TS

NIC-D

• Minimal TCB:

NICTA Copyright 2010 From imagination to impact

First Design

45

– Filter Manager (FM)
– Filter
– Driver for D

• (and)
– kernel
– booter
– hardware

FM SAC-C

Net-A Net-B

NIC-A NIC-B

Filter

TIMER Driver-A Driver-B

Driver-D

DT

CO
M

PO
N

EN
TS

NIC-D

SAC-Controller:
Embedded Linux +
Web Server UI

• Minimal TCB:

NICTA Copyright 2010 From imagination to impact

First Design

46

– Filter Manager (FM)
– Filter
– Driver for D

• (and)
– kernel
– booter
– hardware

FM SAC-C

Net-A Net-B

NIC-A NIC-B

Filter

TIMER Driver-A Driver-B

Driver-D

DT

CO
M

PO
N

EN
TS

NIC-D

• Minimal TCB?

NICTA Copyright 2010 From imagination to impact

We can do better!

47

– Router Manager (RM)

• (and)
– kernel
– booter
– hardware

• Even smaller TCB

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

BO
OT

ER

x8
6 se

L4

CO
M

PO
N

EN
TS

NIC-A

RM SAC-C R

TIMER

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

R= Router
RM = Router Manager
SAC-C = SAC Controller

has access to

NICTA Copyright 2010 From imagination to impact

We can do better!

47

– Router Manager (RM)

• (and)
– kernel
– booter
– hardware

• Even smaller TCB

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

BO
OT

ER

x8
6 se

L4

CO
M

PO
N

EN
TS

NIC-A

RM SAC-C R

TIMER

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

R= Router
RM = Router Manager
SAC-C = SAC Controller

has access to

SAC-Controller:
Embedded Linux +
Web Server UI

NICTA Copyright 2010 From imagination to impact

We can do better!

47

– Router Manager (RM)

• (and)
– kernel
– booter
– hardware

• Even smaller TCB

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

BO
OT

ER

x8
6 se

L4

CO
M

PO
N

EN
TS

NIC-A

RM SAC-C R

TIMER

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

R= Router
RM = Router Manager
SAC-C = SAC Controller

has access to
Router:
Embedded Linux/
Network Routing + Drivers

NICTA Copyright 2010 From imagination to impact

We can do better!

47

– Router Manager (RM)

• (and)
– kernel
– booter
– hardware

• Even smaller TCB

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

BO
OT

ER

x8
6 se

L4

CO
M

PO
N

EN
TS

NIC-A

RM SAC-C R

TIMER

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

R= Router
RM = Router Manager
SAC-C = SAC Controller

has access to

Router Manager:
< 2kloc
only trusted component

NICTA Copyright 2010 From imagination to impact

 Low-Level Design CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

NICTA Copyright 2010 From imagination to impact

 Abstraction CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

R-code

(R)

(R-mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw

ASID Pool

NICTA Copyright 2010 From imagination to impact

Security Goal

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

1

R-code

(R)

(R-
mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw

Goal: No information flowing between providers A and B

info

NICTA Copyright 2010 From imagination to impact

Security Goal

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

1

R-code

(R)

(R-
mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw

Goal: No information flowing between providers A and B

info

Assumption: Info flow through front-end terminal is trusted

NICTA Copyright 2010 From imagination to impact

Security Goal

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

1

R-code

(R)

(R-
mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw

Approach:
- data from Net-A confidential; should not be read by Net-B
- label-based security:

entities tagged ‘contaminated’ if may contain data from Net-A
NIC-A always contaminated

- Goal: prove NIC-B never contaminated (always ‘not contaminated’)

NICTA Copyright 2010 From imagination to impact

Security Analysis

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

1

R-code

(R)

(R-
mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw

Rules: A
r R

B A B

w W
A B A B

A
r R

B A B

w W
A B A B

NICTA Copyright 2010 From imagination to impact

Life Cycle

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

1

R-code

(R)

(R-
mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> None
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

(R)

CT authenticates with
SAC-C

CT sends a request
to switch to Net-A RM

SAC-C

CT DT

Net-A Net-B

rw

RW

rw

2

TIMER

c

r

NIC-C

NIC-B

NIC-D

rw

r

cr

R

rw

TIMER
CHIP

RW
(R-

mem)

R-code

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> None
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

(R)RM

SAC-C

CT DT

Net-A Net-B

rw

R

rw

3

TIMER

c

r

r

 RM receives request
to switch to Net-A

rw

NIC-C

NIC-B

NIC-D

rw

r

c

rw

TIMER
CHIP

RW
(R-

mem)

R-code

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> None
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

4

R

TIMER

C

r

r

rw

RM creates a new
Router instance R

rwcg
(and gets full rights to

the newly created
object)

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW
(R-

mem)

R-code

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({}, not_contaminated)
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

5

R

TIMER

r

r

rw

RM initializes the
Router instance

rWcg

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW

c

(R-
mem)

R-code

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({}, not_contaminated)
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

6

R

TIMER

r

r

rw

rwcG

c

RM grants to R its
rights to

NIC-A, NIC-D,

R-mem, R-code
TIMER, and itself

rw

r

rwcg

NIC-C

NIC-B

NIC-D

r

rw

rw
c

r

cr

rw

TIMER
CHIP

RW
(R-

mem)

R-code

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated)
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

7

R

TIMER

r

r

rwcg

c

RW

RW

R

RWcg

 DT starts to communicate
with Net-A, through R.

This may imply the
creation of new objects

using R-mem and granting
caps to them.

NIC-C

NIC-B

NIC-D

rw

r

 R-mem

R

RWCGc

rw

rw

TIMER
CHIP

RWr
R-code

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, contaminated)
R_mem_id! -> Some ({…}, contaminated)
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

R

TIMER

r
rwcg

c

RW

RW

NIC-C

NIC-B

NIC-D

rw

r R

RWCGc

CT sends a request
to switch to Net-B

(while DT still
communicates with
Net-A through R)

RW

RWcg

r

Rrw

TIMER
CHIP

RW

R

8

R-code

 R-mem

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, contaminated)
R_mem_id! -> Some ({…}, contaminated)
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

R

TIMER

r

r

rwcg

c

RW

RW

NIC-C

NIC-B

NIC-D

rw

r R

RWCGc

 RM receives request
to switch to Net-B

rw

R

RWcg

Rrw

TIMER
CHIP

RW

9

R-code

 R-mem

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, contaminated)
R_mem_id! -> Some ({…}, contaminated)
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

R

TIMER

r

r

NIC-C

NIC-B

NIC-D

rw

r

c

rw

RM revokes all caps
given to R

(using the cap used to
create R)

r

rw

TIMER
CHIP

RW

C

10

R-code

 R-mem

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({}, contaminated)
R_mem_id! -> Some ({…}, contaminated)
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({}, contaminated)
R_mem_id! -> Some ({}, contaminated)
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

11

R

TIMER

r

r

c

NIC-C

NIC-B

NIC-D

rw

r

C

rw

RM revokes
caps of R-mem

(using create cap to
R-mem)

r

rw

TIMER
CHIP

RW
R-code

 R-mem

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

12

(R)

TIMER

r

r

c

NIC-C

NIC-B

NIC-D

rw

r

c

rw

RM deletes R and R-
mem

r

rw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> None
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rWF
rWF

13

(R)

TIMER

r

r

c

NIC-C

NIC-B

NIC-D

rWF

r

c

rw

RM flushes
NIC-A, NIC-B and

NIC-D

r

rw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> None
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

14

R

TIMER

C

r

r

rw

RM creates a new
Router instance R

rwcg
(and gets full rights to

the newly created
object)

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({}, not_contaminated)
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

15

R

TIMER

r

r

rw

c

RM grants to R its
rights to

NIC-B, NIC-D,

R-mem, R-code,
TIMER and itself

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW

rWcg

R-code
(R-

mem)

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({}, not_contaminated)
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

RM grants to R its
rights to

NIC-B, NIC-D,

R-mem, R-code,
TIMER and itself

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

16

R

TIMER

r

r

rw

rwcG

c

rw rwcg

NIC-C

NIC-B

NIC-D

r

rw

rw
c

r

cr

rrw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated)
R_mem_id! -> None
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

DT starts to communicate
with Net-B, through R.

This may imply the
creation of new objects

using R-mem and granting
some caps to them.

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

17

R

TIMER

r

r

rwg

c

RW

RW RWcg

NIC-C

NIC-B

NIC-D

rw

r R

RWCGc

Rrw

TIMER
CHIP

RWr

rw

R-code

 R-mem

NIC-A

RM_id ! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …, rwcg_to_R}, not_contaminated)
SAC_C_id -> Some ({rw_to_NIC_C, r_to_TIMER}, not_contaminated)
TIMER_id! -> Some ({rw_to_TIMER_CHIP}, not_contaminated)
R_id! -> Some ({rw_to_NIC_A, rw_to_NIC_B, …}, not_contaminated)
R_mem_id! -> Some ({…}, not_contaminated)
NIC_A_id -> Some ({}, contaminated)
NIC_B_id ! -> Some ({}, not_contaminated)
NIC_C_id ! -> Some ({}, not_contaminated)
NIC_D_id ! -> Some ({}, not_contaminated)
R_code_id -> Some ({}, not_contaminated)
TIMER_CHIP_id -> Some ({}, not_contaminated)

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

So far

70

NIC-C

NIC-A NIC-B

NIC-D

NIC-A

RMSAC-C R

TIMER

NICTA Copyright 2010 From imagination to impact

So far

• Can build systems with
– large untrusted components
– plus few small, trusted components
– trusted = needs behaviour spec

70

NIC-C

NIC-A NIC-B

NIC-D

NIC-A

RMSAC-C R

TIMER

NICTA Copyright 2010 From imagination to impact

So far

• Can build systems with
– large untrusted components
– plus few small, trusted components
– trusted = needs behaviour spec

• Use take-grant to model security
– can simulate system
– modelling already finds bugs
– high-level proof in Isabelle/HOL or SPIN
– includes behaviour of trusted component

70

NIC-C

NIC-A NIC-B

NIC-D

NIC-A

RMSAC-C R

TIMER

NICTA Copyright 2010 From imagination to impact

Future

71

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

NICTA Copyright 2010 From imagination to impact

Future

• Need to
verify low-level design

71

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

NICTA Copyright 2010 From imagination to impact

Future

• Need to
verify low-level design

• Building tool-chain for:
– describing cap layout

(capDL)
– generating booter
– generating booter proof
– abstraction to take-grant

71

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

71NICTA Copyright 2010 From imagination to impact

More Future

72

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

...
...

RM TCB

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

 CAP

 PCI bus
config.

IO ports

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

71NICTA Copyright 2010 From imagination to impact

More Future

• Verify
Trusted Component

72

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

...
...

RM TCB

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

 CAP

 PCI bus
config.

IO ports

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

71NICTA Copyright 2010 From imagination to impact

More Future

• Verify
Trusted Component

• Refine to C:
– interface with kernel
– use most abstract level

possible
– make sure sec property

preserved by refinement

72

C Code

Design

Specification

capDL Spec

Access Control Spec

C Code

capDL Spec

Access Control Spec

Component seL4

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

...
...

RM TCB

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

 CAP

 PCI bus
config.

IO ports

Summary

Summary

NICTA Copyright 2010 From imagination to impact 74

Summary

Formal proof all the way from spec to C.

Formal Code Verification up to 10kloc:

It works.
It’s feasible.
It’s cheaper.

(It’s fun, too)

• 200kloc handwritten, machine-checked proof

• ~460 bugs (160 in C)

• Verification on code, design, and spec
• Systems with trusted components
• The future: formal proof for large systems down to code

Thank You

L4.verified

