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Semantic Archaeology as It Occurs in Nature

From Sarkar, et al., Semantics of x86-CC Multiprocessor Machine Code, POPL09

“The key difficulty was to go from the informal-prose vendor documentation, with
its often-tantalising ambiguity, to a fully rigorous definition (mechanised in HOL)
that one can be reasonably confident is an accurate reflection of the vendor
architectures (Intel 64 and I4-32, and AMD64).”

x86 Instruction Semantics in HOL in terms of Monadic Microcode; e.g.,

seqT:'aM — ("a—"0M) —'b M
parT:'aM —'bM — ("ax'b)M
constT :'a — "a M

failureT : unit M

mapT : (‘a — b)) = 'a M — "bM
lockT : unit M — unit M



Security Flows in the Many Core Era*

- Highly (Re)configurable Architectures/FPGAs
- Many Specially Tailored, “One Off" Components

- Reuse of Off-the-shelf components
- “Mix and Match” comes to Hardware

- Challenge: High Assurance in this environment
- Want the flexibility and speed of development

- ...but also want formal guarantees of security and safety for critical
systems.

* Funded by the Office of the Assistant Secretary of Defense for Research and Engineering



Hardware Synthesis from Domain
Specific Languages

- Delite [Olukotun, lenne, et al.]

- DSLs and Language
Productivity Virtualization

- “The Three P’s”

- ReWire
- Fourth P: Provability

- DSL with rigorous
semantics
Performance Portability - Modular Monadic Semantics

- High assurance

- Security & safety properties
- Formal methods Productivity

Provability
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ReWire Language & Toolchain

ReWire Compiler

/

Synthesizable
VHDL

\

Inherits Haskell's good qualities
Pure functions, strong types, monads, equational reasoning, etc.
Formal denotational semantics [HarrisonKieburtz05,Harrison05]

Language design identifies HW representable programs

Mainly restrictions on recursion in functions and data

Built-in types for HW abstractions incl. clocked/parallel
computations



Expressing Xilinx PicoBlaze Architecture
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type RegFile = Table W4 W8

type FlagFile = (Bit,Bit,Bit,Bit,Bit)

type Mem = Table W6 W8

data Stack = Stack { contents :: Table W5 W10,

pos :: WH }

data Inputs = Inputs { instruction_in :: W18,
in_port_in :: W8,
interrupt_in :: Bit,
reset_in :: Bit }

PicoBlaze Data Layout in ReWire data Outputs = Outputs { addre§s_out :: W10,

port_id_out :: W8,
write_strobe_out :: Bit,
out_port_out W8,
read_strobe_out :: Bit,

interrupt_ack_out :: Bit }



Expressing
Architectural
Designs in
ReWire (cont'd)

Details in “Semantics-
directed Architecture in
ReWire”, Procter et al.,
ICFPT13

fde device is tail-
recursive

Clock timing is
expressed in Dev
monad

Xilinx PicoBlaze Architecture
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Operand 2

fde :: Dev Inputs PicoState Outputs
fde = do s <- getPicoState
let 1 = 1inputs s
instr = instruction _in 1
ie <- getFlaglE
if reset_in 1 == 1
then reset_event
else if ie == 1 &&

PicoBlaze Fetch-Decode-Execute in ReWire

interrupt_in 1 == 1
then interrupt_event
else decode instr

fde
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Compare with PicoBlaze in VHDL

- Outermost VHDL Component for PicoBlaze

component KCPSM3

port (

instruction : in std_logic_vector (17 downto 0); —-- Inputs type
in_port : in std_logic_vector( 7 downto 0);

interrupt : in std_logic;

reset : in std_logic;

clk : in std_logic;

address : out std_logic_vector( 9 downto 0); —-- Outputs type
port_id : out std_logic_vector( 7 downto 0);

write_strobe : out std_logic;

out_port : out std_logic_vector( 7 downto 0);

read_strobe : out std_logic;

interrupt_ack : out std_logic;

)i

end component;

- Corresponds to ReWire term of monadic type
- Dev Inputs PicoState Outputs

Crucial Distinction:
Dev is a formal object we can reason about.




Types for Devices

D Q

current
state

output

signal
(comb. logic)

Terms of type (Dev i s o)
compiled to...

D Q
next

state
(comb. logic)

current
input

ReT (m (Either a (o, i & ReT i o m a))

newtype ReT i o m a
newtype StT s m a

type Dev i s o = ReT 1 o (StT s Identity) ()



Performance

- Prototype ReWire compiler vs. Hand-coded VHDL
Implementation by experienced Xilinx engineer.
- XST synthesis tool for Spartan-3E XC3S500E, speed -4
- configured to optimize for speed, not space.

Slices | Flip Flops | 4-LUTs | Fjqc (MHz)
PicoBlaze 99 76 181 139.919
ReWire 451 110 866 69.956




Designing a Secure Dual-core PicoBlaze™

é

- Two PicoBlazes (L < H) with a shared register Reg
- Reg is read-only by H; read+write by L

- Proved a non-interference style security specification

- Equational proof based on “by-construction” properties of monads
- Verifies ReWire code directly
- Just say NO! to Semantic Archaeology.

* Details in Procter, et al., “Semantics Driven Hardware Design, Implementation
and Verification in ReWire”, LCTES 2015 (to appear).



Designing a Secure Dual-core PicoBlaze™

PicoBlaze PicoBlaze
L H

- Type of Dual-Core constructor function:

dualcore :: Dev Inputs PicoState Outputs ->
Dev Inputs PicoState Outputs ->
Dev2 Inputs PicoState Outputs

* Details in Procter, et al., “Semantics Driven Hardware Design, Implementation
and Verification in ReWire”, LCTES 2015 (to appear).



Security Theorem

pull os 1s (dualcore lo hi) >>= kg,
= pull os 1s (dualcore lo nop) >>= K,

where

Ky = AOs. mask, >> return os
nop = (skip o, 1,)

Proof follows closely:
Harrison & Hook, “Achieving Information Flow Security Through Monadic Control
of Effects”, Journal of Computer Security 2009
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Proof Sketch of Security Theorem

pull os [iy,. .., iy| (dualcore lo hi) >>= Aos. masky >> return os
= (1hy;...; lhy) >>= Aos. masky >> return os — masky idempotent
= (1hy;...; lhy ; masky) >>= Aos. masky >> return os — assoc.
= (1lhy;...; 1, ; masky) >>= Aos.masky >> return os  — clobber
= (1lhy;...; masky; 1) >>= Aos.masky >> return os  — atomic nonint.
= (1lh; ; maskg; ...; 1,) >>= Aos. masky >> return os — atomic nonint.
= (1; ; masky; ...; 1) >>= Aos. masky >> return os — clobber
= (1;;...; 15) >>= Aos. masky >> return os — “reversing previous steps”
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0s lit;--,in] (dualcore lo nop) >>= Aos. masky >> return os



Performance

- Comparing the single core PicoBlaze to the dual core:

Slices | Flip Flops | 4-LUTs | Fqc (MHz)
2-Core 907 258 1735 67.867
1-Core 451 110 866 69.956
Ratio 2.011 2.345 2.003 0.970




Hardware vs. Program Verification

Traditional HW Verification Program Verification
- HW Verification has been around - Say you have a programming
for many, many years... language,
- HOL (Cambridge), Boyer-Moore - IF you have:
(Texas), Isabelle (Cambridge & - a compositional semantics for the
Munich), BDD'’s, etc., etc. language, and

- a trusted compiler,

- THEN you can:

- verify programs
- verify compiler’s semantic faithfulness,

- Basic Recipe
1. Start with circuit,
2. Produce formal model capturing

its essence, and
3. Encode in theorem prover logic & - produce high assurance implementations.
verify! - Canonical example: Hoare
- How do you check the semantics for procedural languages.
faithfulness of Step 27 - This is the approach ReWire takes.

- Does the model capture the artifact?
- Can you prove that it is faithful?




Fast Regular Expression Matching Using FPGAs
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- Deep Packet Inspection for detecting malware

- Use HW Parallelism to Represent Non-determinism
- Sidhu & Prasanna 2001

- Becchi & Crowley 20[07]|08]09]|10]

- Handwritten regular expression compiler in C
- State of the art performance



Regular EXpression HArdware Compiler-Compiler

RexHacc Framework ReWire Compiler

_________________________________________

f \
Perl | | !
Compatible | Finite Finite L .
Regular :> : Automaton, Automaton, P ReWire VHDL
1
Expressions | | !
! P

_______________________________

rexhacc :: (NFA a -> NFA a) -> RegEx a -> ReWire

compiler :: RegEx a —-> ReWire
compiler = rexhacc opt
where opt = (0; o.. o 0,)

Details in “Hardware Synthesis from Functional Embedded Domain-Specific Languages:
A Case Study in Regular Expression Compilation”, Graves, et al., Applied Reconfigurable
Computing (ARC15).



RexHacc
Performance
Evaluation

Details in “Hardware
Synthesis from
Functional Embedded
Domain-Specific
Languages:
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ReWire & Proof Engineering

- Proof Engineerig - ARM spec. [Fox/Myreen10,.. ]
- Rewire both... arm_instr :
- Computational A-calculus 1id 2

, encodingxbool[4] xinstr -
- Expressive Fun. Lang. unit M

- Unifies specification,
design & implementation . Collaboration with
languages Australian DSTO

laboratory

A Synthesizable
ReWire
~~~~~ - VHDL

Reverse Engineering
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