HIGH ASSURANCE
HARDWARE WITH

REWIRE

Just Say No! to Semantic Archaeology

Bill Harrison, Adam Procter, lan Graves, & Michela Becchi
University of Missouri

Gerard Allwein
US Naval Research Laboratory

Archaeology

g m&mm%wrmw =%

-2 ¥) g

L
Semantic Archaeology & Formal Methods

System Implementation Mathematical System Model formulating
precise system securlty propertles

—————
,,,,,

A :'rm , }BM'
SN \‘IJI "/,,

Semantic Archaeology as It Occurs in Nature

From Sarkar, et al., Semantics of x86-CC Multiprocessor Machine Code, POPL09

“The key difficulty was to go from the informal-prose vendor documentation, with
its often-tantalising ambiguity, to a fully rigorous definition (mechanised in HOL)
that one can be reasonably confident is an accurate reflection of the vendor
architectures (Intel 64 and I4-32, and AMD64).”

x86 Instruction Semantics in HOL in terms of Monadic Microcode; e.g.,

seqT:'aM — ("a—"0M) —'b M
parT:'aM —'bM — ("ax'b)M
constT :'a — "a M

failureT : unit M

mapT : (‘a — b)) = 'a M — "bM
lockT : unit M — unit M

Security Flows in the Many Core Era*

- Highly (Re)configurable Architectures/FPGAs
- Many Specially Tailored, “One Off" Components

- Reuse of Off-the-shelf components
- “Mix and Match” comes to Hardware

- Challenge: High Assurance in this environment
- Want the flexibility and speed of development

- ...but also want formal guarantees of security and safety for critical
systems.

* Funded by the Office of the Assistant Secretary of Defense for Research and Engineering

Hardware Synthesis from Domain
Specific Languages

- Delite [Olukotun, lenne, et al.]

- DSLs and Language
Productivity Virtualization

- “The Three P’s”

- ReWire
- Fourth P: Provability

- DSL with rigorous
semantics
Performance Portability - Modular Monadic Semantics

- High assurance

- Security & safety properties
- Formal methods Productivity

Provability

Ta,
e,
.,..
®

ReWire Language & Toolchain

ReWire Compiler

/

Synthesizable
VHDL

\

Inherits Haskell's good qualities
Pure functions, strong types, monads, equational reasoning, etc.
Formal denotational semantics [HarrisonKieburtz05,Harrison05]

Language design identifies HW representable programs

Mainly restrictions on recursion in functions and data

Built-in types for HW abstractions incl. clocked/parallel
computations

Expressing Xilinx PicoBlaze Architecture

Architectural 2
Designs in nsoton | 28 [HZEE | soraonpad rav
. & 2 ‘-OUT_PORT
ReWire 2 °
l Fl.

. . i Instruction Constants o Zero
Details in “Semantics- Decoder Carry
directed Architecture in INTERRUPT FPYRTTR———

ReWire”, Procter et al., [] Enable 0 [51] % [Operand 1 gLy
ICFPT13 e oA e
sC sD sk sF

Operand 2

!

type RegFile = Table W4 W8

type FlagFile = (Bit,Bit,Bit,Bit,Bit)

type Mem = Table W6 W8

data Stack = Stack { contents :: Table W5 W10,

pos :: WH }

data Inputs = Inputs { instruction_in :: W18,
in_port_in :: W8,
interrupt_in :: Bit,
reset_in :: Bit }

PicoBlaze Data Layout in ReWire data Outputs = Outputs { addre§s_out :: W10,

port_id_out :: W8,
write_strobe_out :: Bit,
out_port_out W8,
read_strobe_out :: Bit,

interrupt_ack_out :: Bit }

Expressing
Architectural
Designs in
ReWire (cont'd)

Details in “Semantics-
directed Architecture in
ReWire”, Procter et al.,
ICFPT13

fde device is tail-
recursive

Clock timing is
expressed in Dev
monad

Xilinx PicoBlaze Architecture

64-Byte J— -PORT_ID
Scratchpad RAM
OUT_PORT

Flags
Constants o Zero

Carry

1Kx18
Instruction
PROM

Program Counter
(PC)
31x10
CALL/RETURN
Stack

—

Instruction
Decoder

INTERRUPT - -
16 Byte-Wide Registers)
[iE] Enable sO s1 s2 s3 Operand 1 (ALY

s4 s5 s6 s7
r sC sD sE sk

it

Operand 2

fde :: Dev Inputs PicoState Outputs
fde = do s <- getPicoState
let 1 = 1inputs s
instr = instruction _in 1
ie <- getFlaglE
if reset_in 1 == 1
then reset_event
else if ie == 1 &&

PicoBlaze Fetch-Decode-Execute in ReWire

interrupt_in 1 == 1
then interrupt_event
else decode instr

fde

L
Compare with PicoBlaze in VHDL

- Outermost VHDL Component for PicoBlaze

component KCPSM3

port (

instruction : in std_logic_vector (17 downto 0); —-- Inputs type
in_port : in std_logic_vector(7 downto 0);

interrupt : in std_logic;

reset : in std_logic;

clk : in std_logic;

address : out std_logic_vector(9 downto 0); —-- Outputs type
port_id : out std_logic_vector(7 downto 0);

write_strobe : out std_logic;

out_port : out std_logic_vector(7 downto 0);

read_strobe : out std_logic;

interrupt_ack : out std_logic;

)i

end component;

- Corresponds to ReWire term of monadic type
- Dev Inputs PicoState Outputs

Crucial Distinction:
Dev is a formal object we can reason about.

Types for Devices

D Q

current
state

output

signal
(comb. logic)

Terms of type (Dev i s o)
compiled to...

D Q
next

state
(comb. logic)

current
input

ReT (m (Either a (o, i & ReT i o m a))

newtype ReT i o m a
newtype StT s m a

type Dev i s o = ReT 1 o (StT s Identity) ()

Performance

- Prototype ReWire compiler vs. Hand-coded VHDL
Implementation by experienced Xilinx engineer.
- XST synthesis tool for Spartan-3E XC3S500E, speed -4
- configured to optimize for speed, not space.

Slices | Flip Flops | 4-LUTs | Fjqc (MHz)
PicoBlaze 99 76 181 139.919
ReWire 451 110 866 69.956

Designing a Secure Dual-core PicoBlaze™

é

- Two PicoBlazes (L < H) with a shared register Reg
- Reg is read-only by H; read+write by L

- Proved a non-interference style security specification

- Equational proof based on “by-construction” properties of monads
- Verifies ReWire code directly
- Just say NO! to Semantic Archaeology.

* Details in Procter, et al., “Semantics Driven Hardware Design, Implementation
and Verification in ReWire”, LCTES 2015 (to appear).

Designing a Secure Dual-core PicoBlaze™

PicoBlaze PicoBlaze
L H

- Type of Dual-Core constructor function:

dualcore :: Dev Inputs PicoState Outputs ->
Dev Inputs PicoState Outputs ->
Dev2 Inputs PicoState Outputs

* Details in Procter, et al., “Semantics Driven Hardware Design, Implementation
and Verification in ReWire”, LCTES 2015 (to appear).

Security Theorem

pull os 1s (dualcore lo hi) >>= kg,
= pull os 1s (dualcore lo nop) >>= K,

where

Ky = AOs. mask, >> return os
nop = (skip o, 1,)

Proof follows closely:
Harrison & Hook, “Achieving Information Flow Security Through Monadic Control
of Effects”, Journal of Computer Security 2009

B
Proof Sketch of Security Theorem

pull os [iy,. .., iy| (dualcore lo hi) >>= Aos. masky >> return os
= (1hy;...; lhy) >>= Aos. masky >> return os — masky idempotent
= (1hy;...; lhy ; masky) >>= Aos. masky >> return os — assoc.
= (1lhy;...; 1, ; masky) >>= Aos.masky >> return os — clobber
= (1lhy;...; masky; 1) >>= Aos.masky >> return os — atomic nonint.
= (1lh; ; maskg; ...; 1,) >>= Aos. masky >> return os — atomic nonint.
= (1; ; masky; ...; 1) >>= Aos. masky >> return os — clobber
= (1;;...; 15) >>= Aos. masky >> return os — “reversing previous steps”

I
g~
<
o~
o~

0s lit;--,in] (dualcore lo nop) >>= Aos. masky >> return os

Performance

- Comparing the single core PicoBlaze to the dual core:

Slices | Flip Flops | 4-LUTs | Fqc (MHz)
2-Core 907 258 1735 67.867
1-Core 451 110 866 69.956
Ratio 2.011 2.345 2.003 0.970

Hardware vs. Program Verification

Traditional HW Verification Program Verification
- HW Verification has been around - Say you have a programming
for many, many years... language,
- HOL (Cambridge), Boyer-Moore - IF you have:
(Texas), Isabelle (Cambridge & - a compositional semantics for the
Munich), BDD'’s, etc., etc. language, and

- a trusted compiler,

- THEN you can:

- verify programs
- verify compiler’s semantic faithfulness,

- Basic Recipe
1. Start with circuit,
2. Produce formal model capturing

its essence, and
3. Encode in theorem prover logic & - produce high assurance implementations.
verify! - Canonical example: Hoare
- How do you check the semantics for procedural languages.
faithfulness of Step 27 - This is the approach ReWire takes.

- Does the model capture the artifact?
- Can you prove that it is faithful?

Fast Regular Expression Matching Using FPGAs

e

d Output—>

d
“True?] 1 T 2
— 1 ; : | ' jz?.__{‘ 3
a }

Character Input

- Deep Packet Inspection for detecting malware

- Use HW Parallelism to Represent Non-determinism
- Sidhu & Prasanna 2001

- Becchi & Crowley 20[07]|08]09]|10]

- Handwritten regular expression compiler in C
- State of the art performance

Regular EXpression HArdware Compiler-Compiler

RexHacc Framework ReWire Compiler

f \
Perl | | !
Compatible | Finite Finite L .
Regular :> : Automaton, Automaton, P ReWire VHDL
1
Expressions | | !
! P

rexhacc :: (NFA a -> NFA a) -> RegEx a -> ReWire

compiler :: RegEx a —-> ReWire
compiler = rexhacc opt
where opt = (0; o.. o 0,)

Details in “Hardware Synthesis from Functional Embedded Domain-Specific Languages:
A Case Study in Regular Expression Compilation”, Graves, et al., Applied Reconfigurable
Computing (ARC15).

RexHacc
Performance
Evaluation

Details in “Hardware
Synthesis from
Functional Embedded
Domain-Specific
Languages:

tcp25 (k=1)

tcp25 (k=2)

tcp25 (k=4)

tcp25 (k=1)

tcp25 (k=2)

tcp25 (k=4)

tcp25 (k=1)

tcp25 (k=2)

tcp25 (k=4)

Logic Slices

0 500 1000 1500 2000 2500

o |

#LUTs

0 1000 2000 3000 4000 5000

Throughput (Mbit/sec)

0 1000 2000 3000 4000 5000

3000

Br2v

M RexHacc
6000

Br2v

M RexHacc
6000

Br2v

M RexHacc

B
ReWire & Proof Engineering

- Proof Engineerig - ARM spec. [Fox/Myreen10,..]
- Rewire both... arm_instr :
- Computational A-calculus 1id 2

, encodingxbool[4] xinstr -
- Expressive Fun. Lang. unit M

- Unifies specification,
design & implementation . Collaboration with
languages Australian DSTO

laboratory

A Synthesizable
ReWire
~~~~~ - VHDL

Reverse Engineering




THANKS!

Joint work with Dr. Gerry Allwein of US Naval
Research Laboratory and Dr. Michela Becchi,
Dr. Adam Procter, and lan Graves of MU

‘0(‘__ A -‘.’._; t"."
4’ 0
.
. U
R
|
g

..(

L
_—
‘v -




Papers

Semantics Driven Hardware Design, Implementation, and
Verification in ReWire, Procter, et al. Languages, Tools and
Compilers for Embedded Systems (LCTES) 2015 (to appear).

Hardware Synthesis from Functional Embedded Domain-Specific
Languages: A Case Study in Regular Expression Compilation.
Graves, et al. Applied Reconfigurable Computing (ARC) 2015.

Semantics Directed Machine Architecture in ReWire. Procter et al.
Int. Conf. on Field Programmable Technology (FPT) 2013.

The Confinement Problem in the Presence of Faults. Harrison et
al. 14" International Conference on Formal Engineering Methods
(ICFEM), 2012

Simulation Logic. Allwein and Harrison. Logic and Logical
Philosophy. Volume 23, No. 3, 2014

Distributed Logic. Allwein and Harrison. NRL Memo Report, 2014

Modal Distributed Logic. Allwein and Harrison. Book Chapter:
Papers in Honor of J. Michael Dunn, 2015



