Learning security

D. Pavlovic

Problem Background Approach Summary

Learning security strategies

Dusko Pavlovic University of Hawaii

C3E June 2015

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Outline

Problem: Strategic bias

Background: Attacker models

Approach: Learning strategies

Summary

Learning security

D. Pavlovic

Problem Background Approach Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Problem: Strategic bias

Background: Attacker models

Approach: Learning strategies

Summary

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

Cyber problems

cyber crime

What do they have in common?

Learning security

D. Pavlovic

Problem

Background Approach

Summary

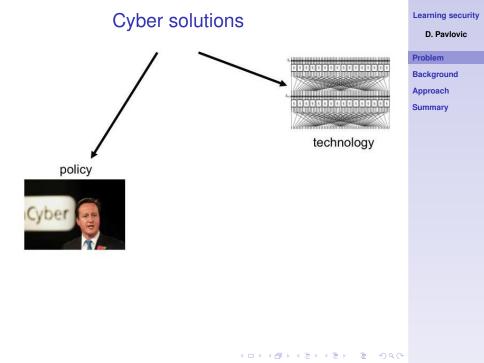
cyber bullying

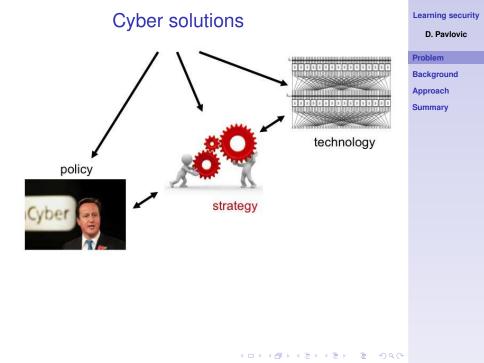
Cyber problems

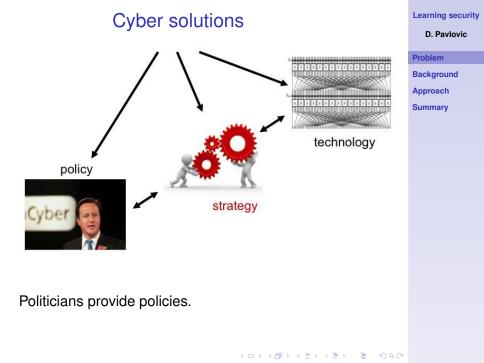
Learning security

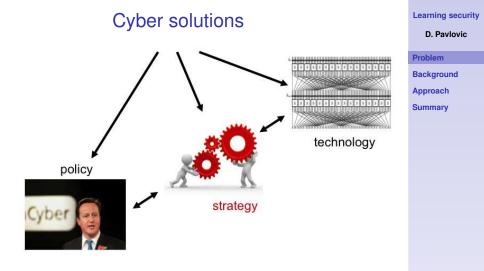
D. Pavlovic

Problem

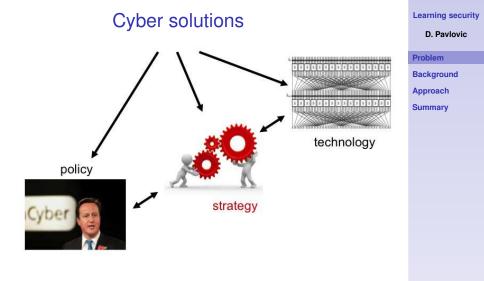

Background


Approach


Summary


It is easier to attack then to defend

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへで



Technologists provide technologies.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Who provides the strategies?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Queen's Strategysts

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

Men in the Middle of the Babington plot

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 – のへで

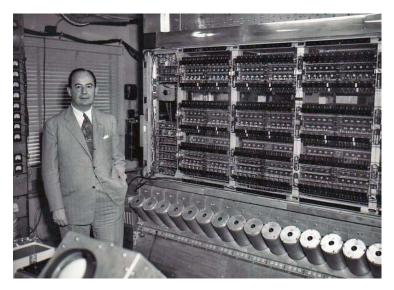
Strategyst of Conflict

Learning security

D. Pavlovic

Problem

Background


Approach

Summary

Science of politics as a state of conflict

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compleat Strategyst

Learning security

D. Pavlovic

Problem

Background Approach Summary

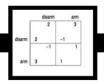
Strategy as a mathematical solution

One-shot conflict: MAD

(Mutual Assured Destruction)

Learning security

D. Pavlovic


Problem

Background

Approach

Summary

Game theory in one slide

-

Learning security

D. Pavlovic

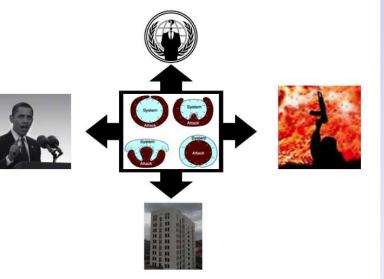
Problem

Background

Approach

Summary

$$\frac{A \times X \xrightarrow{u_{k}} \mathbb{R}}{A_{-k} \times X \xrightarrow{PR_{k}} A_{k}} \\
\frac{A \times X \xrightarrow{BR = \langle BR_{k} \circ \pi_{k} \rangle_{i=1}^{n}} A}{X \xrightarrow{NE^{-1}} X \xrightarrow{R} A} \\
\xrightarrow{X \xrightarrow{NE^{-1}} Y \xrightarrow{NE^{-1}} BR} A$$


where

$$A = \prod_{i \in n} A_i \qquad \qquad X = \prod_{i \in n} X_i \qquad \qquad A_{-i} = \prod_{\substack{k \in n \\ k \neq i}} A_k$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Ongoing conflict: **APT**

(Advanced Persistent Threat)

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

Ongoing conflict: **APT**

(Advanced Persistent Threat)

Learning security

D. Pavlovic

Problem

Background Approach Summary

・ロト・日本・ キャー キー シャイト

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

- Security is an adversarial process.
- Game theory is the theory of adversarial processes.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 \Rightarrow Model security as a game!

Why is this not done already?

- Economists use game theory daily.
- Why not security engineers?

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

A possible reason

- Game theory tells you how to win following the rules
 - the rules are assumed to be enforced
 - the players follow the rules
- Security is the problem of enforcing the rules
 - the defender sets and implements the rules
 - the attacker seeks to cheat and defy the rules

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つくぐ

A possible reason

Game theory tells you how to win following the rules

- the rules are assumed to be enforced
- the players follow the rules
- Security is the problem of enforcing the rules
 - the defender sets and implements the rules
 - the attacker seeks to cheat and defy the rules

Game theory begins where security ends.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Learning security

D. Pavlovic

Problem

Background Approach Summary

Security is a hyper game

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 – のへで

- rules keep changing
- strategies keep adapting

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

Develop a "hyper game theory".

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

Develop a method to evolve adaptive strategies.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Question

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

Why is attack easier than defense?

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Question

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

- Why is attack easier than defense?
- Why are attackers more adaptive than defenders?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

Problem: Strategic bias

Background: Attacker models

Approach: Learning strategies

Summary

Learning security

D. Pavlovic

Problem

Background

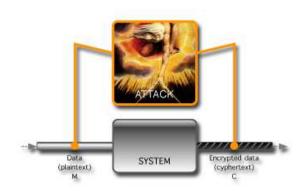
Approach

Summary

・ロト・西ト・西ト・西ト・日・ション

Shannon's attacker: computationally unbounded (omnipotent computer)

Learning security


D. Pavlovic

Problem

Background

Approach

Summary

If a source contains some information, then the attack will extract that information.

・ロト・日本・日本・日本・日本・日本

Shannon's attacker: computationally unbounded (omnipotent computer)

Learning security

D. Pavlovic

Problem

Background

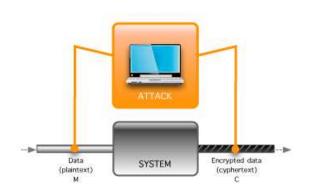
Approach

Summary

$$\operatorname{Adv}_{\mathsf{E}}^{Sh} = \int_{m \leftarrow \mathsf{M}} \operatorname{Pr}(m \leftarrow \mathsf{M} \mid c = \mathsf{E}(m)) - \operatorname{Pr}(m \leftarrow \mathsf{M})$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Learning security


D. Pavlovic

Problem

Background

Approach

Summary

If attacker's computers have limited powers, then information can be hard to extract.

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

$$\mathsf{Adv}_{\mathsf{E}}^{DH}(\mathsf{A}) = \mathsf{Pr}\left(m \leftarrow \mathsf{A}(c) \mid c = \mathsf{E}(m)\right) - \mathsf{Pr}\left(m \leftarrow \mathsf{A}(0)\right)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

$$\mathsf{Adv}_{\mathsf{E}}^{DH}(\mathsf{A}) = \mathsf{Pr}\left(m \leftarrow \mathsf{A}(c) \mid c = \mathsf{E}(m)\right) - \mathsf{Pr}\left(m \leftarrow \mathsf{A}(0)\right)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

$$Adv_E^{DH} = \bigvee_{A \in PPT} Adv_E^{DH}(A)$$

Idea

 $Adv_{E}^{DH} \sim 0$ iff E is a *one-way function*, i.e. for almost all *m* holds

$$\exists k. D(m, \mathsf{E}(m)) \leq O(\ell(m)^k)$$

$$\forall k. D(\mathsf{E}(m), m) > O(\ell(m)^k)$$

where for ensembles a, b we define

$$D(a,b) = \bigwedge_{\{p\}(a)=b} time(p,a)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

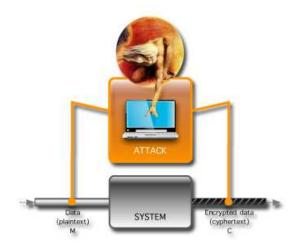
Adaptive attacker: computationally bounded (real computer)

Learning security

D. Pavlovic

Problem

Background


Approach

Summary

$$\begin{aligned} \mathsf{Adv}_{s}^{\mathit{IND-CCA2}}(\mathsf{A}) &= \\ & \mathsf{Pr}\bigg(b \leftarrow \mathsf{A}_{3}\left({}^{\bullet}m, {}^{\bullet}c, \sigma_{2}, c_{?}, m_{1}, m_{0}, m^{\bullet}, c^{\bullet}\right) \bigg| \\ {}^{\bullet}m &= \mathsf{D}_{s}\big(\overline{k}, {}^{\bullet}c), \langle {}^{\bullet}c_{\neq c_{?}}, \sigma_{2} \rangle \leftarrow \mathsf{A}_{2}(c_{?}, m_{1}, m_{0}, \sigma_{1}, m^{\bullet}, c^{\bullet}) \\ & c_{?} \leftarrow \mathsf{E}_{s}(k, m_{b}), b \leftarrow U_{2}, \langle m_{1}, m_{0}, \sigma_{1} \rangle \leftarrow \mathsf{A}_{1}(m^{\bullet}, c^{\bullet}, \sigma_{0}), \\ & m^{\bullet} = \mathsf{D}_{s}(\overline{k}, c^{\bullet}), \langle c^{\bullet}, \sigma_{0} \rangle \leftarrow \mathsf{A}_{0} \\ & - \mathsf{Pr}\bigg(b \leftarrow U_{2}\bigg) \end{aligned}$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Kerckhoffs' attacker: logically unbounded (real computer, omnipotent programmer)

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

... but if there is a feasible attack algorithm, then attacker's omnipotent programmers will find it.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへぐ

Kerckhoffs' attacker: logically unbounded (real computer, omnipotent programmer)

$$\begin{aligned} \mathsf{Adv}_{s}^{\mathit{IND-CCA2}} &= \\ &\bigvee_{\mathsf{A} \in \mathit{PPT}} \mathsf{Pr} \bigg(b \leftarrow \mathsf{A}_{3} \left({}^{\bullet}m, \; {}^{\bullet}c, \sigma_{2}, c_{?}, m_{1}, m_{0}, m^{\bullet}, c^{\bullet} \right) \bigg| \\ {}^{\bullet}m &= \mathsf{D}_{s} \left(\overline{k}, \; {}^{\bullet}c \right), \langle {}^{\bullet}c_{\neq c_{?}}, \sigma_{2} \rangle \leftarrow \mathsf{A}_{2}(c_{?}, m_{1}, m_{0}, \sigma_{1}, m^{\bullet}, c^{\bullet}) \\ c_{?} \leftarrow \mathsf{E}_{s}(k, m_{b}), b \leftarrow U_{2}, \langle m_{1}, m_{0}, \sigma_{1} \rangle \leftarrow \mathsf{A}_{1}(m^{\bullet}, c^{\bullet}, \sigma_{0}), \\ m^{\bullet} &= \mathsf{D}_{s}(\overline{k}, c^{\bullet}), \langle c^{\bullet}, \sigma_{0} \rangle \leftarrow \mathsf{A}_{0} \\ &- \mathsf{Pr} \bigg(b \leftarrow U_{2} \bigg) \end{aligned}$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

ASECO attacker: logically bounded (real computer, real programmer)

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

If attacker's programmers have limited powers, then attack algorithms may be hard to find.

・ロト・西ト・西ト・日下 しょうやく

ASECO attacker: logically bounded

(real computer, real programmer)

 $Adv_{c}^{IND-ASECO}(A) =$ $\bigvee \Pr\left(b \leftarrow \{a_3\}(\bullet m, \bullet c, c_?, m_1, m_0, m^\bullet, c^\bullet)\right)$ $\mathbf{a} \leftarrow \mathbb{A}(\mathbf{s})$ $\mathbf{^{\bullet}}m = \left\{ \mathbf{d}_{s}\right\} \left(\overline{k}, \ \mathbf{^{\bullet}}c \right), \mathbf{^{\bullet}}c \leftarrow \left\{ \mathbf{a}_{2}\right\} \left(c_{?}, m_{1}, m_{0}, m^{\bullet}, c^{\bullet} \right)$ $c_{?} \leftarrow \left\{ \mathbf{e}_{s}\right\} \left(k, m_{b} \right), b \leftarrow U_{2}, \langle m_{1}, m_{0} \rangle \leftarrow \left\{ \mathbf{a}_{1}\right\} \left(m^{\bullet}, c^{\bullet} \right),$ $m^{\bullet} = \{ d_{s} \} (\overline{k}, c^{\bullet}), c^{\bullet} \leftarrow \{ a_{0} \} \}$ $-\Pr\left(b \leftarrow U_2\right)$ Learning security

D. Pavlovic

Problem

Background

Approach

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Adaptive security game

(both attacker and defender have real computers and real programmers)

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

$$\operatorname{Adv}^{IND-ASECO}(\mathbb{A}, \mathbb{S}) = \left(\bigwedge_{s \in \mathbb{S}(a)} \bigvee_{a \in \mathbb{A}(s)} \operatorname{Pr}\left(b \leftarrow \{a_3\}({}^{\bullet}m, {}^{\bullet}c, \ldots) \right) \right) \\ {}^{\bullet}m = \{d_s\}(\overline{k}, {}^{\bullet}c), {}^{\bullet}c \leftarrow \{a_2\}(c_7, m_1, m_0, m^{\bullet}, c^{\bullet}) \\ c_7 \leftarrow \{e_s\}(k, m_b), b \leftarrow U_2, \langle m_1, m_0 \rangle \leftarrow \{a_1\}(m^{\bullet}, c^{\bullet}), \\ m^{\bullet} = \{d_s\}(\overline{k}, c^{\bullet}), c^{\bullet} \leftarrow \{a_0\} \right) \\ - \operatorname{Pr}\left(b \leftarrow U_2 \right)$$

Adaptive security game

(both attacker and defender have real computers and real programmers)

Idea

 $\operatorname{Adv}_{\mathsf{E}}^{IND-ASECO}(\mathbb{A}, \mathbb{S}) \sim 0$ iff for $a \leftarrow \mathbb{A}(s)$ and $s \leftarrow \mathbb{S}(a)$ holds with overwhelming probability

$$\exists k. D(a, s) \leq O(\ell(a)^k)$$

$$\forall k. D(s, a) > O(\ell(s)^k)$$

where

$$D(a,b) = \bigwedge_{\{p\}(a)=b} time(p,a)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

Learning security

D. Pavlovic

Problem

Background

Approach

Adaptive security game

(both attacker and defender have real computers and real programmers)

Idea

 $\operatorname{Adv}_{\mathsf{E}}^{IND-ASECO}(\mathbb{A}, \mathbb{S}) \sim 0$ iff for $a \leftarrow \mathbb{A}(s)$ and $s \leftarrow \mathbb{S}(a)$ holds with overwhelming probability

$$\exists k. D(a, s) \leq O(\ell(a)^k)$$

$$\forall k. D(s, a) > O(\ell(s)^k)$$

where

$$D(a,b) = \bigwedge_{\{p\}(a)=b} time(p,a)$$

... with a couple of tweaks.

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

・ロト・西ト・モン・モー もくの

Summary: Beyond omnipotence

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

power	unbounded	bounded
rationality	Cournot	Simon
computational	Shannon	Diffie-Hellman
logical	Kerckhoffs	ASECO

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Outline

Problem: Strategic bias

Background: Attacker models

Approach: Learning strategies Strategic bias beyond cryptography Game of attack vectors Modeling adaptive games

Summary

Learning security

D. Pavlovic

Problem

Background

Approach

Beyond crypto Attack vectors Adaptive games

Summary

・ロト・西ト・西ト・日・ つくぐ

Beyond crypto: A real adaptive attacker

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors Adaptive games

Summary

recruits his fighters using defender's networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Beyond crypto: A real adaptive attacker

buys his weapons on defender's free market

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors Adaptive games

Summary

・ロト・日本・日本・日本・日本・日本・日本

Beyond crypto: A real adaptive attacker

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors Adaptive games

Summary

makes cyber war physical!

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ○ ○ ○ ○

Question

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors Adaptive games

Summary

When is a defense strategy adaptive?

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

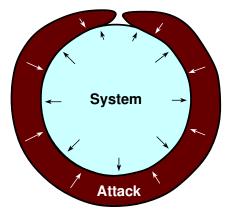
Question

Learning security

D. Pavlovic

Problem

Background


Approach Beyond crypto Attack vectors Adaptive games

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- When is a defense strategy adaptive?
- When is intelligence adaptive?

Game of attack vectors: Fortification

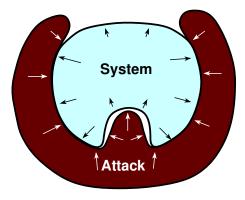
Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors


Adaptive games

Summary

System must defend all vectors, Attacker just needs one

・ロト・日本・日本・日本・日本・日本

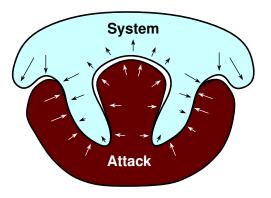
Game of attack vectors: Honeypot

System passively observes Attacker

Learning security

D. Pavlovic

Problem


Background

Approach Beyond crypto Attack vectors Adaptive games

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

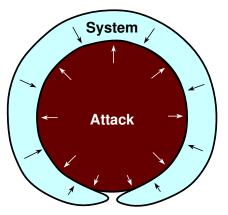
Game of attack vectors: Sampling

System actively queries Attacker

Learning security

D. Pavlovic

Problem


Background

Approach Beyond crypto Attack vectors Adaptive games

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Game of attack vectors: Adaptation

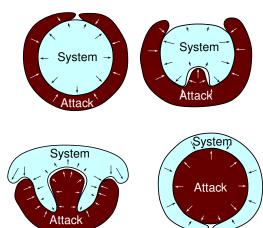
Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors


Adaptive games

Summary

Attacker must defend all markers, System just needs one

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つくぐ

From fortification to adaptation

Fortress under siege evolves into macrophage devouring a bacterium

Learning security

D. Pavlovic

Problem

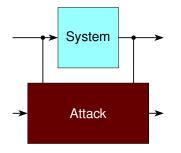
Background

Approach Beyond crypto Attack vectors Adaptive games

From fortification to adaptation in Crypto Passive attacker

Learning security

D. Pavlovic


Problem

Background

Approach Beyond crypto Attack vectors

Adaptive games

Summary

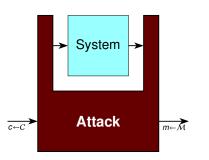
observes plaintext/ciphertext pairs

・ロト・西ト・田・・田・ ひゃぐ

From fortification to adaptation in Crypto Adaptive attacker

Learning security

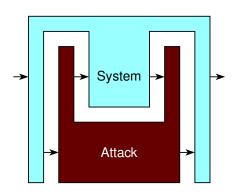
D. Pavlovic


Problem

Background

Approach Beyond crypto Attack vectors

Adaptive games


Summary

queries System by chosen plaintexts and/or ciphertexts

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Adaptive defender

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors

Adaptive games

Summary

"Answer questions by questions"

・ロ・・聞・・思・・思・・ しゃ

Security analysis strategy

- The world consists Good Guys and Bad Guys.
- Analyst profiles and detects Bad Guys.
- Defender keeps Good Guys in and Bad Guys out.

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors

Adaptive games

Security analysis strategy

- The world consists Good Guys and Bad Guys.
- Analyst profiles and detects Bad Guys.
- Defender keeps Good Guys in and Bad Guys out.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Problem: false positives and false negatives

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors

Adaptive games

Sponsored search strategy

- The world consists of Buyers with various interests.
- Analyst profiles and quantifies Buyers' interests.
- Offers triggered through significance testing

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto

Attack vectors Adaptive games

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Sponsored search strategy

- The world consists of Buyers with various interests.
- Analyst profiles and quantifies Buyers' interests.
- Offers triggered through significance testing
- Advertiser influences the interests.

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto

Attack vectors

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Adaptive analysis strategy

- The world consists of Guys with various interests.
- Analyst profiles and quantifies Guys' interests.
- Defense triggered through *significance testing*.

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors

Adaptive games

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Adaptive analysis strategy

- The world consists of Guys with various interests.
- Analyst profiles and quantifies Guys' interests.
- Defense triggered through *significance testing*.
 - False positives are kept below the threshold

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Interests can be influenced

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto

Adaptive games

Adaptive analysis strategy

- The world consists of Guys with various interests.
- Analyst profiles and quantifies Guys' interests.
- Defense triggered through *significance testing*.
 - False positives are kept below the threshold
 - Interests can be influenced

(~ "Towards a science of trust")

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto

Adaptive games

Category of strategies

Definition

Let *C* be a cartesian category, and $\Delta : C \longrightarrow C$ a commutative monad over it.

The category $S = S_{\Delta C}$ of Δ -strategies over C consists of

• players
$$A = \langle M_A, S_A \rangle \in C^2$$

► strategies $(A \xrightarrow{\Phi} B) \in C(M_A \times S_B, \Delta(S_B \times M_B))$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto

Adaptive games

Category of strategies

Composition

$$\frac{A \xrightarrow{\Phi} B \qquad B \xrightarrow{\Psi} C}{A \xrightarrow{\Phi; \Psi} C}$$

is given by

$$(\Phi; \Psi)_{a\gamma\gamma'c} = \sum_{\beta\beta'b} \Phi_{a\beta\beta'b} \cdot \Psi_{b\gamma\gamma'c}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto

Attack vectors

Adaptive games

Games of perfect and complete information

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto

Attack vectors

Adaptive games

Summary

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

$$S_A = S_B = (\mathbb{R} \times \mathbb{R})^{M_A \times M_B}$$

Best Response strategies

Learning security

D. Pavlovic

Problem

Background

Approach

Beyond crypto Attack vectors

Adaptive games

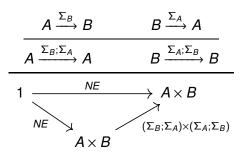
Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nash equilibrium

Learning security

D. Pavlovic


Problem

Background

Approach Beyond crypto Attack vectors

Adaptive games

Summary

・ロト・西ト・モン・モー もくの

Games of imperfect and complete information

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto Attack vectors

Adaptive games

Summary

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

$$\begin{array}{lll} S_A &=& P_A \times (\mathbb{R} \times \mathbb{R})^{M_A \times M_B} \\ S_B &=& P_B \times (\mathbb{R} \times \mathbb{R})^{M_A \times M_B} \end{array}$$

Games of perfect and incomplete information

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto

Attack vectors

Adaptive games

Summary

$$S_A = \mathbb{R}^{M_A imes M_B} imes \Delta S_B$$

 $S_B = \mathbb{R}^{M_A imes M_B} imes \Delta S_A$

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Games of perfect and incomplete information

Learning security

D. Pavlovic

Problem

Background

Approach Beyond crypto

Attack vectors Adaptive games

Summary

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

$$S_A = S_B = \prod_{i=0}^{\infty} \Delta^i \left(\mathbb{R}^{M_A \times M_B} \right)$$

Outline

Problem: Strategic bias

Background: Attacker models

Approach: Learning strategies

Summary

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

シック・ 川 ・ 川 ・ 川 ・ 一日・

Strategic paradigms

System security

Adaptive security

"The security policy must be explicit, well defined and enforced by the computer."

Orange Book (1983-2002)

"Let your methods be guided by the infinite variety of circumstances."

Sun Tzu (544 BC - 496 BC)

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

▲□▶▲□▶▲□▶▲□▶ □ ● ●

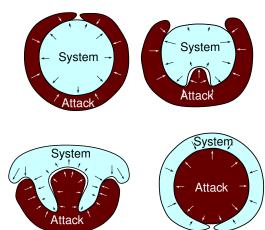
Strategic paradigms

System security

- Adaptive security
- "no security by obscurity"
- "precise attacker model"
- "be mysterious"
 - "opportunities multiply"

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Learning security


D. Pavlovic

Problem

Background

Approach

From fortification to adaptation

Fortress under siege evolves into macrophage devouring a bacterium

Learning security

D. Pavlovic

Problem

Background

Approach

It is good to keep the invaders out...

Learning security

D. Pavlovic

Problem

Background

Approach

Summary

シック・ 川 ・ 川 ・ 川 ・ 一日・

... but it is better to bring them in

Learning security

D. Pavlovic

Problem Background Approach Summary

・ロト・西ト・西ト・西ト・日・ション