
HIGH ASSURANCE
HARDWARE WITH
REWIRE
Just Say No! to Semantic Archaeology

Bill Harrison, Adam Procter, Ian Graves, & Michela Becchi
University of Missouri

Gerard Allwein
US Naval Research Laboratory

Archaeology

System Implementation Mathematical System Model formulating
precise system security properties

Semantic Archaeology & Formal Methods

Semantic Archaeology as It Occurs in Nature

“The key difficulty was to go from the informal-prose vendor documentation, with
its often-tantalising ambiguity, to a fully rigorous definition (mechanised in HOL)
that one can be reasonably confident is an accurate reflection of the vendor
architectures (Intel 64 and IA-32, and AMD64).”

structures with their valid executions. At present we cover
the following instructions: data transfer MOV, CMOVE,
CMOVNE, XADD, XCHG, CMPXCHG, LEA; binary op-
erations ADD, AND, CMP, OR, SUB, TEST, XOR, SHR,
SAR, SHL; unary operations INC, DEC, NOT, NEG; stack
operations POP, PUSH, PUSHAD, POPAD; and control
transfers JUMP, CALL, RET, LOOP. We cover all the var-
ious 32-bit addressing modes, including indexing, scaling,
etc.

3.1 Decoding

The first step is to decode a machine code program, a
code memory containing bytes, of type program word8 =
address → word8 option, to an abstract syntax program,
giving the instructions Xinst (and their lengths) at each
address: program Xinst = (address → (Xinst ∗ num) option).
The vendor documentation includes tables with one to 50 or
so lines for each instruction, e.g.

" 8B /r | MOV r32, r/m32 ";
" B8+rd id | MOV r32, imm32 ";

giving symbolic expressions for their opcodes. For example,
B8+rd id represents an opcode with a first byte B8 added
to a code for the 32-bit register r32, followed by a 4-byte
immediate operand for the imm32. To make the semantics
scalable, without introducing many errors, we formalised
the interpretation of these encodings inside the HOL logic,
and built a HOL decoding function by directly copying the
relevant lines from the manual into the HOL script. (We
found one error in the Intel manual in the process: the id in
the second line shown is actually omitted there [5, vol.2A,p3-
640], highlighting the need for testing.)

3.2 Instructions

A single x86 instruction can involve a complex pattern of
register and memory accesses. In defining the possible event
structures for an instruction, with the right intra-instruction
causality relation among these accesses, we have to avoid
over-sequentialising them. For example, two independent
reads should be unrelated, whereas an [EAX] operand re-
solves into a register read of EAX followed by a memory
read of that address. Moreover, the pattern of accesses (not
just their values) can depend on the values read, and to keep
the semantics manageable we have to deal as uniformly as
possible with all the various addressing modes and with the
various binary and unary operations. We must also accom-
modate loose specification of values, for flag values that are
explicitly undefined in the architecture.

We express the semantics in terms of a small ‘microcode’
language of combinators, analogous to a monad for a type
constructor ′a M, but with both sequential and parallel
composition:

seqT : ′a M→ (′a → ′b M)→ ′b M
parT : ′a M→ ′b M→ (′a ∗ ′b)M
constT : ′a → ′a M
failureT : unit M
mapT : (′a → ′b)→ ′a M→ ′bM
lockT : unit M→ unit M
write reg : iiid→ Xreg→ word32→ unit M
read reg : iiid→ Xreg→ word32 M
write eip : iiid→ word32→ unit M
read eip : iiid→ word32 M
write eflag : iiid→ Xeflags→ bool option→ unit M
read eflag : iiid→ Xeflags→ bool M
write m32 : iiid→ word32→ word32→ unit M

read m32 : iiid→ word32→ word32 M

For example, for binary operation Xbinop binop name ds,
with destination and source ds, at instruction instance ii ,
and len bytes long, we have (using various auxiliaries):

x86 exec ii (Xbinop binop name ds) len = parT unit
(seqT (read eip ii) (λx . write eip ii (x + len)))
(seqT

(parT (read src ea ii ds) (read dest ea ii ds))
(λ((ea src, val src), (ea dest , val dest)).

write binop ii binop name val dest val src ea dest))

The event structure semantics implements the combinators
for ′a M below (threading through a gensym eiid state to
make eiid’s unique by construction). The seqT and parT
combinators both build the set of event-structure unions of
pairs of event structures from their arguments, with seqT
adding intra-causality edges.

′a M = eiid state→ ((eiid state ∗ ′a ∗ event structure)set)

3.3 Sequential Semantics

We also build a more directly executable semantics for se-
quential programs, simply re-implementing the combinators
for a state monad while keeping the body of the instruction
semantics unchanged:

′a M = x86 state→ (′a ∗ x86 state) option
x86 state = (Xreg→ word32)

∗(word32) (* EIP *)
∗(Xeflags→ bool option)
∗(word32→ word8 option)

3.4 Programs

Finally, to define the possible event structures for a decoded
program, we identify the well-formed run skeletons — se-
quences (finite or infinite, and downclosed) of addresses of
instructions for each processor:

proc→ (program order index→ address option)

For each run skeleton, we first calculate the sets of event
structures for each instruction instance it contains, then take
the event-structure union of each possible choice thereof.
Combining this with the axiomatic model to give valid exe-
cution witnesses, the overall semantics has the type below.

x86 semantics : program word8→ state constraint→
(run skeleton ∗ program Xinst
∗((event structure ∗ (execution witness set))set))set

This is significantly more involved than a typical sequen-
tially consistent interleaving semantics — largely because
the values read in a valid execution are constrained by the
axiomatic memory model, which is in terms of the possible
orderings of all the events of a putative execution, instead
of being values known at a particular time, that one could
simply provide to the instruction semantics. Additional com-
plexity arises from dealing with concrete located machine
code rather than assembly language, which is necessary to
build correct EIP values at call points.

Theorem 2. The event structures built above are all well-
formed. [Proof: HOL, with a large automated case analysis]

x86 Instruction Semantics in HOL in terms of Monadic Microcode; e.g.,

 From Sarkar, et al., Semantics of x86-CC Multiprocessor Machine Code, POPL09

Security Flows in the Many Core Era*
• Highly (Re)configurable Architectures/FPGAs
• Many Specially Tailored, “One Off” Components

•  Reuse of Off-the-shelf components
•  “Mix and Match” comes to Hardware

• Challenge: High Assurance in this environment
•  Want the flexibility and speed of development
•  …but also want formal guarantees of security and safety for critical

systems.

* Funded by the Office of the Assistant Secretary of Defense for Research and Engineering

Hardware Synthesis from Domain
Specific Languages

• Delite [Olukotun, Ienne, et al.]

•  DSLs and Language
Virtualization

•  “The Three P’s”
• ReWire

•  Fourth P: Provability
•  DSL with rigorous

semantics
•  Modular Monadic Semantics

•  High assurance
•  Security & safety properties
•  Formal methods Productivity

Productivity

Performance Portability

Provability

ReWire Language & Toolchain

•  Inherits Haskell’s good qualities
•  Pure functions, strong types, monads, equational reasoning, etc.
•  Formal denotational semantics [HarrisonKieburtz05,Harrison05]

•  Language design identifies HW representable programs
•  Mainly restrictions on recursion in functions and data
•  Built-in types for HW abstractions incl. clocked/parallel

computations

ReWireHaskell Synthesizable
VHDL

VHDL

ReWire Compiler

Expressing
Architectural
Designs in
ReWire
Details in “Semantics-
directed Architecture in
ReWire”, Procter et al.,
ICFPT13

8 www.xilinx.com PicoBlaze 8-bit Embedded Microcontroller
UG129 (v2.0) June 22, 2011

Chapter 1: Introduction

PicoBlaze Microcontroller Features
As shown in the block diagram in Figure 1-1, the PicoBlaze microcontroller supports the
following features:

• 16 byte-wide general-purpose data registers

• 1K instructions of programmable on-chip program store, automatically loaded during
FPGA configuration

• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags

• 64-byte internal scratchpad RAM

• 256 input and 256 output ports for easy expansion and enhancement

• Automatic 31-location CALL/RETURN stack

• Predictable performance, always two clock cycles per instruction, up to 200 MHz or
100 MIPS in a Virtex-II Pro FPGA

• Fast interrupt response; worst-case 5 clock cycles

• Optimized for Xilinx Spartan-3 architecture—just 96 slices and 0.5 to 1 block RAM

• Support in Spartan-6, and Virtex-6 FPGA architectures

• Assembler, instruction-set simulator support

PicoBlaze Microcontroller Functional Blocks

General-Purpose Registers
The PicoBlaze microcontroller includes 16 byte-wide general-purpose registers,
designated as registers s0 through sF. For better program clarity, registers can be renamed
using an assembler directive. All register operations are completely interchangeable; no
registers are reserved for special tasks or have priority over any other register. There is no
dedicated accumulator; each result is computed in a specified register.

Figure 1-1: PicoBlaze Embedded Microcontroller Block Diagram

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 sA sB
sC sD sE sF

Z

C

Zero

Carry

OUT_PORT

PORT_ID

IN_PORT

64-Byte
Scratchpad RAM

Instruction
Decoder

1Kx18
Instruction

PROM

INTERRUPT
16 Byte-Wide Registers

ALUOperand 1

Operand 2

IE Enable

Flags
Constants

UG129_c1_01_051204

P
ro

gr
am

 C
ou

nt
er

(P
C

)

31
x1

0
C

A
LL

/R
E

T
U

R
N

S
ta

ck

8 www.xilinx.com PicoBlaze 8-bit Embedded Microcontroller
UG129 (v2.0) June 22, 2011

Chapter 1: Introduction

PicoBlaze Microcontroller Features
As shown in the block diagram in Figure 1-1, the PicoBlaze microcontroller supports the
following features:

• 16 byte-wide general-purpose data registers

• 1K instructions of programmable on-chip program store, automatically loaded during
FPGA configuration

• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags

• 64-byte internal scratchpad RAM

• 256 input and 256 output ports for easy expansion and enhancement

• Automatic 31-location CALL/RETURN stack

• Predictable performance, always two clock cycles per instruction, up to 200 MHz or
100 MIPS in a Virtex-II Pro FPGA

• Fast interrupt response; worst-case 5 clock cycles

• Optimized for Xilinx Spartan-3 architecture—just 96 slices and 0.5 to 1 block RAM

• Support in Spartan-6, and Virtex-6 FPGA architectures

• Assembler, instruction-set simulator support

PicoBlaze Microcontroller Functional Blocks

General-Purpose Registers
The PicoBlaze microcontroller includes 16 byte-wide general-purpose registers,
designated as registers s0 through sF. For better program clarity, registers can be renamed
using an assembler directive. All register operations are completely interchangeable; no
registers are reserved for special tasks or have priority over any other register. There is no
dedicated accumulator; each result is computed in a specified register.

Figure 1-1: PicoBlaze Embedded Microcontroller Block Diagram

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 sA sB
sC sD sE sF

Z

C

Zero

Carry

OUT_PORT

PORT_ID

IN_PORT

64-Byte
Scratchpad RAM

Instruction
Decoder

1Kx18
Instruction

PROM

INTERRUPT
16 Byte-Wide Registers

ALUOperand 1

Operand 2

IE Enable

Flags
Constants

UG129_c1_01_051204

P
ro

gr
am

 C
ou

nt
er

(P
C

)

31
x1

0
C

A
LL

/R
E

T
U

R
N

S
ta

ck

(a) Block Diagram

type RegFile = Table W4 W8
type FlagFile = (Bit,Bit,Bit,Bit,Bit)
type Mem = Table W6 W8
data Stack = Stack { contents :: Table W5 W10,

pos :: W5 }
data Inputs = Inputs { instruction_in :: W18,

in_port_in :: W8,
interrupt_in :: Bit,
reset_in :: Bit }

data Outputs = Outputs { address_out :: W10,
port_id_out :: W8,
write_strobe_out :: Bit,
out_port_out :: W8,
read_strobe_out :: Bit,
interrupt_ack_out :: Bit }

(b) Corresponding ReWire Types

Fig. 1: Xilinx PicoBlaze Microcontroller ([2], page 8) Readily Represented in ReWire.

zero-save (Zsave), carry-save (Csave), and interrupt enable (IE)
flags. The type declaration for the flag registers is FlagFile in
Fig. 1b. The scratchpad RAM is represented as a table, Table
W6 W8.

In ReWire (as in Haskell [4]), a type synonym is a new
name for an existing type. Each of the aforementioned types
is declared as a type synonym—i.e., with the type form. The
right-hand sides of the aforementioned declarations involve
only built-in types (i.e., word, tuple and table types) and so
they are declared with type. As in Haskell, to introduce new
data types, ReWire has data declarations. The stack, input and
output types are defined with data declarations using record
syntax. Record types have the form, {x1 :: t1, · · · ,xn :: tn},
where each xi is a field name of type ti. Records are more
convenient than tuple types when there are a large number of
fields. The PicoState type, declared below, encapsulates all
components of the current state of the processor:
data PicoState

= PicoState { reg_file :: RegFile, flags :: FlagFile,
memory :: Mem, stack :: Stack,
outputs :: Outputs, inputs :: Inputs }

We can now define the PicoBlaze monad. The best way to
understand what this means is to see how it is used (we will
have more to say about it in subsequent sections).
type PicoBlaze = ReT Outputs Inputs (StT PicoState I)

The PicoBlaze monad defines a new domain-specific lan-
guage that allows us to write the program describing the
PicoBlaze processor. Rather than delving into the details of
monads, it is simpler to understand how a familiar idea is
represented with it. Below, the fetch-decode-execute loop for
PicoBlaze (called “fde”) is written in ReWire:
fde :: PicoBlaze ()
fde = do s <- getPicoState

let i = inputs s
instr = instruction_in i

ie <- getFlagIE
if reset_in i == 1

then reset_event
else if ie == 1 && interrupt_in i == 1

then interrupt_event
else decode instr

fde

The fde computation first gets the current state of the processor
with getPicoState and assigns it to s. The inputs on the input
ports are bound to i and instr is bound to the instruction
word. The current value of the interrupt enable flag is read and
assigned to ie. If the reset signal has been set (i.e., reset_in
i == 1), then the processor transitions to the reset_event
state (not shown). Otherwise, if the interrupt flag is set and an
interrupt has occurred, then the processor makes the transition
to the interrupt_event (not shown). Otherwise, the processor
decodes and executes the instruction. Finally, fde starts its loop
again.

Fig. 2 shows the ReWire code corresponding to the Pi-
coBlaze add immediate instruction. The definition of addImm
ends with two calls to tick. The tick operation delimits single
cycles. Each PicoBlaze instruction takes two cycles. In addImm,
the first cycle (i.e., the operations up to the first tick) contains
all of the instruction’s action, while the second cycle—the
second tick—does nothing but wait for a single cycle [2].

II. REWIRE CORE

Our prototype compiler is structured around a core lan-
guage, which is a subset of Haskell, called ReWire Core.
Fig. 3 illustrates the structure of a ReWire Core program
via an example near and dear to functional programmers’
hearts: the Fibonacci sequence F = (0, 1, 1, 2, 3, 5, . . .), where
Fn = Fn�1 + Fn�2 for all n > 1. The construction of this
simple example illustrates how a mathematical structure from
concurrency theory called a reactive resumption, combined
with some standard functional programming techniques, forms
the basis of sequential circuit specifications in ReWire. Later,
in Section III, we will use the same example to demonstrate
how ReWire produces efficient implementations of reactive
resumption-based specifications as hardware state machines.

As a subset of Haskell, ReWire Core places two primary
restrictions on the form of programs. First, every program
must be defined in terms of a set of equations, which may be
mutually recursive, producing a reactive resumption. Second,
the form of recursion and the use of higher-order constructs
(functions operating on functions, or functions operating on
resumptions) is restricted. In Section IV, we demonstrate
how a source-to-source program transformation called partial
evaluation [5] can be used to enhance the expressiveness

Xilinx PicoBlaze Architecture

PicoBlaze Data Layout in ReWire

Expressing
Architectural
Designs in
ReWire (cont’d)
Details in “Semantics-
directed Architecture in
ReWire”, Procter et al.,
ICFPT13
•  fde device is tail-

recursive
•  Clock timing is

expressed in Dev
monad

8 www.xilinx.com PicoBlaze 8-bit Embedded Microcontroller
UG129 (v2.0) June 22, 2011

Chapter 1: Introduction

PicoBlaze Microcontroller Features
As shown in the block diagram in Figure 1-1, the PicoBlaze microcontroller supports the
following features:

• 16 byte-wide general-purpose data registers

• 1K instructions of programmable on-chip program store, automatically loaded during
FPGA configuration

• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags

• 64-byte internal scratchpad RAM

• 256 input and 256 output ports for easy expansion and enhancement

• Automatic 31-location CALL/RETURN stack

• Predictable performance, always two clock cycles per instruction, up to 200 MHz or
100 MIPS in a Virtex-II Pro FPGA

• Fast interrupt response; worst-case 5 clock cycles

• Optimized for Xilinx Spartan-3 architecture—just 96 slices and 0.5 to 1 block RAM

• Support in Spartan-6, and Virtex-6 FPGA architectures

• Assembler, instruction-set simulator support

PicoBlaze Microcontroller Functional Blocks

General-Purpose Registers
The PicoBlaze microcontroller includes 16 byte-wide general-purpose registers,
designated as registers s0 through sF. For better program clarity, registers can be renamed
using an assembler directive. All register operations are completely interchangeable; no
registers are reserved for special tasks or have priority over any other register. There is no
dedicated accumulator; each result is computed in a specified register.

Figure 1-1: PicoBlaze Embedded Microcontroller Block Diagram

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 sA sB
sC sD sE sF

Z

C

Zero

Carry

OUT_PORT

PORT_ID

IN_PORT

64-Byte
Scratchpad RAM

Instruction
Decoder

1Kx18
Instruction

PROM

INTERRUPT
16 Byte-Wide Registers

ALUOperand 1

Operand 2

IE Enable

Flags
Constants

UG129_c1_01_051204

P
ro

gr
am

 C
ou

nt
er

(P
C

)

31
x1

0
C

A
LL

/R
E

T
U

R
N

S
ta

ck

Xilinx PicoBlaze Architecture

Expressing Architectural Designs (cont’d)
Xilinx PicoBlaze in ReWire

Picoblaze Architecture

8 www.xilinx.com PicoBlaze 8-bit Embedded Microcontroller
UG129 (v2.0) June 22, 2011

Chapter 1: Introduction

PicoBlaze Microcontroller Features
As shown in the block diagram in Figure 1-1, the PicoBlaze microcontroller supports the
following features:

• 16 byte-wide general-purpose data registers

• 1K instructions of programmable on-chip program store, automatically loaded during
FPGA configuration

• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags

• 64-byte internal scratchpad RAM

• 256 input and 256 output ports for easy expansion and enhancement

• Automatic 31-location CALL/RETURN stack

• Predictable performance, always two clock cycles per instruction, up to 200 MHz or
100 MIPS in a Virtex-II Pro FPGA

• Fast interrupt response; worst-case 5 clock cycles

• Optimized for Xilinx Spartan-3 architecture—just 96 slices and 0.5 to 1 block RAM

• Support in Spartan-6, and Virtex-6 FPGA architectures

• Assembler, instruction-set simulator support

PicoBlaze Microcontroller Functional Blocks

General-Purpose Registers
The PicoBlaze microcontroller includes 16 byte-wide general-purpose registers,
designated as registers s0 through sF. For better program clarity, registers can be renamed
using an assembler directive. All register operations are completely interchangeable; no
registers are reserved for special tasks or have priority over any other register. There is no
dedicated accumulator; each result is computed in a specified register.

Figure 1-1: PicoBlaze Embedded Microcontroller Block Diagram

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 sA sB
sC sD sE sF

Z

C

Zero

Carry

OUT_PORT

PORT_ID

IN_PORT

64-Byte
Scratchpad RAM

Instruction
Decoder

1Kx18
Instruction

PROM

INTERRUPT
16 Byte-Wide Registers

ALUOperand 1

Operand 2

IE Enable

Flags
Constants

UG129_c1_01_051204

P
ro

gr
am

 C
ou

nt
er

(P
C

)

31
x1

0
C

A
LL

/R
E

T
U

R
N

S
ta

ck

PicoBlaze Fetch-Decode-Execute in ReWire

fde :: Dev Inputs PicoState Outputs
fde = do s <- getPicoState

let i = inputs s
instr = instruction_in i

ie <- getFlagIE
if reset_in i == 1

then reset_event
else if ie == 1 &&

interrupt_in i == 1
then interrupt_event
else decode instr

fde

I The fde device is tail-recursive.
I Clock-timing is implicit; computation before recursive call

takes place in one clock cycle.

PicoBlaze Fetch-Decode-Execute in ReWire

Compare with PicoBlaze in VHDL
• Outermost VHDL Component for PicoBlaze

• Corresponds to ReWire term of monadic type
•  Dev Inputs PicoState Outputs

Compare with Picoblaze in VHDL

I This is the “outermost” VHDL component declaration for
PicoBlaze:
component KCPSM3
port (

instruction : in std_logic_vector(17 downto 0); -- Inputs type
in_port : in std_logic_vector(7 downto 0);
interrupt : in std_logic;
reset : in std_logic;
clk : in std_logic;
address : out std_logic_vector(9 downto 0); -- Outputs type
port_id : out std_logic_vector(7 downto 0);
write_strobe : out std_logic;
out_port : out std_logic_vector(7 downto 0);
read_strobe : out std_logic;
interrupt_ack : out std_logic;

);
end component;

I Corresponds to a ReWire term of type
Dev Inputs PicoState Outputs

I Crucial distinction: Dev is a formal, mathematical object.

Crucial Distinction:
 Dev is a formal object we can reason about.

Types for Devices
output
signal

(comb. logic)

current
state

D Q

next
state

(comb. logic)

current
input

D Q

clk

in

out

newtype ReT i o m a = ReT (m (Either a (o, i à ReT i o m a))
newtype StT s m a = …

type Dev i s o = ReT i o (StT s Identity) ()

Terms of type (Dev i s o)
compiled to…

Performance

• Prototype ReWire compiler vs. Hand-coded VHDL
implementation by experienced Xilinx engineer.
•  XST synthesis tool for Spartan-3E XC3S500E, speed -4
•  configured to optimize for speed, not space.

data CPUState = CPUState {
pc :: W10, sp :: W5,
zFlag :: Bit, cFlag :: Bit, ieFlag :: Bit,
zSave :: Bit, cSave :: Bit }

We omit the definition of various “getter and setter” methods for
the individual state fields, as well as convenience functions incrPC
and incrSP to increment the program counter and stack pointer.

4.1.2 Instruction Decoding
The instruction decoder takes the form of a pure function decode
from instruction words of type W18 to an algebraic data type Instr,
which provides a semantically structured representation of each
instruction’s action:
data Instr =

Binop Binop Reg Rand | Branch Bit Cond W10
| Return Cond | Returni Bit
| IEnable Bit | Fetch Reg Rand
| Store Reg Rand | Input Reg Rand
| Output Reg Rand | Invalid
type Binop = W8 -> W8 -> Bit -> Bit -> (W8,Bit,Bit)
data Rand = ConstRand W8 | RegRand Reg
data Cond = NoCond | CCond | NCCond | ZCond | NZCond
type Reg = W4

The constructors respectively represent arithmetic/logical instruc-
tions such as ADD; branch instructions (possibly conditional); return
instructions (again, possibly conditional); the return-from-interrupt
instruction; the interrupt-enable instruction; fetch/store instruc-
tions; input/output instructions; and a catch-all case for any invalid
instruction words. Note that the type Binop, which represents the
particular operation being requested, has function type; specifi-
cally, an arithmetic/logical operation is represented by a function
taking two W8-typed operands and the initial value of the Z and C
flags as arguments, and returning the W8-typed result along with
the new value for Z and C. Since the definition of decode consists
entirely of routine pattern matching on bit vectors and construction
of Instrs, we shall omit it here.

4.1.3 Main Loop and Startup
The processor’s execution is structured as a loop. The argument of
type Inputs threads through the last received input value.
loop :: Inputs -> CPUM ()

The basic form of the loop is as follows:
loop i = case reset_in i of

1 -> -- ... h a n d l e r e s e t .. .

0 -> do

ie <- getIEFlag
case (ie,interrupt_in i) of

(1,1) -> -- ... h a n d l e i n t e r r u p t ...

_ -> case decode (instruction_in i) of

BinopInstr ... -> -- ... h a n d l e a r i t h i n s t r . . . (*)

BranchInstr ... -> -- ... h a n d l e b r a n c h i n s t r . . .

...
OutputInstr ... -> -- ... h a n d l e o u t p u t i n s t r . . .

InvalidInstr ... -> -- ... h a n d l e i n v a l i d i n s t r . . .

where each of the elided codepaths ultimately results in a guarded
tail call back to loop.

For space reasons, we shall examine only the case of arith-
metic/logical instructions (i.e., the line marked (*) in the above
code listing). In the first clock cycle, we increment the value of the
program counter, and signal the needed register indices on the reg-
ister file address lines. Note that we assume a dual-port RAM for
the register file; we may therefore fetch both the registers rx and
ry in one clock cycle.
BinopInstr o rx rand -> do

incrPC
i <- signal (out0 { reg_addr_out = rx,

reg_addr2_out = case rand of

ConstRand _ -> 0
RegRand ry -> ry })

In the second cycle, we must first compute the result values from
the operation. After fetching the current value of the zero and carry
flags (zf and cf) and the operand values (vx and vy) from the
input lines (or from the instruction word if the vy is a constant),
we feed these values to the function o, producing a result value r
and new values zf’ and cf’ for the zero and carry flags.
zf <- getZFlag
cf <- getCFlag
let vx = reg_data_in i

vy = case rand of

ConstRand k -> k
_ -> reg_data2_in i

(r,zf’,cf’) = o vx vy zf cf

We then write back the new values of the Z and C flags.
putZFlag zf’
putCFlag cf’

Finally, we signal for the next instruction, simultaneously writing
the new value for register rx back to the register file, and tail-
recursively return to the top of the loop.
pc <- getPC
i <- signal (out0 { address_out = pc,

reg_addr_out = rx,
reg_write_out = 1,
reg_data_out = r })

loop i

Now with the loop defined, the top-level entry point is start,
which signals an “empty” output, and enters the loop.
start :: ReT Inputs Outputs I ((),CPUState)
start = do i <- signal out0

extrude (loop i)

4.1.4 Synthesis
Defunctionalization As mentioned above, the Haskell version of
the processor specification contains a handful of higher-order func-
tional constructs. This is not allowed in ReWire, so we must trans-
form the program into a first-order form before we can synthesize
a circuit. As it happens, there exists a program transformation due
to Reynolds [28] called defunctionalization that allows us to do
just this in a relatively mechanical and straightforward way. In this
example, the upshot of defunctionalization is that all functions of
type Binop will be replaced with values in a data type that repre-
sents all Binop functions used in the program, and any calls to such
functions are replaced with calls to an interpretation function. This
suffices to produce a program that is compilable by ReWire.

Synthesis results To evaluate performance, both the ReWire-
based processor described here and the original PicoBlaze from
Xilinx were synthesized using the XST synthesis tool for a Xilinx
Spartan-3E XC3S500E, speed grade -4. XST was configured to
optimize for speed (as opposed to area), with normal optimization
effort. Synthesis estimates for device utilization and Fmax follow.

Slices Flip Flops 4-LUTs Fmax (MHz)
PicoBlaze 99 76 181 139.919
ReWire 451 110 866 69.956

Put another way, the ReWire-based processor is approximately
4.6 times as large as the original (as measured in slices), and is
capable of operating at about half the maximum clock speed. We
believe these performance results, within an order of magnitude of
the original, are quite promising for two reasons. First, PicoBlaze
is a very low-level design that was heavily optimized by an experi-
enced engineer employed by Xilinx. Thus it is to be expected that

Designing a Secure Dual-core PicoBlaze*

•  Two PicoBlazes (L ≤ H) with a shared register Reg
•  Reg is read-only by H; read+write by L

• Proved a non-interference style security specification
•  Equational proof based on “by-construction” properties of monads
•  Verifies ReWire code directly
•  Just say NO! to Semantic Archaeology.

PicoBlaze
L Reg

PicoBlaze
H

* Details in Procter, et al., “Semantics Driven Hardware Design, Implementation
 and Verification in ReWire”, LCTES 2015 (to appear).

Designing a Secure Dual-core PicoBlaze*

•  Type of Dual-Core constructor function:

PicoBlaze
L Reg

PicoBlaze
H

* Details in Procter, et al., “Semantics Driven Hardware Design, Implementation
 and Verification in ReWire”, LCTES 2015 (to appear).

 dualcore :: Dev Inputs PicoState Outputs ->
 Dev Inputs PicoState Outputs ->
 Dev2 Inputs PicoState Outputs

Security Theorem

pull os is (dualcore lo hi) >>= κ0
 = pull os is (dualcore lo nop) >>= κ0

where
κ0 = λos. maskH >> return os
nop = (skip o0 i0)

Proof follows closely:
 Harrison & Hook, “Achieving Information Flow Security Through Monadic Control
 of Effects”, Journal of Computer Security 2009

Proof Sketch of Security Theorem

A. Security Verification
This appendix is being submitted for reviewers’ optional perusal, but not for publication. If the paper is accepted we intend to post this
material on our website, and provide a link to it in the camera-ready version of the paper.

The proof of Theorem 1 is by induction on the length of is, which is assumed to be finite, and uses the techniques established in previous
work [16, 17] in which by-contruction properties of operations on layered state monads (e.g., K) are used to prove the equality. The three
principal properties used are atomic noninterference, computational innocence, and the clobber rule. We describe these properties informally
as the technical details may be found in the aforementioned articles.

A layered state monad is a monad constructed from multiple applications of the state monad transformer. The monad K, for example, is
the result of three applications of state monad transformer to the identity monad:

type K = (StT SharedReg
(StT CPUState
(StT CPUState I)))

Atomic noninterference formalizes the notion that operations (i.e., atoms) lifted from distinct layers in a layered commute (i.e., do not
interfere) with the monadic bind operator. Computational innocence shows how computations that are side-effect free (i.e., “innocent”
computations) may be added to other computations preserving equality. For example, for the get operation defined by StT, get >> j = j
for any computation j . Finally, the “clobber rule” shows that operations within the same state layer may be cancelled out—i.e., clobbered.
For example in K, we defined maskH as:

maskH :: K ()
maskH = liftKH (update (const s0))

where s0 = undefined

By the clobber rule, liftKH j >> maskH = maskH = liftKH g >> maskH for any appropriately typed j and g .
Additionally, the “monad laws” [23] are also applied extensively throughout the verification. These are:

return v >>= f = f v — left unit
x >>= return = x — right unit
(x >>= lv. y) >>= lw. z= x >>= lv. (y >>= lw. z) — associativity

The proof of Theorem 1 follows the pattern, illustrated below. In the informal sketch below, we do some violence to the syntax in order
to provide the reader with a roadmap to the proof of Theorem 1. The first step unrolls the operation of (harness lo hi) into a sequence of
operations, lhi, which combine actions from both lo and hi and their operations on the shared register layer. The idempotence of maskH
is used to clone it and associativity is used to move maskH to the right of lhn. The clobber rule is used to cancel hi’s actions, producing ln
whose actions consist only of lo’s and lo’s writes to the shared register. maskH commutes with ln and this clobber-then-commute pattern
is repeated until all of hi’s effects have been cancelled. Then, the cloned maskH may be “backed out” and removed by its idempotence. The
result is equal to the r.h.s. of Theorem 1.

pull os [i1, . . . , in] (harness lo hi) >>= los. maskH >> return os
= (lh1 ; . . . ; lhn) >>= los. maskH >> return os — maskH idempotent
= (lh1 ; . . . ; lhn ; maskH) >>= los. maskH >> return os — assoc.
= (lh1 ; . . . ; ln ; maskH) >>= los. maskH >> return os — clobber
= (lh1 ; . . . ; maskH ; ln) >>= los. maskH >> return os — atomic nonint.
= (lh1 ; maskH ; . . . ; ln) >>= los. maskH >> return os — atomic nonint.
= (l1 ; maskH ; . . . ; ln) >>= los. maskH >> return os — clobber
= (l1 ; . . . ; ln) >>= los. maskH >> return os — “reversing previous steps”
= pull os [i1, . . . , in] (harness lo (skip o0 i0)) >>= los. maskH >> return os

The remainder of this appendix consists of the following. Section A.1 discusses lemmas which simplify the proof of Theorem 1. These
lemmas follow by routine, if somewhat laborious, application and simplification of the definitions of the harness. We include the proof of
Lemma 4 which is the most complex of the lemmas. Section A.2 contains the proof of Theorem 1. Section B presents the proof of Lemma 4.

A.1 Lemmas
This section presents four lemmas used to prove Theorem 1. Each of them involves unfolding definitions from the harness and simplifying
using the monad laws, b -reduction, etc. The proof of Lemma 4 is presented in Section B.

Lemma 1 unwinds the definition of pull on an n length input list into n calls to next.

Lemma 1 (pull). Given j and os of appropriate type. For every n 2 N,

pull os [i1, . . . , in] j = nextj >>= lRight(o1,k1).
next(k1 i1) >>= lRight(o2,k2).

...
next(kn�1 in�1) >>= lRight(on,kn).
return(os++[fst o1, . . . , fst on])

(dualcore lo hi)

(dualcore lo nop)

Performance
• Comparing the single core PicoBlaze to the dual core:

any design of a high-level behavioral flavor will fall short of the
original on performance. Second, the ReWire compiler is still in a
very early development stage and does virtually no optimization of
the resulting VHDL before handing it off to XST. As work proceeds
on more aggressive optimization, we expect that the complexity of
the combinational logic emitted by ReWire will be reduced sub-
stantially. This should bring the size and performance overhead into
a range that will be quite acceptable for many users in exchange for
the high assurance capabilities of ReWire.

4.2 Secure Multi-domain Processor
We now demonstrate how the single-core processor of Sec. 4.1
may be converted into a dual-core processor with secure shared
state. In particular, we will extend the design of Sec. 4.1 essentially
by instantiating two copies of the processor core, and wrapping
them with a secure harness whose design is akin to a software-
based monadic separation kernel [17]. One of these cores will be
designated as the “high” core and the other as the “low” core,
reflecting different security levels in a lattice. We also insert a
shared 8-bit register mapped to I/O port 0xFF, which the low
core may write to and the high core may read (but not write).
Any attempt by the individual cores to access port 0xFF will be
mediated by the harness, which will ignore write requests from the
high core.

4.2.1 The Dual-Core Harness
The dual-core harness serves to “lift” the individual cores into a
layered state monad [17]. As will become clear in Sec. 4.3, the
application of multiple state monad transformers provides a useful
basis for reasoning about the separation of state domains. For the
dual-core harness we will provide three layers of state: one (of type
W8) for the shared register, one for the high core’s internal state, and
one for the low core’s internal state. We will also provide separate
input and output channels for the high and low cores, meaning that
the input and output types become pairs. Thus we arrive at the
“dual-core monad” (DCM), where the harness lives:
type DCM = ReT (Inputs,Inputs) (Outputs,Outputs) K
type K = StT W8 (StT CPUState (StT CPUState I))

The harness will operate in a tail recursive fashion, taking two
CPUM computations reflecting the execution current state of the high
and low cores respectively, and producing a computation in DCM.
(Note that the definition of harness utilizes a number of helper
functions that will be explained below.) The harness proceeds by
running each core for a single step against their respective state
layers. If either of the cores has halted execution (which never
actually happens with the cores we are considering), we halt the
overall system as well. Otherwise, the harness forwards the output
signals of the individual cores to the outside world via a signal
call. When the next input signal is obtained, the helper functions
checkHiPort and checkLoPort serve to filter requests for the
shared register; if the low core attempts to write, the request value
will be written to the shared register, and if the high core attempts
to read the shared register, the value on its input port will be
overwritten with the value of the shared register. The harness then
feeds the filtered inputs to the cores and returns (via tail recursion)
to the top of the loop.
harness :: CPUM a -> CPUM b -> DCM (Either a b)
harness lo hi = do

r_lo <- lift (liftKL (deReT lo))
r_hi <- lift (liftKH (deReT hi))
case (r_lo,r_hi) of

(Left a,_) -> return (Left a)
(_,Left b) -> return (Right b)
(Right (o,k_lo),Right (o_hi,k_hi)) -> do

(i_lo,i_hi) <- signal (o_lo,o_hi)
i_hi’ <- checkHiPort i_hi o_hi

checkLoPort o_lo
harness (k_lo i_lo) (k_hi i_hi’)

The helper functions liftKL and liftKH allow state actions of
the individual cores to be mapped onto a single state domain in the
layered monad. They are defined as follows.
liftKL :: StT CPUState I a -> K a
liftKL m = lift (lift m)

liftKH :: StT CPUState I a -> K a
liftKH m = lift (do

s <- get

let (a,s’) = runI (runStT m s)
put s’
return a)

For checkHiPort, we pattern match on the output value of the
high core; if it contains a read request for address 0xFF, we pull the
value out of the shared register and overwrite the data input for the
high core with that value. Otherwise the input is left unmodified.
checkHiPort :: Inputs -> Outputs -> DCM Inputs
checkHiPort = lift (

case (port_id_out o_hi,read_strobe_out o_hi) of

(0xFF,1) -> do

v <- get

return (i_hi { in_port_in = v })
_ -> return i_hi)

Dually, checkLoPort translates write requests from the low
core into a write on the shared register.
checkLoPort :: Outputs -> DCM ()
checkLoPort o_lo = lift (

case (port_id_out o_lo,write_strobe_out o_lo) of

(0xFF,1) -> put (out_port_out o_lo)
_ -> return ())

This completes the design of the secure dual-core processor.

4.2.2 Synthesis
The dual-core processor makes much more extensive use of higher-
order language features than the single-core. In particular, the har-
ness loop takes two monadic computations as arguments. Neverthe-
less, defunctionalization still suffices to transform this specification
into a first-order, compilable form. The fully defunctionalized ver-
sion of the processor and harness are available in the code reposi-
tory [1].

Synthesis results Synthesis estimates for device utilization and
maximum clock speed of the dual-core processor were obtained by
the same process used for the single-core processor in Sec. 4.1.4.
The following table illustrates the results; slice utilization, flip flop
utilization, LUT utilization, and Fmax are given for the dual-core
processor in the first row, with the prior results for the single-core
processor given in the second row. The third row reports the ratio
for each metric between the dual- and single-core processors.

Slices Flip Flops 4-LUTs Fmax (MHz)
2-Core 907 258 1735 67.867
1-Core 451 110 866 69.956
Ratio 2.011 2.345 2.003 0.970

The results suggest nearly ideal scaling. Slice and LUT utiliza-
tion for the dual core processor are almost exactly twice as much as
the single core processor, while flip flop utilization suffers a slight
penalty attributable to the extra state registers required for the har-
ness to track its own internal state. The timing burden imposed by
dual core support is also minimal: maximum frequency of the dual-
core processor is within 3% of the single-core processor.

4.3 Proof of Separation (Please see also the appendix.)

To specify the security of the harness, we apply a security model
developed for modular monadic semantics called take separa-

Hardware vs. Program Verification

Traditional HW Verification

•  HW Verification has been around
for many, many years…
•  HOL (Cambridge), Boyer-Moore

(Texas), Isabelle (Cambridge &
Munich), BDD’s, etc., etc.

•  Basic Recipe
1.  Start with circuit,
2.  Produce formal model capturing

its essence,
3.  Encode in theorem prover logic &

verify!
•  How do you check the

faithfulness of Step 2?
•  Does the model capture the artifact?
•  Can you prove that it is faithful?

Program Verification

•  Say you have a programming
language,

•  IF you have:
•  a compositional semantics for the

language, and
•  a trusted compiler,

•  THEN you can:
•  verify programs
•  verify compiler’s semantic faithfulness,

and
•  produce high assurance implementations.

•  Canonical example: Hoare
semantics for procedural languages.

•  This is the approach ReWire takes.

Fast Regular Expression Matching Using FPGAs

•  Deep Packet Inspection for detecting malware
•  Use HW Parallelism to Represent Non-determinism
•  Sidhu & Prasanna 2001
•  Becchi & Crowley 20[07|08|09|10]

•  Handwritten regular expression compiler in C
•  State of the art performance

a

d

a

2

3
1

Regular EXpression HArdware Compiler-Compiler

Perl-
Compa+ble-
Regular-

Expressions-

Finite-
Automaton1-

Finite-
Automatonn-

…-

RexHacc-Framework-

ReWire-

ReWire-Compiler-

VHDL-

Details in “Hardware Synthesis from Functional Embedded Domain-Specific Languages:
A Case Study in Regular Expression Compilation”, Graves, et al., Applied Reconfigurable
Computing (ARC15).

rexhacc :: (NFA a -> NFA a) -> RegEx a -> ReWire

compiler :: RegEx a -> ReWire
compiler = rexhacc opt
 where opt = (o1 ¢ … ¢ on)

RexHacc
Performance
Evaluation
Details in “Hardware
Synthesis from
Functional Embedded
Domain-Specific
Languages:

0" 500" 1000" 1500" 2000" 2500" 3000"

tcp25"(k=1)"

tcp25"(k=2)"

tcp25"(k=4)"

#"Logic"Slices"

r2v"

RexHacc"

0" 1000" 2000" 3000" 4000" 5000" 6000"

tcp25"(k=1)"

tcp25"(k=2)"

tcp25"(k=4)"

#LUTs"

r2v"

RexHacc"

0" 1000" 2000" 3000" 4000" 5000" 6000"

tcp25"(k=1)"

tcp25"(k=2)"

tcp25"(k=4)"

Throughput"(Mbit/sec)"

r2v"

RexHacc"

ReWire & Proof Engineering
• Proof Engineerig

• Rewire both…
•  Computational λ-calculus
•  Expressive Fun. Lang.

• Unifies specification,
design & implementation
languages

• ARM spec. [Fox/Myreen10,…]

• Collaboration with
Australian DSTO
laboratory

Reverse Engineering

arm_instr :
 iid à
 encoding×bool[4]×instr à
 unit M

THANKS!
Joint work with Dr. Gerry Allwein of US Naval
Research Laboratory and Dr. Michela Becchi,
Dr. Adam Procter, and Ian Graves of MU

Papers
•  Semantics Driven Hardware Design, Implementation, and

Verification in ReWire, Procter, et al. Languages, Tools and
Compilers for Embedded Systems (LCTES) 2015 (to appear).

•  Hardware Synthesis from Functional Embedded Domain-Specific
Languages: A Case Study in Regular Expression Compilation.
Graves, et al. Applied Reconfigurable Computing (ARC) 2015.

•  Semantics Directed Machine Architecture in ReWire. Procter et al.
Int. Conf. on Field Programmable Technology (FPT) 2013.

l  The Confinement Problem in the Presence of Faults. Harrison et
al. 14th International Conference on Formal Engineering Methods
(ICFEM), 2012

l  Simulation Logic. Allwein and Harrison. Logic and Logical
Philosophy. Volume 23, No. 3, 2014

l  Distributed Logic. Allwein and Harrison. NRL Memo Report, 2014
l  Modal Distributed Logic. Allwein and Harrison. Book Chapter:

Papers in Honor of J. Michael Dunn, 2015

