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Abstract. Over the last two decades formal methods have achieved
widespread use by industry in the development of safety and security
critical systems. However, these successes often go unacknowledged as
evidence of the successful transition of formal methods simply because
the name “formal methods” is often still associated with its early pro-
totypes rather than with the successful methods and tools they have
evolved into. To better understand the benefits that formal methods can
provide, Rockwell Collins has conducted many experiments over the last
twenty years in their use. This paper describes several of these exper-
iments, discusses what worked and what didn’t, and identifies the key
lessons we have learned about introducing formal methods into an in-
dustrial setting.
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1 Introduction

Significant gains have been made over the last twenty years in the use of formal
methods by industry. To cite just a few, formal graphical modeling languages
such as Esterel Technologies SCADE SuiteTM [1] and MATLAB Simulink c© [2]
are widely used in the design of avionics and automotive systems, and both prod-
ucts offer integrated formal verification tools based on model checking and ab-
stract interpretation. Formal annotation of source code and automated proof of
verification conditions are routinely used in developments based on the SPARK
Pro Ada development system [3]. Airbus has used the Caveat static analyzer
to prove properties about about significant portions of the Flight Control and
Guidance Unit of the A380 [4]. The Prover R© Plug-In [5] model checker has been
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extensively used for the V&V of railway signaling systems. Formal verification
tools are routinely used in hardware development. The upcoming revision of
the DO-178B software development standard includes a supplement providing
guidance on how to use formal methods in the verification of software for civil
avionics. While not widely published, companies developing safety or security
critical systems routinely make use of proprietary formal specification and veri-
fication systems.

These very real gains often go unacknowledged as evidence of the successful
transition of formal methods into industry. In some cases, this is because the
technologies have been given new names such as model-based development. In
other cases, it is simply because the name “formal methods” is often still as-
sociated with its early prototypes rather than with the successful methods and
tools they have evolved into. Other examples are not well known simply because
industry does not have the same need to publicize its use of formal methods as
the research community does.

To understand the benefits that formal methods can provide, Rockwell Collins
has conducted many trials in their use over the last twenty years. This paper
describes several of these experiments, discusses what worked and what didn’t,
and tries to identify the key lessons we have learned about the industrial use of
formal methods.

2 Case Studies

This section describes, in roughly chronological order, several experiments con-
ducted in the use of formal methods at Rockwell Collins. These include formal
verification of the microcode in the AAMP5 and AAMP-FV microprocessors
using the PVS theorem prover, formal verification of the intrinsic partitioning
mechanism in the AAMP7G microprocessor using the ACL2 theorem prover,
formal verification of the FCS 5000 Flight Control System mode logic and
the ADGS-2100 Adaptive Display System Window Manager using the NuSMV
model checker, formal verification of the Redundancy Management logic in an
adaptive flight control system using NuSMV, and formal verification of the Ef-
fector Blendor in an adaptive flight control system using the Prover Plug-In
model checker.

2.1 AAMP5 Microprocessor

One of our first experiments in the use of formal methods was the verification
of the microcode in the AAMP5 microprocessor in 1993 and 1994 [6], [7]. The
Advanced Architecture Microprocessor (AAMP) consists of a family of Rockwell
Collins proprietary microprocessors used in civil and military avionics systems.
The AAMP family is based on a stack architecture that allows it to provide
exceptional code density and low power consumption while providing perfor-
mance comparable to that found in commercial microprocessors of the same era.
Once fabricated, the AAMP5 consisted of approximately 500,000 transistors as



Twenty Years of Industrial Formal Methods 3

compared to 3.1 million in an Intel Pentium. The AAMP5 was designed as an
object-code compatible replacement for earlier members of the AAMP family
while providing a threefold performance improvement through the use of tech-
niques such as pipelining.

The NASA Langely Research Center funded the Computer Science Research
Laboratory of SRI International to work with Rockwell Collins to use the PVS
theorem proving system to formally verify the microcode in the AAMP5. To
do this, a model of the AAMP5 macroarchitecture and microarchitecture were
created by SRI in PVS. The macroarchitecture described the behavior of 24
AAMP instructions at the level of detail seen by an assembly language program-
mer, specifying how each instruction altered memory, the processor stack, and
registers visible to the programmer. These instructions were chosen to include
members of each class of the AAMP5’s 209 instructions, with 13 instructions in
a core set to be verified by SRI and 11 additional instructions to be verified by
Rockwell Collins. The microarchitecture described the AAMP5 at the register
transfer level, specifying the functionality and interconnection of AAMP5 com-
ponents such as the arithmetic logic unit, the bus interface unit, and look ahead
fetch unit. The microarchitecture specification also included a translation of the
microcode for the 24 instructions into PVS. To prove the correctness of the mi-
crocode, an abstraction function abs was defined mapping the microarchitecture
state to the macroarchitecture state and the PVS theorem prover was used to
show that the change in the microarchitecture state m caused by the sequence of
microcode instructions i1, ..., in implementing each macroinstruction I preserved
the abstraction function, i.e., that abs(in(...i1(m))) = I(abs(m)).

The final PVS specification of the macroarchitecture for 108 of the AAMP5’s
209 instructions resulted in 2550 lines of PVS and took a total of 1,155 hours
to to develop and review. The PVS specification of the microarchitecture re-
sulted in 2,679 lines of PVS and took 1,119 hours to develop and review. The
proofs of correctness were completed for eleven instructions and took about 800
hours to develop. An additional 316 hours were spent on project managment
and education.

Two errors were found in the AAMP5 microcode while developing the macroar-
chitecture specification simply by exposing ambiguities in the informal specifica-
tion to the AAMP5 developers. Two test the effectiveness of the proof process,
two subtle errors were “seeded” in the microcode delivered to SRI. Both of these
errors were detected during completion of the proofs. No other errors were found
in the microcode, providing high confidence that the microcode was correct.

The primary lesson we learned from the AAMP5 experiement was that for-
mal verification tools such as the PVS theorem prover had matured to the point
where they could be used on industrial problems and that they would systemati-
cally find errors. However, there were still many concerns with the cost of formal
verification and the level of expertise required to do it. Simply dividing the total
project hours by the number of instructions verified put the cost at 308 hours
per instruction. Another lesson was that it could be very costly to manually
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develop a formal specification that was separate from the design specification
the engineers were using for development.

2.2 AAMP-FV Microprocessor

At the end of the AAMP5 experiment, it was still unclear what proportion of the
AAMP5 verification costs were one time expenses incurred mastering the tech-
nology and developing infrastructure (such as supporting PVS libraries) and
what costs would be incurred on subsequent projects. Our intuition was that
the costs would be much lower, but it was impossible to be sure. To answer
this question, the NASA Langley Research Center, Rockwell Collins, and SRI
decided to repeat the experiment on the AAMP-FV [8], [9]. Although not actu-
ally fabricated, the AAMP-FV was designed for use in ultra-critical applications
such as autoland or fly-by-wire. For this reason, it had only 80 instructions as
compared to the AAMP5’s 209 instructions, used fewer data types and address-
ing modes, had a flat address space, and was not pipelined. If fabricated, the
AAMP-FV would have required about 100,000 transistors compared to about
500,000 for the AAMP5.

The AAMP-FV experiment confirmed our expectations. In contrast to the
AAMP5, specification of the AAMP-FV macroarchitecture in PVS took only 130
hours and specification of the microarchitecture took only 138 hours. Proofs were
completed for 57 of the AAMP-FV’s instructions, at a cost of about 38 hours
per instruction, almost an order of magnitude reduction from the AMMP5.

There were several reasons for the reduced costs. For one thing, the AAMP-
FV was designed to be verifiable and this did make the proofs easier to complete.
However, reuse of PVS libraries, specification patterns, and proof strategies from
the AAMP5 project also made significant contributions. Another important fac-
tor was that the designers of the AAMP-FV now knew enough to write the
PVS specifications themselves. This eliminated the cost of having a PVS expert
learn the design of the AAMP-FV. Finally, more instructions in each instruction
class were verified. Since verification of each instruction in a class was very sim-
ilar to that of others in the class, the verification costs per instruction dropped
dramatically.

The primary lesson from the AAMP-FV project was that it is very hard to
estimate the cost of formal verification from initial experiments. As with any-
thing else, costs drop dramatically as techniques, tools, and skills are developed.
The AAMP-FV experiment also pointed out that it is easier for the developers
to master the verification tools than it is for experts in formal verification to
master a complex product domain.

2.3 FCS 5000 Flight Control System

As part of NASA’s Aviation Safety Program (AvSP), Rockwell Collins and our
partner, the University of Minnesota, decided to investigate the feasibility of
using model checking rather than theorem proving. One of our first applications
of model checking was to the mode logic of the FCS 5000 Flight Control System
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[10],[11]. The FCS 5000 is a family of Flight Control Systems for use in business
and regional jet aircraft. The mode logic determines which lateral and vertical
flight modes are armed and active at any time. While inherently complex, the
mode logic consists almost entirely of Boolean and enumerated types and is
written in Simulink. The mode logic analyzed consisted of five interrelated mode
transition diagrams with a total of 36 modes, 172 events, and 488 transitions.

Desired properties of the mode logic were formally verified using the NuSMV
model checker [12]. Rather than manually creating a formal model to be verfied,
we developed a translator framework in conjunction with the University of Min-
nesota that would automatically convert the Simulink models into the NuSMV
specification language. This framework has been extended over the years and now
translates Simulink, Stateflow, SCADE, and Lustre[13] models into the NuSMV,
Prover, SAL [14], and KIND [15] model checkers, the PVS [16] and ACL2 [17]
theorem provers, and into Ada and C source code [18], [19].

This approach was very successful, allowing us to verify properties of the
mode logic in seconds. Formal verification of an early version of the mode logic
found 26 errors, seventeen of which were found by the model checker. Of these
17 errors, 13 were classified by the FCS 5000 engineers as being possible to miss
by traditional verification techniques such as testing and inspections. One was
classified as being unlikely to be found by traditional verification techniques.

An important lesson we learned from this experiment was to automatically
translate the models the engineers used for code generation rather than to create
a verification model by hand. This eliminated the tedious process of trying to
keep the engineering model and verification model in sync and enabled us to
rerun the verification quickly each time the engineering model was changed.
Being able reverify quickly after each modification and to find errors rapidly
built confidence with the engineers that the tools worked and could find real
errors.

However, the most important lesson we learned was that industrial systems
have significant portions of their logic that can be verified with today’s model
checkers. Even if the entire system can’t be formally verified, there are almost
always large portions that are amenable to model checking or that can be made
amenable with some small changes. This has been been the case in almost every
system we have looked at, leading us to conclude that model checking could be
used in far more places than is the case today.

2.4 ADGS-2100 Window Manager

One of the largest and most successful applications of our tools was to the ADGS-
2100 Adaptive Display and Guidance System Window Manager [18],[11],[20]. In
modern aircraft, the main way that aircraft status is provided to pilots is through
computerized display panels on the flight deck.

The ADGS-2100 is a Rockwell Collins product that provides the heads-down
and heads-up displays and display management software for next-generation
commercial aircraft. The Window Manager (WM) ensures that data from differ-
ent applications is routed to the correct display panel. In normal operation, the
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WM determines which applications are being displayed in response to the pilot
selections. However, in the case of a component failure, the WM also decides
which information is most critical and routes this information from one of the
redundant sources to the most appropriate display panel. The WM is essential
to the safe flight of the aircraft. If the WM contained logic errors, critical flight
information could be unavailable to the flight crew.

While very complex, the WM is specified in Simulink using only Booleans and
enumerated types, making it ideal for verification using an implicit state model
checker such as NuSMV. The WM is composed of five main components that
can be analyzed independently. These five components contain a total of 16,117
primitive Simulink blocks that are grouped into 4,295 Simulink subsystems. The
reachable state space of the five components ranges from 9.8× 109 to 1.5× 1037

states. Ultimately, 563 properties about the WM were developed and checked,
and 98 errors were found and corrected in early versions of the WM model.

The ADGS-2100 reinforced the lessons we had learned on the FCS 5000. We
were able to find a large portion of the system (the WM) that was well suited for
verification with an implicit state model checker. Automatically translating the
model the engineers used for code generation into NuSMV was key to providing
rapid feedback to the developers and gaining their trust, even when the model
was being changed every day.

Another lesson was that it is possible for formal verification to provide real
value even if the modeling language itself does not have a published, formal
semantics. Languages that support simulation and code generation probably
do have an underlying, if unstated, formal semantics. Translating them into a
language such as Lustre, implicitly embedding the semantics in the translator, is
a viable approach for making formal verification possible. If the translation also
replicates the semantics of the generated code, formal verification can be used
very effectively to find errors even while the model is being developed.

However, the most important lesson we learned during the ADGS-2100 exper-
iment was that practicing engineers were willing and able to use model checking
during their development. During this project, we continuously improved our
translation framework from one that required significant manual intervention
each time the translation was done to one that was completely automated and
took only minutes. Once our tools reached that level of maturity, the developers
were more than happy to use the tools, write their own properties, and debug the
counterexamples. By the end of the project, the WM developers were checking
their properties after every design change [20].

2.5 AAMP7G Microprocessor

The AAMP7G is another member of the AAMP family of Rockwell Collins mi-
croprocessors. Its design includes an intrinsic hardware partitioning mechanism
that provides strict time and space partitioning and allows applications at dif-
ferent criticality levels to execute concurrently on the microprocessor. Originally
designed to provide partitioning for Integrated Modular Avionics (IMA) systems
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in civil aircraft, it has also received an NSA certificate that allows it to concur-
rently process Unclassified through Top Secret codeword information, enabling
it to be used for security partitioning in many Rockwell Collins products. This
certificate is based in large part on a formal proof of correctness of its separation
kernel microcode [21].

The verification of the AAMP7G intrinsic partitioning mechanism was com-
pleted using the ACL2 theorem prover [17]. The switch to ACL2 from PVS was
made partially because of a preference expressed by the customer and partially
to for us to learn more about ACL2. The first step in the proof was to formally
define what “data separation” means. Informally, data separation means that
the data in one partition depends only on the data in partitions that are allowed
to interact with that partition, i.e., what occurs in other partitions can have no
affect on the partition of interest. This definition, now referred to as the GWV
theorem after its authors, was specified as a formal property in the language of
the ACL2 theorem prover. It states that the effect of a single step on the sys-
tem state on an arbitrary segment of memory is a function only of the segments
associated with that segment’s partition.

To prove that the GWV theorem was satisfied by the AAMP7G, a model
of the AAMP7G was constructed at two different levels, the functional level
and the abstract level. The functional level corresponds closely to the actual
AAMP7G microarchitecture implementation, while the abstract model repre-
sents the AAMP7G in a manner more convenient for describing properties. The
proof of the GWV theorem was then organized into three pieces:

1. Proofs validating the correctness of the theorem.
2. Proof that the abstract model meets the security specification.
3. Proof that the functional model implements the abstract model.

Just as with the AAMP5 and AAMP-FV projects that required the develop-
ment of several supporting PVS libraries, several ACL2 libraries were developed
to support the AAMP7G verification. The AAMP7G partitioning information
is stored in data structures with pointers to other data structures, but this is
of course implemented over a linear address space. Most of the libraries devel-
oped in ACL2, termed GACC for Generalized Accessor, provided support for
reasoning about such structures.

Since the ACL2 models of the AAMP7G were constructed by hand, they
were validated through an extensive code-to-spec review with a National Se-
curity Agency evaluation team. This review first validated that the separation
theorem itself was the correct theorem. Then each of the functions in the ACL2
formal specification were reviewed. The most time consuming part of this was
the review that the AAMP7G functional model correctly described the actual
AAMP7G implementation. This exhaustive review accounted for each line of
trusted microcode and each model of a line of trusted microcode, ensuring that
there was nothing left unmodeled, that there was nothing in the model that was
not in the actual device, and that each line of the model represented the actual
behavior of the microcode.
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This review was possible because the functional model was designed to corre-
spond almost exactly to the actual device. Of course, this complicated the proof
of the GWV theorem, but this was mitigated by first proving that the astract
model satisifed the theorem and then that the functional model implemented
the abstract model. The final step in the certification process was for the cer-
tification authorities to take the reviewed models and rerun the proof at their
location using a trusted copy of the ACL2 theorem prover.

In May of 2005, the AAMP7G was certified as meeting the EAL-7 require-
ments of the Common Criteria as “... capable of simultaneously processing Un-
classified through Top Secret Codeword information”. This certificate has al-
lowed the AAMP7G to be used as a foundational component in a number of
Rockwell Collins security products.

The time spent manually verifying the AAMP7G model reinforces the need to
automatically translate the model the developers use in design into a model that
can be used formal verification. However, the most costly part of the AAMP7G
verification was the development of supporting libraries, particularly those for
reasoning over over complex data structures. These libraries have been reused
in subsequent verification efforts, greatly reducing the cost of those efforts.

The AAMP7G verification points out that while model checking may be
simpler and more easily used by product developers, many applications still
require the full generality and power of theorem proving. These efforts may still
be cost effective if sufficient infrastructure has been developed or if the problem
is sufficiently important.

2.6 CerTA FCS Phase I

The Air Force Research Laboratory (AFRL) Air Vehicles Directorate (RB) has
sponsored several studies to investigate the feasiblity of applying model checking
to avionics systems. The first of these was conducted under the Certification
Technologies for Advanced Flight Critical Systems (CerTA FCS) program in
order to compare the effectiveness of model checking and testing [18],[11],[22].
In this study, we applied our tools to the Operational Flight Program (OFP) of
an unmanned aerial vehicle developed by Lockheed Martin Aerospace.

The OFP is an adaptive flight control system that modifies its behavior in
response to flight conditions. For Phase I of the project, we first looked for a
portion of the OFP that was specified using Boolean and enumerated types that
could be verified with an with implicit state model checker such as NuSMV.
Just as for the FCP 5000 and the ADGS-2100, a large portion of the OFP did
fit this criteria. In the case of the OFP, it was the Redundancy Management
(RM) logic.

The RM logic was broken down into three components that could be ana-
lyzed individually. While relatively small (they contained a total of 169 primitive
Simulink blocks organized into 23 subsystems, with reachable state spaces rang-
ing from 2.1× 104 to 6.0× 1013 states), the RM logic was replicated in the OFP
once for each of the ten control surfaces on the aircraft, making it a significant
portion of the OFP logic.
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Even for the Redundancy Management logic, our translation framework had
to be extended to support all the modeling constructs used by the Lockheed Mar-
tin team. In particular, the models made extensive use of StateFlow, which had
not been used in the ADGS-2100. Fortunately, we had been working on a trans-
lator for StateFlow, so many of the needed enhancements were already done.
In addition to handling StateFlow, changes also needed to handle data stores
with multiple reads/writes within a step, triggered and enabled subsystems with
merge blocks, boundary-crossing and directed acyclic transitions through junc-
tions, variables used as both integers and as bit flags, bit-level operations, and
StateFlow truth tables and functions.

To compare the effectiveness of model checking and testing at discovering
errors, the project had two independent verification teams, one that used testing
and one that used model checking. The two teams communicated only through
a single engineer at Lockheed Martin and every effort was made to make sure
the verification being done by one team did not influence the other. The formal
verification team developed a total of 62 properties from the OFP requirements
and checked these properties with the NuSMV model checker, uncovering 12
errors in the RM logic. Of these 12 errors, four were classified by Lockheed
Martin as severity 3 (only severity 1 and 2 can affect the safety of flight), two were
classified as severity 4, two resulted in requirements changes, one was redundant,
and three resulted from requirements that had not yet been implemented in the
release of the software.

In similar fashion, the testing team developed a series of tests from the same
OFP requirements. Even though the testing team invested almost half again as
much time in testing as the formal verification team spent in model checking,
testing failed to find any errors. The main reason for this was that the demon-
stration was not a comprehensive test program. While some of these errors could
be found through testing, the cost would be much higher, both to find and fix
the errors. In addition, the errors found through model checking tended to be
intermittent, near simultaneous, or combinatory sequences of failures that would
be very difficult to detect through testing.

Clearly, one of the lessons learned from this experiment was that model
checking can be used to find errors more cheaply than testing. More importantly,
these errors can be found early in the lifecycle, avoiding the expensive rework
that occurs when errors are found during system integration and test. Finally,
many of the errors found are those that would be missed by both reviews and
testing.

A less obvious lesson is that it is indeed possible to assign a formal semantics
to a practical subset of Simulink and StateFlow that can be analyzed with formal
verification tools. Since the CerTA FCS project, we and others have used our
tools to verify systems modeled by several different companies, demonstrating
the portability of our tools. In each case, the key enabling factor was the use of
Simulink and StateFlow.

In actuality, the widespread use of languages such as Simulink and SCADE
Suite are a huge advantage for the formal methods community. Most researchers
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greatly underestimate the difficulty industry faces in switching from one set of
modeling tools and processes to another. Once hundreds of engineers are trained
in one set of tools, standards and and workflows are developed, and the entire
process has been reviewed and accepted by the certification authorities, changes
are made only for very compelling reasons. It is far easier for the formal methods
community to develop verification tools that work with the formalisms industry
is already using than for industry to switch to new formalisms.

2.7 CerTA FCS Phase II

Phase II of the CerTA FCS project was to investigate whether model checking
could be used to verify large, numerically intensive models. In this study, our
translation framework and model checking tools were used to verify properties
of the Effector Blender (EB) logic of an OFP for a UAV similar to that verified
in Phase I.

The EB is a central component of the OFP that generates the actuator
commands for the aircraft’s six control surfaces. It is a large, complex model
that repeatedly manipulates a 3× 6 matrix of floating-point numbers. It inputs
32 floating-point inputs and a 3×6 matrix of floating-point numbers and outputs
a 1 × 6 matrix of floating-point numbers. It contains over 2,000 basic Simulink
blocks organized into 166 Simulink subsystems, many of which are StateFlow
models.

One of the key challenges in verifying the EB was dealing with the floating-
point arithmetic used widely in the EB. Translating the floating- point numbers
into rational numbers was rejected since much of the arithmetic in EB is inher-
ently nonlinear, so the decision procedure for linear arithmetic found in many
SMT solvers such as Prover and SAL would not help. Even if this hadn’t been
the case, the use of rational numbers would mask possible floating-point errors
such as overflow and underflow.

Instead, the translator framework was extended to convert floating-point
numbers to fixed point numbers using a scaling factor provided by the OFP
designers. The fixed point numbers were then converted to integers using bit-
shifting to preserve their magnitude. This allowed the EB to be verified using
Prover’s bit-level integer decision procedures. Of course, the results were unsound
due to the loss of precision. However, errors found during verification could be
checked through simulation to determine if they were also present in the original
model. This allowed the verification to be used effectively for debugging, but it
did not guarantee correctness.

Even with these adjustments, the EB model was large enough that it had to
be decomposed into a hierarchy of components several levels deep. The leaf nodes
of this hierarchy were verified using Prover and their composition was verified
using manual proofs. This approach also ensured that unsoundness could not
be introduced through circular reasoning since Simulink enforces the absence of
cyclic dependencies between atomic subsystems.

Ultimately, five errors in the EB design logic were discovered and corrected
through model checking of the properties developed for the EB. In addition,
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several potential errors that were being masked by defensive design practices
were found and corrected.

Verification of the EB helped us to understand the limits of model checking.
Since most industrial system use floating-point numbers, industry needs more
effective means of dealing with floating-point arithmetic. Even if rational num-
bers are an acceptable approximation, many systems are nonlinear. In particular,
nonlinear functions such as trigonometric functions occur repeatedly in naviga-
tion systems and we still lack simple ways of dealing with such functions other
than to use linear approximations.

Model checking numerically intensive systems such as the EB also becomes
computationally expensive for model checkers, including SMT solvers. A theo-
rem prover could have been used very effectively to automate the compositional
reasoning performed in the EB verification, but there wasn’t sufficient budget
to explore this option. The ideal arrangement would have been a unified model
checking and theorem proving environment where model checking could have
been used to automatically verify the leaf nodes and a theorem prover used to
compose those results and prove properties of the entire EB.

3 Lessons

The experiences described in this paper and the examples cited in the introduc-
tion show that formal methods can and are being used successfully in industry.
In this section, we summarize the main lessons we have learned in using formal
methods in an industrial setting.

All systems have large parts that can be formally verified. In every system we
have looked at there are portions that use only Booleans, enumerated types,
and a few small integers. More often than not, these are also the parts of the
system causing the developers the most trouble. These parts can be verified very
effectively using implicit state model checkers such as NuSMV. Sometimes small
changes need to be made to the design to make them amenable to model check-
ing, for example, moving comparisons of numeric variables to thresholds out of
the portion of the model to be verified and inputing the results of those com-
parisons instead of the numeric values themselves. In other cases, the developers
could have organized the design differently to make model checking possible if
they’d understood how much it could help them.

One of the main benefits of formal verification is the early detection of errors. In-
dustry understands all too well that finding errors during system integration (or
later) is much more costly than finding those errors early in the lifecycle. Senior
management repeatedly emphasizes the importance of finding errors early. But
how should developers do this? Increasingly, engineers are building executable,
graphical models precisely because this makes it easier to find errors sooner. If
these models are also used for code generation, the cost of their development is
paid for by eliminating coding and the models are automatically kept in sync
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with the implementation. Our experiences have shown that if formal verification,
particularly model checking, can be introduced as soon as the first models are
developed, it will find errors. The CerTA FCS project demonstated that formal
verification can find errors more cheaply than testing. We believe that any addi-
tional costs incurred doing formal verification will be recouped many times over
by avoiding the rework that would occur if the errors were not found until much
later.

Formal verification will find errors that traditional methods will miss. Since
formal verification considers every possible combination of input and state while
testing considers only a tiny fraction of all possible inputs, it is not surprising
that formal verification finds errors that testing misses. Formal verification also
provides a much more systematic, repeatable, and thorough way to check a model
than reviews or inspections. This does not mean that testing or reviews should
be discarded. Testing is still needed to demonstrate that the actual product
works on its target platform in its final environment and reviews are an effective
way to ensure that standards are followed, to identify design alternatives, and to
educate new team members. Rather, formal methods should be used to find and
correct errors as soon as possible and to find errors that traditional approaches
would miss.

Make it easy to reverify properties when the model changes. Just as regression
testing is a powerful technique for managing change, ”regresssion proof” can be a
powerful aid during product development. Generally, models will change several
times during a project. It is not unusual for developers to change a model several
times a day. However, this is precisely when formal verification can provide the
greatest benefit. This requires that properties be developed that are not sensitive
to the internal structure of the model. It may also require that the model be
designed to facilitate verification with the available tools.

Take advantage of formalisms already in use in industry. The widespread use of
model-based development and commercial modeling tools such as SCADE Suite,
Simulink, and StateFlow is a huge advantage for the formal methods community.
Our experiences show that it is possible to assign a formal semantics to these
notations and that formal verification can provide real value back to the devel-
opers. In addition, many companies have developed and are using proprietary
formalisms for which formal verification tools can be built. A very effective tech-
nique to take advantage of these formalisms is to develop translators from that
formalism to one or more formal verification tools. It is much easier for the formal
methods community to develop verification tools that work with the formalisms
industry is already using than for industry to switch to different formalisms.

Costs drop rapidly with experience. As demonstrated directly by the AAMP-FV
verification, there are significant costs in mastering the formal verification tools
and in developing the infrastructure, such as domain specific libraries, that will
not be incurred on subsequent verification efforts. It is not unrealistic for there
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to be an order of magnitude reduction in cost once the verification process is
well understood and the supporting infrastructure is fully developed.

Use the right verification technology for the problem. Systems that can be spec-
ified using Boolean, enumerated, and small integer types can often be verified
using imnplicit state model checkers, as demonstrated on the FCS 5000 mode
logic, the ADGS-2100 Window Manager, and the OFP RM logic. We have found
implicit state model checkers to be something our engineers can pick up and use
effectively with only a couple days of training and ongoing mentoring. More
complex models using linear floating-point arithmetic can often be verified us-
ing SMT-solvers, but they are often harder to use than implicit state model
checkers. In the case of the Effector Blendor, the presence of non-linear arith-
metic forced us to use approximate techniques that product developers probably
would not have the time to learn or use. Finally, some domains, such as the
AAMP5, AAMP-FV, and AAMP7G microprocessor verification, still seem to
require the full power and generality of theorem proving.

Pick important problems. While model checking is starting to approach the point
where it could be effectively used on almost any sort of development, it is best
suited for applications demanding high levels of assurance. Each of the exper-
iments described in this paper were on components either used in or represen-
tative of the safety and security critical systems we develop. While we consider
each of these experiments to be a successful demonstration of the effectiveness of
formal verification. However, even though the verification of the AAMP7G was
probably the most expensive, it was also probably one of the most important
since it was key to the development of several subsequent products.

4 Future Directions

There also remain many areas for further research. The difficulty of formal verifi-
cation of numerically intensive systems, even for linear arithmetic using rational
numbers, makes it prohibitively expensive for most industrial developers. Cost
effective techniques for dealing with floating-point numbers remains an outstand-
ing problem; treating the floating-point variables as rational numbers introduces
the potential to miss rounding errors such as underflow and overflow. Better
techniques are also needed to deal with transcendental functions, particularly
trigonometric functions, that are used routinely in navigation systems.

Compositional verification is also an area where better tools and techniques
are needed. The verification of the Effector Blendor in the CerTA FCS project
suggests that a unified environment for model checking and theorem proving
might be a viable solution. At this point, the state of the art appears to be
theorem proving environments that make use of decision procedures similar to
those used in model checkers. A better solution would be an integrated enviro-
ment that allowed parts of a system to be verified with different tools and those
results composed to achieve verification of the entire system.
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As demonstrated by the AAMP7G verification, theorem proving remains
an important choice in the formal methods toolbox. Development and sharing
of domain specific libraries of properties can greatly reduce the cost and time
associated with theorem proving. Additional work could also be done to more
fully automate the discovery of complex proofs.

Trusting the verification tools themselves will become more of an issue in the
years to come. The Formal Methods Supplement to be released with the new
standard for the development of civil avionics software, DO-178C, will require
that formal verification tools be “qualified” if they are to be used to meet DO-
178C objectives. Techniques to develop trusted verification tools, or to develop
separate checkers that are highly trusted, will become increasing important as
industry makes greater use of formal verification.

Finally, most industrial systems today consist of many components that each
execute synchronously, but that communicate asynchronously over a bounded-
delay network. At this time, formal verfication seems to be limited to the verifi-
cation of the synchronous components or to some aspect of the overall system.
Much better tools are needed that allow individual components to be formally
verified and those results composed (correctly modeling the asynchronous ex-
ecution and communication of the components) to verify safety, security, and
performance properties of the entire system.
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